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SUMMARY

The neutral g-modes of a degenerate fluid at zero temperature are analy-

zed. The g-modes of a degenerate fluid at finite but small temperatures are

then expanded in terms of those of the zero temperature fluid. For non-relati-

vistic degenerate fluids it is found that (a) the g-eigenvalues are proportional

6 -I
to T _e _i ' where T is the internal temperature of the fluid, _e and _i are

the mean molecular weights of electrons and ions, respectively; (b) the ion

pressure is solely responsible for driving the g-modes. For white dwarfs of

abouta solar mass,the periods of the g-oscillations are in the range of a few

hundred of seconds.

I. INTRODUCTION

It has been suggested that the short period oscillations observed in the

cataclysmic variables are connected with the g-modes of the white dwarf component

of these objects (e.g. Warner and Robinson, 1972; Osaki _nd Hansen, 1973). The

thrust of the argument behind this suggestion is that the observed periodicities,

of the order of several tens of seconds, are too long to be attributed to the

p-modes. In connection with the longer periodicities of DA white dwarfs, of the

order of several hundreds of seconds, some authors have also called upon the
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g-modes. For example, Wolff (1977) has propos¢d that the interaction of a slow

rotation with the g-modes is capable of accounting for such periodicitles. Most

of these propositions have, at most, had partial acceptability by Investigators

in the fleld. Modlflcations to the theories have been proposed (e.g., Papalolzou

and Pringle, 1978), and alternative explanations, not requiring the interVention

of g-modes, have been put foreward (e.g., Bath 1973, and Bath et al., 1974).

In recent years, Baglin and Schatzman (1969) have calculated some g-fre-

quencies of white dwarfs with finite temperatures, Harper and Rose (1970).

Osaki and Hansen (1973), and Brickhiil (1975), each have analyzed the problem

In varying details. Practically all previous works on non-radial oscillations

of white dwarfs are attempts to integrate the differential equations governing

the small displacements of the fluid. Some information on theeigenfrequencies.

and,.to a lesser extent, on the eigenfunctlons has been accumulated over the

years.

The authors wish to draw attention to an alternative approach to the

problem: The operator generating small displacements of a fluid, including those

of a degenerate structure, Is self-adjolnt (Chandrasekhar, 1964). The normal

modes of the fluid belong to a Hilbert space. If there is access to a basis set

for this space, then one can expand the actual eigendisplacements of the fluid in

terms of thls basis set, transform the differential equations of motions Into a

matrix equation, and obtain the expansion coefficients by variational calculations.

This alternative route is followed in the present paper. It provides more infor-

mation on the eigenvalues and eigenfunctlons of the system, and gives deeper in-

sight Into their behavior and their dependence on the physical properties of the

fluid.
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(6) is an exact solution of Equations (1) corresponding to € = O. This completes

the demonstration of the existence of neutral modes in the zero temperature

fluid, the neutral g-modes.

IV. THE BASIS-SET

The neutral state of the zerotemperature fluid is infinitely degenerate.

Any displacement vector _ satisfying Equation (67, but otherwise arbitrary, is

an eigenfunctlon of € = O. Sobouti (paper It has used this arbitrariness to

propose a set of basis-vectors for the space of the g-modes of the neutral fluid.

Thus, let cJ, j = 1,2,.... , have the following spherical harmonic expansion

(OJ(r) m l ×J'(r)aY_ 1 ×J'(r) l
_Y_

_Y : - 2 Y£ ' _ r 98 ' _ r sin8 _ )' (lla)
r

where X' = dX / dr.

