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Problem: Let f and g be continuous real-valued functions on [0, 1] satisfying the condition∫ 1

0
f(x)g(x)dx = 0. Show that
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Solution: Actually, we prove the following chain inequalities:
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At first, we prove the first inequality in (1). If
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0
f = 0 or
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0
g = 0, there is nothing to prove.

Now, supposing
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But, considering
∫ 1

0
fg = 0 and using the Cauchy-Schwarz inequality, we have
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If
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g2 = 0, the second inequality in (1) is trivial. Now, we suppose that
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We get the minimum of the right hand side at α =
(∫ 1

0
g
)2/∫ 1

0
g2. So, replacing α with this

value in (3) and simplifying it, we obtain the second inequality in (1), and the proof is complete.

Comments. As it is clearly seen, the continuity of f and g are not necessary, and we need

only f, g ∈ L2[0, 1]. By the same method, we can extend the inequality (2) for any number of

orthogonal fi ∈ L2[0, 1] with
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0
fi 6= 0 (1 ≤ i ≤ n), as follows:
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Actually, the second inequality in (1) can be written in the following form
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where f and g are two nonzero orthogonal elements of L2[0, 1]. It is natural to ask whether (4)

is valid for any nonzero orthogonal elements fi ∈ L2[0, 1] (1 ≤ i ≤ n), as follows
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