25

FT9BDAGA - ~. 789 “31

Astron. Astrophys. 89, 314-335 (1980)

Normal Modes of Rotating Fluids*

Y. Sobouti

ASTRONOMY
AND
ASTROPHYSICS

Department of Physics and Biruni Observatory, Shiraz University, Shiraz, Iran

Received May 28; accepted December 6, 1979

Summary. The normal modes of oscillations of a rotating fluid
have been expressed in terms of those of a non-rotating and
convectively neutral fluid. The p-modes accept a double per-
turbation expansion in which the rotation and deviation of the
fluid from convective neutrality are considered as two per-
turbation parameters. The g-modes do not yield to such a
treatment. Their strong interaction with toroidal displacements of
the fluid violates the criteria for perturbation expansions.
Axisymmetric and non-axisymmetric modes of the fluid are
treated in their full generality. Some numerical values of the p-
eigenvalues and eigenvectors in different perturbation orders and
for different spherical harmonic numbers are presented.
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1. Introduction

The subject of small oscillations of rotating fluids has been studied
by many investigators in the past few decades. Authors have
differed in their mathematical techniques and simplifying assump-
tions in minor ways. It is noteworthy, however, that they have
commonly considered the effect of rotation as a small per-
turbation on the oscillations of a non rotating fluid. An inspection
of the conditions under which a perturbation expansion is
permissible, however, reveals that only the p-oscillations are
amenable to perturbation treatment. The g-oscillations of a non-
rotating fluid have a two-fold infinity of arbitrarily small eigen-
frequencies. The rotation, or for that matter most other forces,
how so ever small, completely destroys such modes, leaving no
room for a perturbation consideration. To elucidate the point let
us examine a criterion for the Rayleigh-Schrodinger perturbation
expansion.

From Rellich (1969, p. 74, Theorem 3) one learns the follow-
ing: If the operator A(A)=A,+44,, with the domain U(1) is
regular in the neighborhood of 2=0 and Hermitian for real 4, and
if g, is an eigenvalue of A, with the corresponding eigenvector
¢, then A(4) will possess an eigenvalue ¢(4) with the correspond-
ing eigenvector ¢(A) such that e(l)=e,+4de;+... and
¢(A)=¢,+Ap,+.... The criterion for regularity of A(4), as given
by Rellich (1969, p. 78), is |4 u| <alu|+ B|Ayu| for all u in U(4),
where o and f§ are non-negative numbers. In physical terms the
criterion simply expresses the fact that the perturbing operator 4,
should be smaller than A, everywhere in the Hilbert space and not
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in some subspace of it. Consequently, the existence of a per-
turbation expansion will depend not only on the individual
eigenmode in question but also on the response of all the modes to
the perturbing operator.

Let us now consider the case of a rotating fluid. An eigen-
function & of the rotating fluid can be written as the sum of a
poloidal (g and/or p) displacement &, and a toroidal component
. Thus, £=¢,+¢,. On substituting this sum in the equation of
motion one finds that the equation for £, contains the term
(# +40Q x 2 x )&, where #” is the operator for the non rotating
fluid and the term 49 x 22 x £, arises from the Coriolis effects.
Now let #” be the unperturbed operator 4, and 4002 x 2 x be the
perturbing operator A4,;. The sum # +49€ x R x is not a regular
operator, for there exist displacements ¢ (namely the g-
displacements of very large radial wave numbers) with |£]=1 for
which 4[oR x 2 x £| can be as large as desired while |#7¢| is as
small as desired (a detailed demonstration of this is given in
Sobouti, 1978, Appendix A). This completes the proof of the non
existence of a Rayleigh-Schrédinger perturbation expansion for
the eigenmodes of the rotating fluid about those of the non
rotating one. It is regrettable that no deserving attention is paid to
this last aspect of the problem in the literature. As a consequence,
neither a coherent picture of the perturbed p-modes has emerged,
nor the complexity of the g-spectrum in the presence of another
force field has been realized.