Substitution of Equation (lla) in Equation (6) gives

P' cJXj' = @J' + -- . (llb)
P

One of the two functions @J and Xj could be chosen arbitrarily. Equation (llb)

can then bemused to obtain the other one. One now appreciates the immense simpli-

fication that Equation (6), or equivalently Equation (llb), brings into the

problem. These equations reduce the task of specifying a vector _J to the deter-

mination of only one scalar function, @J, say. The following expression for _J

is used in the numerlcal calculations of this paper:

_j 3 , -2 £+2j_2= 4riGpp p r , j = 1,2,.... (llc)

We note the following: (a) On the surface of star @ vanishes, while X', the

non-radial component of the displacement, remains finite. (b) The exponent

£
of r is chosen such that _._ behaves as r near the origin and is an even or

odd polynomial depending on whether £ is even or odd; these properties are shown

to be required by Hurley, Roberts and Wright (1966). (c) The polynomials

in r are helpful in acheiving the completeness of the proposed vectors of
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II. THE MODEL AND THE EQUATIONS OF MOT!ON

A fluid consisting of non-relativistic degenerate electrons and non-

degenerate ions will be considered. It will be assumed that the temperature

is constant throughout the fluid, except in a thin envelope. In this envelope,

the temperature will decrease to zero in a manner determined by whether the

envelope is in convective or in radiative equilibrium.

i) Equations of Notion: Adiabatic Lagrangian displacements of the fluid,

1/2
_(_) exp(i € t), are governed by the following equations:

._4J'_: Cp_, (la)

where

N p _ '

Bp
6p = -(_-_)adP£'_ - _P'_' (2b)

V26_ = -4xG_p, (2c)

and p, p and _ are the density, pressure and gravitational potential of the

fluid in hydrostatic equilibrium, respectlvely.

ii) The Equation of State: The pressure of the fluid is the sum of the

partial pressures of the degenerate free electronsand the non-degenerate ions.

Thus,

p(p,T) = pe(P,T) + PI(P,T). • (3a)

No correction for charge separation is allowed in Equation (3a). The number

density of the Free electrons and the positive ions is assumed to be proport-

ionaI to each other, so as to maintain macroscopic charge neutrality. There-

fore, both Pe and PI are given in terms of the same density p. At temperatures
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T, much below the Fermi temperature TF of electrons, temperature corrections

in Pe are of the order of (T/TF)2. In contrast, the ions treated as perfecta

gas have their pressure p| proportlonal to the temperature. Thus, up to and

including the first order terms in T/TF, Equation (.3a) gives

k k pTF [_2 + _e TFF-] 2/3p(p,T) = pe(p) +--_pT = __peH -'a "--_i __ , TF=P , (3b)

where the first term on the right hand side is the electron pressure at zero

temperature, _e and Pi are the mean molecular weights of electrons and ions,

k and H are the Boltzmann constant and the mass of hydrogen atom, respective-

ly. As a simplifying assumption, Pe and Pi will be considered to be constant

throughout the star and also in the course of any thermodynamicprocess which

may take place in it.

iii) The Adiabatic Processes: The entropy of the fluid is the sum of the

electronic and ionic contributions, se and Sl, respectively. Thus, the change

in the entropy is

= + ds . (4a)ds dse I

For the unit mass of ions, treated as a perfect gas, one has

k 23_dT d--e-_). (4b)dsi=-F (T" p

The entropy per unit mass of non-relativistic degenerate electrons is

= (½w2k/PeH)T/T F (see for example, Landau and Lifshitz, 1959;se Morse,

1965). From the last expression, and considering the fact that TF is propor-
2/3

tional to p , one obtains

1 2 k T [ dT 2 dp] = 2 _i T._
dSe = _ _ _eH TF T 3 p _- _eeTF ds i. (4c)

One observes that (a) dse is smaller than ds i by a factor of T/TF, and (b) in

the course of an adiabatic process (in which by definition ds = O) both dse and
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ds i vanish simultaneously. These results simplify the forthcoming calculations

considerably. Thus, one obtains

(a_p_p) = + aPi _ _ 5Pe + y Pi (5)
ap ad ap Se (aT_i - 3T "P- '

where y = 5/3 is ratlo of the specific heats of the ion gas.

III. THE NEUTRAL MODES OF THE ZERO TEMPERATURE FLUID

At zero temperature the g_modes of a degenerate fluid are neutral, that

is, the g-eigenvalues become zero (e.g., Harper and Rose, 1970). We intend to

analyze these neutral modes in some detail and subsequently use them as a basis

set to expand the modes of the finite temperature model. The formalism is the

same as that of Sobouti (1977a, henceforth referred to as paper I) for the g-

and p-modes of ordinary fluids.

Let us investigate if there is a displacement _(_) # 0 which is a solution

of Equation (I) and for which the corresponding 6p is zero. This last condition,

by Equation (2a), requires that

_p = -p_._- _._ = O. (6)

Substitution of Equation (6) in Equation (2b) gives

where we have utilized the fact that in hydrostatic equilibrium p is a func-

tion of p alone and V£ = (ap/aP)stVP. The expression (Sp/aP)st is the deriva-

tive of p with respect to p as prevailing in the equilibrium structure. The

subscript "st" is inserted to distinguish thls derivative from the adiabatic

derivative (@p/aP)ad. From Equation (3b) one has

)st:  Pe, + k__T + k_Lp¢ )(
(a--_-)st piH _iH ap st"
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The first derivative on the right hand side of Equation (8a) will be calculated

for the zero-temperature structure and is equai to pe/p With regards to

(_T/_P)st , let us define y' as follows:

(_pT) = Tst (x' - (8b)

We observe that in the isothermal core, y' = | In the envelope, where the

temperature decreases outwards, one has the following Information: (a) In any

region in convective equilibrium, y'>y . (b) In any convectlvely neutral•

region, Y' = Y. (c) In any region in radiative equiiibrium, y'<y. From the

theory of g-modes in ordinary fluids one knows that in case (a). some unstable

g-motions (or g-modes, If they develop into standing patterns) ar|se. These

are, however, confined to the convective layers. In case (c) stable g-modes

develop and again are confined to the radiative region. We shall assume that

_he envelope is convectlvely neutral, case (b). By this assumption the envelope

will not contribute to the g-modes of the system and the role of the degenerate

core will be singled out. In view of these considerations, Equation (8a) becomes

_p) 5 Pe Pi( st = _'_- + -_- , In the core, (8c)

5 Pe + y, Pi
= _ _- __. , In the envelope. (8d)

Substitution of Equations (5), (8c) and.(8d) in Equation (7) gives

k

6p = -(y - 1)Pi V._ = -(y - 1) -_T pV._, In the core, (9a)

= O, in the envelope .(Y = Y'). (9b)

This completes the reduction of 6p. From Equations (2c) and (6) one has

= 0. (10)

We now observe that at zero temperature, 6p,6p, and 6_, generated by the

displacements prescribed by Equation (6), vanish Identically. Thus _of Eguatlon
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Equations(If) in the g-subspace of the normal modes of the neutral-fluid. The

completeness of the proposed vectors, though not yet estabilished theoretically,

has, however, been born out by numerical computations of Sobouti (1977b) and of

this paper. Variational calculations with the basis vectors of Equations (ll)

enable one to isolate the g-modes of a fluid systematically and with satis-

factory accuracies.

We have only discussed the g-modes of the neutral fluid. A second basis

set for the p-modes can be generated from the requirement that the p-set is

orthogonal to the g-set. These two basis sets may then be used to expand the

eigendisplacement vectors of any other fluid at finite temperatures (see paper

I for the p-basis set and for further details). Silverman and Sobouti (1978),

and Sobouti and Silverman (1978) have carried out such an expansion for ordinary

fluids. Their analysis shows that i:n the limit of small departures from the

neutral state (the limit of small T in the present problem), the g-modes, as

given in terms of the vectors of Equations (ll), are independent of the p-basis

vectors. This property stems from the fact that the g-states at T = 0 are

degenerate. In the language of linear vector spaces, to a degenerate state

there corresponds a subspace of the normal modes of the system. The effect of

a small perturbation is to specify the principal directions of this subspace

but it leaves the subspace unaltered. Thus, up to the order T/TF, the g-eigendis- Ir
placements can be expanded in terms of the basis set of Equation (II) alone.