The present work is also a perturbation analysis of small
oscillations of rotating fluids. A deliberate effort, however, is made
to stay within the limits of applicability of the mathematical
techniques. The line of thought is as follows. The operator
governing small oscillations of a non-rotating fluid is linear and
self adjoint. The g-, p-, and the toroidal-modes of the fluid belong
to a normed linear vector space, a Hilbert space. Furthermore, in
the case of a non rotating and convectively neutral fluid (hereafter
referred to as the reference fluid) separation of the modes into pure
g- and pure p- type is possible. The operator # +49€2 x 2 x
when operating on the p-subspace of the modes becomes regular
and a perturbation expansion is possible. Non-regularity is then
confined to the g-subspace and a different technique is needed.
The normal modes of rotating fluid can be expressed in terms of
those of the reference fluid. This converts the differential equations
of the motion into an equivalent matrix equation, appropriately
partitioned according to the mode types. The equilibrium pressure
and density are expansible about those of the reference fluid.
Upon insertion of such expansions in the matrix equation of
motion, the p-modes of the rotating fluid yield to a perturbation
treatment. At the same time some of the difficulties associated
with the g-modes reveal themselves.
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In Sect. 2, the reference fluid and the three subspaces of its
normal modes are introduced. In Sect. 3, a matrix form of the
equations of motion of the rotating fluid is derived. In Sect. 4,
partitioning of modes into toroidal and poloidal components is
discussed. In Sects. 5 and 6, further partitioning of the poloidal
modes into the g- and p- components is presented. In Sect. 7, the
spherical harmonic expansion of the modes is carried out. In
Sects. 8 and 9, the elements of the various matrices are calculated.
In Sect. 10, some concluding remarks are included. Finally in Sect.
11, some bibliographical notes are presented. Numerical results
are given in the Appendix.

2. The Reference Fluid

The non-rotating and convectively neutral fluid has a simpler
structure of normal modes of oscillation than the non-neutral
fluid. This fluid will be used as the reference system. The normal
modes of a rotating and convectively non-neutral fluid will be
expanded about those of the reference fluid. A measure of rotation
will be considered as one expansion parameter. A measure of
deviation from convective neutrality will be used as another. The
normal modes of the reference fluid are reviewed below.

Let py, 09, and U, be the pressure, the density, and the
gravitational potential of the reference fluid. The equation of
hydrostatic equilibrium is

Vpo—0o,VU,=0. 21)

The condition of convective neutrality, the Schwarzschild con-
dition, is dpo/do,=(0p/000).a =7YPo/0o> Where y is the ratio of the
specific heats of the fluid. For y=5/3, the reference fluid is simply
the polytrope 3/2.

The adiabatic Lagrangian displacements, &(r)expi(ef)'/t,

s=1,2..., of the reference fluid are solutions of the following
equation
Wolo=ch008y, s=1,2,..., 2.2)
where the linear operator ¥/, is defined as follows
1
Wek =V (6p0) =~ Fpodeo—eF(GUo), (2.22)
o
0po=—poV-E—¥po-L, (2.2b)
80y=—0,V-{~Foo-¢, (2.20)
V26U ,) = —4nGdg, . (2.2d)

The operator #/, is real symmetric (Chandrasekhar, 1964) in the
sense that

§C" A oL dvo=[W (" -Ldv, (2.32)

where ¢* and (" are any arbitrary displacements of the fluid. The
domain of integration is the volume of the fluid. Any two
eigendisplacements, & and &, belonging to two distinct eigen-
values &j and &, are orthogonal in the sense that

.‘.Qo'ff)‘fodv=

Solutions of Egs. (2.2) fall into three distinct categories, the g-,
p-, and the toroidal-modes. To emphasize the contrast with the
last category, the g- and p-modes will be referred to as the poloidal
modes. The g-modes of the reference fluid are those displacements
which leave the pressure equilibrium of the fluid “invariant”. That