No intervention of the p-basis set will be necessary.

V. THE EQUATION GOVERNING THE g-MODES:

Let _J, j = 1,2,.... be a sequence of the g-eigendisplacements of the

finite temperature fluid. The Eulerian variations ap, 6p and 6_, generated by

these vectors are given by Equations (6), (9) and (lO), respectively.

Substitution of these in Equations (l) gives
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,_/'_j = _Jp = EJp_j. (12)

The density p in Equation (12)_ and in Equation (9) for aJp, is the density of

the zero temperature fluid. This does not imply, however, that the density and

the pressure are approximated by their values at T -- O. We have been able to

show that Equation (12) is correct up to the terms of first order in T/T F. The

terms arising from 6p, 6p and 6fl in Equations (1), on account of the fact that

the density distribution at T _ 0 is different from that at T = O, cancel out

each other.

Let _J have the following expansion in tems of the basis set of Equations
(11)"

_j = £ k zkj; k, j = 1,2, .... (13)

The expansion coefficients Zkj can be considered as the elements of a matrix

Z. Thus,

Z = Zkj ; k, j = 1,2, ..... (1ha)

Each column of Z is an elgenvector of the system. Let E be the diagonal matrix

of the eigenvalues cJ,

[ j] diagonal (14b)E = € ; j = 1,2, ....

In connection with Equation (13), let us introduce the followlng matrices:

wkJ
f k*

= J_ ..TM_j_ dv,
(15a)

k*. _j
Skj = ._p_ _ dr. (15b)

We are now ready to convert the differential Equation (12) into an equivalent

matrix equation. Let us substitute Equation (13) in Equation (12), premultiply

the resulting equation by _i* (say), and integrate over the volume of the

fluid. We obtain the (i,j)th element of the following matrix Equation:

WZ = SZE. 521 (16a)



The matrix Z simultaneously diagonalizes W and S. A normalization condition

on the eigendisplacements _J, or.on the eigenvectors Z, could be imposed such

that S diagonalizes to a unit matrix I (.see Silverman and Soboutl, 1978), Thus

Zsz = i. (6b)

Given the matrices W and S, the eigenvalue matrix E and the ei.genvectormatrix

Z can be solved from Equations (16).

The W-and'S-Matrices: From Equations (15a), (12), and (9), after an in-

tegration by parts, one obtains

k*

wkJ Y')  .£Jdv, (17o)
where y' is defined by Equation (8b). The value of y' is equal to unity in

an isothermal core; and is equal to y, the ratio of specific heats of Ions, in

a convectively neutral envelope. Substitution of Equation (ll) in Equation

(17a) and an Integration over the solid angie,glves

kT (R p12 _l_j r-2 dr, (17b)
Wkj = (y - l) _Jo p

where R is the radius of the star. The assumption of a convectively neutral

envelope confines the domain of. integratlon to the core of the star. (i) The

thickness of the envelope, however, is proportionalto T and to R/M.

lhe latter is, in turn, proportional 'to TF_ . Therefore, the ratio of the

thickness of the envelope to the radius of the star is of the order

of T/TFc . (ii) The density, temperature, and pressure tend to zero

at the surface. These two factors makethe contribution of the envelope to the

W-matrix of the second order in T/TFc. Therefore, extending the domain of

integration over the whole star does not introduce first order errors. This

completes the reduction of the W-matrix • For the S-matrlx, after an integration

over the angles, one gets 522



: •ski j-R 1 k'xJ dr (181
o r

The symmetry and positive definiteness of the W-and S-.matrices are manifest from

Equations (.171 and (181.

Vl. SOME PROPERTIES OF THE EIGENVALUES AND EIGENVECTORS

i) The Sign and the Asymptotic Behavior of the Eigenvalues: From Equations

(12) and (9) one can readily write down the following integral expression for _J:

S8J = (y - I) kT___ pV._j"v._Jdv p_J_._Jdv. (191
_iH ....