(2.3b)
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is, for a g-displacement, £
0,p0=—7PoV -§;—¥po-§;=0,

Because of the convective neutrality of the fluid, J,0,,6,U,, and
consequently #,{’, vanish identically. Thus, {Js defined by
Eq. (2.4) are exact solutions of Egs. (2.2) corresponding to g,,=0
as the eigenvalue. Evidently this neutral state is the only g-state of
the reference fluid and is infinitely degenerate, for Eq. (2.4) does
not uniquely specify a {, vector. The spherical harmonic expan-
sion of £ is:

s=1,2,.... (24)

v 1 ooy 1 X_JL__"’Y") —1,2,... 25
% ( Y’m’l(l+1) r 00 ll+1) r sinf 0¢ s - (23)
(see Ledoux and Walraven, 1958; Chandrasekhar, 1964).

Substitution of Eq.(2.5) in Eq.(2.4) establishes the following
relation between the scalar functions v and xj:

[
Qo

where a prime denotes derivation with respect to r. The expression
0b/0, tends to infinity as 1/(r— R) ar the surface R of the fluid.
Therefore, the condition for x5, and consequently for the non-
radial components of {; to remain finite requires that

YPo

% (O=v; (r)+ v =vy + =¥}, (2.52)

yy(r)—const(r—R) as r—R, s=12,... (2.5b)

An analysis of Hurley et al. (1966) shows that near the center, the
divergence of any poloidal mode of harmonic symmetry I should
behave as r'(a+br? +cr* + ..)), where a, b, , ... are constants. This
condition requires that

yi—constr't Y(a+bri+ ), (2.5¢)

In view of these considerations, Sobouti (1977a, hereafter referred
to as Paper I) has suggested the following expression for yj:

s 3 PoPo p+2s-2

= =1,2,....
Vo= T 46 o §

(2.5d)

The expression p,po/es vanishes at the surface as (r—R) and
behaves as r near the center. Thus, the boundary conditions of
Eqgs. (2.5b) and (2.5¢) are satisfied. This completes the review of the
g-modes of the reference fluid.

The p-modes of the fluid are orthogonal to the g-modes. While
a determination of the individual modes requires full solution of
Eqgs. (2.2), the subspace of the p-modes can easily be constructed
orthogonal to the g-subspace. Let {{},t=1,2, ...} be a basis set for
the p-subspace of the normal modes of the reference fluid. Being
poloidal vectors their spherical harmonic expansion is

BTN L . )
P PUli+1) r “ll+1) r sinf 0

Any member of {{}} should be orthogonal to any member of {{}}.
That is, IQOC" 44 dv should vanish for all s and ¢. This requlrement
leads to the followmg relation between the two scalars ), and y,
[see Paper I, Eq. (7)]

..(2.6)

" i
xp = l(l+1)r—z”. (2.62)
Near the surface of the fluid both radial and non-radial com-
ponents of {!, and consequently ), and x;,', could remain finite.
Near the center, the analysis of Hurley et al. again imposes the
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same condition as in the case of g-vectors, viz.

=constants
(2.6b)

Considering these requirements, the following set is also suggested
by Sobouti (Paper I):

phr)=r*t2l =12,

2+ 1 t=1,2,...,

yh()—constr'*(f+gri+..) as r-0; fg,..