Either From Equation (19) or from Equations (17) and (18) for the W-and S-matrices,

one can draw the following conclusions:

a) The numerator and the denominator in Equation (19) are both positive

for any _J, or, the W-and S-matrices are symmetric and positive definite. There-

fore, all eigenvalues E] are positive. That is, the g-modes of a degenerate

fluid are a11 stable. Thls, of course, is not surprising. The g-modes are

prototypes of convective motions. An isothermal core is highly subadiabatic and

is stable against convective motions.

b) In Equation (19), as the mode-number ] increases, the numerator becomes

progressively smaller than the denominator. This can be seen from Equations

(17b1 and (18), where the integrations over the solid angles have been carried

out. This asymptotic behavior is well estabiIished for the g-modes of ordinary

fluids (e.g.,.Ledoux and Walraven 19581.

ii) The Unit and the Order of Magnitude of the Eigenvalues: In Equation

(19), let us use a dimensionless radius varlable x = r/R. Thus, one obtains

cj (y_ l}pk TFc T _j (20a)= :H R2 'i TFc
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.,. /J PVx'_J "Vx'_Jd3x I P_J*" _Jd3x' (20b)

where TFc is the Fermi temperature at the center, in Equation (20a)the factors

(T/TFc) and _J are dimensionless. The fTrst of these factors depends on the

model under study. The second factor is calculated for a zero temperature star

and is given in Tablesl,2, and 3. The remaining factor in Equation (20a) has

physical dimensions. On expressing TFc and R in terms of the central density

Pc (see Chandrasekhar, 1939) one gets

_j 4_GPc Ce T j- (Y- l) _ , (21a)
n2 _i TFc

1

where n l is the Emden radius of the polytrope 1.5 (we note that the structure of a

non-relativistic degenerate fluid at zero temperature is that of the poiytrope

1.5). The p-eigenvalues of the fluid are of the order of 4_Gpc / n_.. There-

fore, the g-eigenvalues of the white dwarfs are smaller than the p-eigenvaiues

by a factor of T/TFc. Upon expressing Pc in terms of the total mass of the star,

one obtains an alternative expression for CJ (see Chandrasekhar, 1939),

cj 128_"2 134 -6 ( de ;2 1)_5 e l_e I_. 2 T J (21b)
TFc

where (de/drl) i is the surface value of the derivative of the Emden temperature,

and k is defined by the relation p = K(p/1Je)5/3. The oscillation period

PJ = 2_ //¢J, in the cgs units, is given by

PJ (sec)= 69.0(_"- l) -1/2 .-5/2e (Ui)l/21je __ ( _.)1/2 ( j -1/2) . (22a)

For y = 513, ]Je= 2, and iJi = 4, one has

Me TFc 1/2 (_J)-l/2
PJ (.sec) = 21 1 -_-( ) (22b)• -T-

ili) Behavior of the Eigendisplacementsat the Center and at the

• Surface: Once the eigenvector matrix Z is calculated from Equation (.16), the
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eigendisplacement vectors _J, can be obtained by Equations (13) and (11). We

note the following properties of _J:

a) At the center V,_ tends to zero as r _, See the remarks following

Equation (lIc).

b) At the surface, the radial component of _ tends to zero as r-R. The

non-radial component and ._._ remain finite. These requirements from the g-

modes of any fluid are analyzed in paper I.

VII. NUMERICAL RESULTS

Equation (16) is solved in a Rayleigh-Ritz approximation, that is, by

approximating the infinite matrices of Equation (13)-(16) by finite matrices.

The matrix size was varied from one by one to seven by seven_ Values of
I

= 1,2,3,4,5 and 6 were considered. For _ = l and 2 the dimensionless eigenvalues

_J_ Equation (21b)_and the eigenvectors Z at various Raylelgh-Ritz approximations

are given in Tables l and 2. The eigenvalues are displayed in lines marked by

an asterisk• The column below each eigenvalue is the corresponding eigenvector.

The eigenvectors are normalized according to Equation (16b). For _ = 3,4,5, and

6 the dimensionless eigenvalues are given in Table 3. The convergence of eigen-

values is satisfactory. The same ansatz, Equation "(llc),for non-degenerate

fluids, however, gives much faster convergence (Sobouti, 1977b). Motivated by

this observation a search for a more suitable ansatz for degenerate fluids is

being made.

VIII. CONCLUDING REMARKS:

The salient features of our model can now be summarized. The white dwarf

core is taken to be an isothermal fluid, composed of ions and non-relativistic

degenerate electron gas. In this formalism, corrections up to first order in

T/TFc are included, where T is the temperature of the core and TFc is the Fermi
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Table | The eigenvalues and the eigenvectors of the g-modes of white
dwarfs, corresponding to _ = I. The eigenvalues (Equation 20b) are displayed
in rows marked by asterisks. The column below each eigenvalue is the corres-
ponding eigenvector. Computations are in the Bayleigh-Ritz approximation,
using from one to seven variational parameters. The last two digits in the
entries represent the exponents of lO.

* 0.5184+00

0.6600-02

* 0.2654+00 0.6724+00

-0,8996-02 0.1352-02
0.3167-01 0.2471-01

* 0.1684+00 0.3497+00 0.7312+00

O.ll09-Ol -0.2199-02 0.3254-02
-0.8377-01 -0.3596-01 -0.3898-02
0.1183+00 0.1072+00 0.6105-01

* 0.1172+00 0.2166+00 0.3999+00 0.7494+00

-0.1307-01 0.3303-02 -0.4963-02 0.1705-02
0.1607+00 0.4027-01 0.2508-01 0.1985-01
-0.4936+00 L0.3102+00 -0.1706+00 -0.4368-01
0.4151+00 0.3772+00 0.2980+00 0.1223+00

* 0.8629-01 0.1461+00 0.2500+00 0.4288+00 0.7554+00

-0.1501-01 -0.4496-02 0.6698-02 -0.1810-02 0.2531-02
0.2673+00 -0.3400-01-0.5606-01 -0.4056-01 -0.1341-02
-0.1340+01 0.6051+00 0.3828+00 .0.2621+00 0.9413-01
0.2449+01 -0.1707+01 -0.1227+01 -0.7487+00 -0.2043+00
-0.1452+01 0.1283+01 0.1104+01 0.7824+00 0.2482+00

* 0.6619-01 0.1043+00 0.1673+00 0.2743+000.4471+00 0.7580+00

-0.1690-01 0.5793-02 -0.8360-02 -0.2535-02 -0.3873-02 0.1855-02
0.4082+00 0.1235-01 0.1018+00 -0.5969-01 0.3168-01 0.1848-01
-0.2958+01 -0.9435+00 -0.7592+00 0.6453+00 -0.4014+00 -0.8743-01
0.8779+01 0.4760+01 0.3378+01 -0.2605+01 0.1705+01 0.4633+00
-0.1124+02 -0.8043+01 -0.6298+01 0.4901+01 -0.3108+01 -0.7988+00
0.5136+01 0.4376+01 0.3830+01 -0.3225+01 0.2161+01 0.5804+00

* 0.5163-01 0.7871-01 0.1190+00 0.1842+00 0.2924+00 0.4594+00 0.7593+00

-0.1879-01 0.7072-02 -0.9869-02 -0.3549-02 0.5469-02 -0.1605-02 0.2360-02
0.5878+00 -0.2476-01 0.1642+00 -0.6866-01 -0.6653-01 -0.4936-01 -0.1686-02

-0.5740+01 -0.1264+01 -0.1440+01 0.1195+01 0.8952+00 0.5724+00 0.1523+00
0.2444+02 0.1042+02 0.7994+01 -0.6686+01 -0,5338+01 -0.3339+01 -0.7685+00