121
1=0. (2.6c)

It should be emphasized that, while the vectors ¢ of Egs. (2.5) are
exact solutions of Egs. (2.2), the vectors £}, of Eqgs. (2.6) are not.
The set {{}}, however, spans the p-subspace of the normal modes
of the fluid, and can be used to expand the p-eigendisplacements
s, of Eqs. (2.2). This completes the review of the p-modes of the
reference fluid.
A toroidal vector (¥ u=1,2,..., has the following spherical
harmonic expansion :

¥ 1 oYy Y oYy
eofo ¥ 2 90 Wl g0
' (’r2 sin 0¢ ’ u=12,

=r

@7

The Eulerian changes 6,p,, 6,00, and 6,U, arising from a toroidal
vector are identically zero throughout the fluid. Therefore (s of
Eq. (2.7) are solutions of Egs. (2.2), corresponding to the eigenval-
ue g, =0. This neutral state, like the neutral g-state, is infinitely
degenerate, for ! can be chosen in infinitely many ways. The
center and/or surface conditions on y} cannot be determined from
Egs. (2.2). Such information should be sought in the equations of
motion of the rotating fluid itself. Further discussion on y! is
postponed to later sections.

The Matrix Representation of Eq. (2.2)

It has already been mentioned that {{,} and {{,} of Egs. (2.5) and
(2.7) are exact solutions of Egs. (2.2). They are the eigenfunctions
of the infinitely degenerate neutral g-state and the infinitely
degenerate neutral toroidal state. Thus, the task of solving Eqgs.
(2.2) is reduced to that of obtaining the p-modes of the reference
fluid.

Let &, be a p-eigendisplacement vector of Egs. (2.2) and &5, be
its corresponding eigenvalue. Expand &, in terms of {{}} of Egs.
(2.6):

&= 20275 srs=1,2,.... 2.8
Let Z,,, be the matrix of the expansion coefficients Z5, , and E,,
be the diagonal matrix of the eigenvalues &p,:
Z,,=1Z5,,1;1r.5=12, ..., (2.9a)
E,,=[e, 1% ;s=1,2,.... (2.9b)

Also, let W,,, and S,,, denote the matrix representations of the

operators #, and g,. Thus,

Wop= 8y Wolpdvs r,s=1,2, ., (2.10a)
Sep= 100l Cdv;r,s=1,2,.... (2.10b)

Evidently the matrices W, and S, are symmetric in view of the
symmetry of the operators #), and g, Furthermore, §,,, is
positive definite in view of g, being positive throughout the fluid.
Having introduced the notation, let us now substitute Eq. (2.8) in
Eq. (2.2), pre-multiply the resulting equation by C;’, and integrate
over the volume of the fluid. One obtains the (r, s) element of the

following matrix Equation

WonrZope=SoppZoppEop-

Equation (2.11a) is the matrix representation of Egs. (2.2). The
orthogonality relation of Eq. (2.3b) combined with the normali-
zation condition [ g,|&} |*dv=1, s=1,2, ..., assumes the following
matrix from:

Z},SoppZopp=1,

Opp

(2.11a)

(2.11b)

Opp

where I is a unit matrix. A solution of Eq. (2.11) for Z,,p and Eop
is equivalent to a solution of Egs. (2.2) for &, and e;,. These
solutions can be found in Paper I and in Sobouti (1977b).

The main purpose of this last section has been to give an
introduction to the notation and the procedure which will be
employed in the forthcoming sections.

3. The Rotating Fluid

(i) Hydrostatic Equilibrium

Let p, ¢, and U be the pressure, the density, and the gravitational
potential of the fluid and Q be its angular velocity of rotation
about the z-axis. The equilibrium condition is

Vp—oV [U+1Q%(x*+y*)]=0. (3.1)
The fluid will be assumed to deviate slightly from convective
neutrality and to rotate slowly. A measure of deviation from
convective neutrality will be indicated by the following dimen-
sionless parameter :

ae dlnp/dlnpo 1
“dlng dlng,

where we recall that p, and g, are the pressure and the density of
the reference fluid. We shall only consider systems for which a is
constant throughout the fluid. For example, this is the case for a
polytrope of index n and of constant ratio of specific heats, y:

a=1<1+1)—1.
y n

A measure of the uniform rotation of the fluid will be indicated by
the following dimensionless parameter:

(3.2)

(3.2a)

b=4@? "