-0.5036+02 -0.2968+02 -0.2277+02 0.1854+02 0.1475+02 0.9375+01 0.2229+01
0.4927+02 0.3544+02 0.2926+02 -0.2444+02 -0.1953+02 -0.1237+02 -0.2916+01
-0.1830+02 -0.1508+02 -0.1347+02 0.1185+02 0.9812+01 0.6348+01 0.1519+01

g7 g6 g5 g4 g3 g2 gl
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Table 2. The eigenvalues and the eigenvectors of the g-modes of white
dwarfs, corresponding to _ = 2. See the legend for Table. l for further details

o.1199+Ol

o.2148-Ol

* 0.6630+00 0.1567+01

-0.3548-01 -0.1502-02
0.9286-01 0.7693-01

0.4339+00 0.8694+00 O. i733+01

0.5113-01 -0.9241703 0.1076-01
-0.2908+00-0.1505+00 -0.4392-01
0.3389+00 0.3096+00 0.1990+00

0.3077+00 0.5522+00 0.1002+01 0.1800+01

0.6907-01 0.5869-02 -0.2000-01 -0.2757-03
-O.6427+OO 0.2205+00 0.1333+00 0.8814-01
0.1635+01 -0.1083+01 -0.6853+00 -0.2668+00

-0.1200+01 0.1080+01 0.8935+00 0.4554+00

* 0.2299+00 0.3798+00 0.6367+00 0.1088+01 0.1830+01

0.8946-01 -0.1280-01 0.3036-01 0.1464-02 0.8014'02
-0.1208+01 -0.2673+00 -0.2734+00 -0.2184+00 -0.6347-01

0.5007+01 0.2499+01 0.1672+01 0.1198+01 0.5345+00
-0.7972+01 -0.5668+01 -0.4258+01 -0.2937+01 -0.1167+01

0.4257+01 0.3722+01 0.3237+01 0,2499+01 0.1085+01

* 0,1783+00 0.2765+00 0.4334+00 0.6996+00 0.1146+01 0.1846+01

0.1124+00 0.2150-01 -0.4239-01 0.8077-03 -0.1678-01 0.2506-03
-0.2053+01 0.2660+00 0.4999+00 0.3583+00 0.2248+00 0.1108+00
0.1227+02 -0.4656+01 -0.3549+01 -0.2946+01 -0.2093+01 -0.7626+00

-0.3160+02 0.1816+02 0.1324+02 0.1036+p2 0.7459+01 0.2920+01
0.3630+02 -0.2644+02 -0.2105+02 -0.1683+02 -0.1200+02 -0.4595+01

-0.1523+02 0.1296+02 0.1136+02 0.9706+01 0.7239+01 0.2855+01

0.1408+00 0.2105+00 0.3129+00 0.4770+00 0.7500+00 0.1191+01 0.1857+01

0.1377+00 0.3290-01 0.5618-01 -0.5112-02 -0.2624-01 0.3197-02 0.7393-02
-0.3255+Ol 0.1637+oo -0.8548+00 -0.5043+00 0.4246+00 -0.3363+00 -0.9939-01

0.2617+02 -O.73o1+ol o.7o55+01 0.596O+Ol -0.4739+Ol o.3396+Ol 0.1279+01
-0.9649+02 0.4443+02 -o.3412+02 -0.2857+02 0.2349+02 -0.1684+02 -0.6090+01
0.1780+03 -0.1078+O3 0.8399+02 0.6946+02 -0.5700+02 0.4117+02 0.1507+02

-0.1594+03 0.1152+03 -0.9583+02 -0,8137+02 0.6736+02 -0.4870+02-0.1778+02
0.5511+02 -0.4508+02 0.4019+02 0.3571+02 -0.3048+02 0.2246+02 0.8291+01

g7 g6 g5 g4 g3 g2 gl
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Table 3. The g-eigenvalues of white dwarfs (Equation 216), corres-
ponding to _=3,4,5, and 6. See the legend for Table I for further details.

= 3 0.2005+01
0.1146+01 0.2645+01

0.7623+00 0.1496+01 0.2967+01
0.5477+00 0.9626+00 0.1733+01. 0.3122+01

0.4135+00 0.6708+00 0.1109+01 0.1896+01 0.3204+01
0.3237+00 0.4941+00 0.7637+00 0.:1221+01 0.2014+01 0.3254+01

O.2612+00 0.3788+00 0.5557+00 0.8381+00 0.1310+01 0.2105+01 0.3289+01

= 4 0.2942+01
0.1694+01 0.3916+01

0.1136+01 0.2206+01 0.4444+01
0.8231+00 0.1427+01 0.2565+01 0.4724+01

0.6266+00 0.1003+01 0.1643+01 0.2823+01 0.4888+01

0.4947+00 0.7447+00 0.1139+01 0.1812+01 0.3017+01 0.4995+01
0.3997+00 0.5785+00 0.8341+00 0.1250+01 0.1952+01 0.3173+01 0.5074+01

= 5 0.4023+01
0.2299+01 0.5395+01

0.1546+01 0.2993+01 0.6174+01
0,1126+01 0.1934+01 0.3492+01 0.6614+01

0_8620+00 0.1366+01 0.2229+01 0.3862+01 0.6887+01
0.6841+00 0.1021+01 0.1551+01 0.2463+01 0.4149+01 0.7074+01

0.5445+00 0.7978+00 0.1151+01 0.1712+01 0.2669+01 0.4393+01 0.7221+01

= 6 0.5260+01
0.2960+01 O.7096+01

0.1986+01 0.3856+01 0.8166+01
0.1450+O1 0.2481+01 0.4514+01 0.8798+01

0.1115+01 0.1755+O1 0.2861+01 0.5014+01 0.9205+01
0.8802+00 0.1320+01 0.1998+01 0.3176+01 0.5417+01 0.9500+01

0.2131+00 0.1089+01 0.1512+01 0.2174+01 0.3359+01 0.5615+01 0.9625+01

g7 g6 g5 g4 g3 g2 gl

528



temperature at the center.

From Equations (21), it is seen that the eigenvalues for g-mode oscil-

lations are proportional to the internal temperature T. We also note that the

factor (y - 1) appears in Equation (21a) because of the assumption of an

isothermal core. If there is any decrease in the temperature outwards, this

factor should be replaced by (y - y'), where X' is defined by Equation (8b).

This replacement will result in a decrease in the eigenvalues.

Again, from Equation (21b) we see that the eigenvalues are very sensitive

6

functions of the mean molecula I weight of the electrons, varying as _e

Dependence on _i' the mean molecular weight of the ions, is not so pronounced.

These features should be compare(lX_withBrickhill's remark that the periods of

gravity oscillations of white dwarfs do not depend critically on the composition

of the stars.

The periods of g-modes are given by Equation (23), where the values of

Ej are of the order of unity (see Tables 1,2, and 3). Thus, the periods of

oscillations come out to be of the order of a few hundred seconds. As the

harmonic number £ increases, the periods decrease. These conclusions, as well

as the linear dependence of our eigenvalues on the temperature are in agreement

with similar results obtained, through an entirely different approach, by

Papaloizou and Pringle.

Let us also emphasise an important difference between the g-modes of a

degenerate structure and those of an ordinary fluid. According to Cowling

(1941), the pressure fluctuations associated with the g-modes of an ordinary

fluid are less prominent than the corresponding density fluctuations. For

degenerate fluids, the opposite appears to be the case. Equations(12) and

(ga) show that the Eulerian changes in ionic pressure are mainly responsible

for the g-modes. The effects of Eulerian changes in the density and in the

electronic pressure remain unimportant (in the limit of non-relativistic
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degeneracies). That the g-modes are primarily driven by the buoyancy forces

remains valid for degenerate as well as. for non-degenerate fluids,

These calculations have been carried out for non-relativlstlc fluids.

There are strong Indicatlons that in a relativistic case, the osclilation periods

will decrease,
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