=4Q* 33
4nGoo(y—1) (33)

where g, is the central density of the reference fluid. In this
description, the pressure and density of the actual fluid at any
point r will further depend on a and b. For example p=p(r, a,b).
Next we Taylor-expand p and g in terms of a and b. Up to the first
order terms one obtains

a(r,a,b)=0,(r)+ac,(r)+bo,(r);0=p,0, (3.9)
where
o,(r)= [‘—% a(r,a, 0)] )
a=0>
o,(r)= [a—ab a(r,0, b)] . (3.40)
b=0 N

The derivatives of Eq. (3.4a) are, in principle, obtained from a
Taylor expansion of Eq. (3.1). We shall discuss this issue further in
the forthcoming sections.
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(ii) The Equation of Small Motions

Let &(r)expi(e®)t/?t, s=1,2, ..., be an adiabatic Lagrangian dis-
placement of a fluid element at the position r. The equation
governing ¢ is

WE+2i )65 02 x & — %08 =0, (3.5)
where the linear operator #” is defined as follows
#E=P (60~ Fpoe=eF(aV), (3.52)
Op=—ypV-§~Vp-§, (3.5b)
dg=—oF-$-Ve§, (3.5¢)
72(6U)=—4nGdg. (3.5d)

Let {{} denote the basis set consisting of the three subsets {(_},
{¢,} and {{,} of Egs. (2.5)H2.7), respectively. Also let {{,} denote
the poloidal subsets {{ } and {{,} combined together. Thus

& ={C.IE} ={L,IE,IE}

where the vertical bars indicate the partitioning of a set into its
various subsets. Let an eigendisplacement vector &° of Eq. (3.5) be
expanded in terms of {{}

(3.6)

E=Y02Z5rs=12,.... (3.7

r

Let Z be the matrix of the expansion coefficients Z™, and E and

E'? be the diagonal matrices of the eigenvalues & and [/s—‘,
respectively. Thus

Z=[Z"1;r,s=1,2,.., (3.82)
E=[e]tesoml =12, .., (3.8b)
EV2 =[]0l 5=1,2, ... (3.80)

Also we denote the matrices representing the operators #7, o x,
and ¢ by W, C, and S, respectively. Explicitly these matrices are
defined as follows

Wr=W"= ("W dv, (3.9a)

1 1
Cr==-C"= g & @x0)dv=— 5§ eR2-("x{)dv,  (3.9b)

Sre=8""= [o{"-{*dv. (3.9¢)
The Hermitian character of the #” operator and therefore that of
the W-matrix is established by Clement (1964). The anti Hermitian
nature of the Coriolis matrix C, and Hermitian and the positive
definite character of the S-matrix are evident from their defining
equations. To obtain a matrix representation of Eg. (3.5), one
subsitutes Eq. (3.7) in Eq. (3.5), pre-multiplies the resulting
expression by {”* (say) and integrates over the volume of the fluid.
Having taken these steps, one arrives at the (7, s) element of the
following matrix equation

WZ+ib'*CZE**~SZE=0, (3.10)

where b'/? is substituted for 20. Equations (3.5) and (3.10) are
linear homogeneous equations. Their solutions are arbitrary to
within a multiplicative factor. This arbitrariness will be removed
by imposing the following normalization condition

[&"-e&dv=1,5=1,2,.... (3.11a)
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The matrix equivalent of Eq. (3.11a) is

(Z2'SZ)*=1,s5=1,2,.... (3.11b)
As it stands, the analysis of Eq. (3.10), or equivalently of Eq. (3.5) is
not an easy task. The difficulty stems from the fact that in the full
space of all the modes the bounds and the signs of the W- and C-
matrices (or the #'- and ¢f2 x -operators) are not known. The
roles and the mutual interactions of various terms in the equation
of motion cannot be traced. The problem will be made tractable in
two steps, each in turn consisting of two operations. (i) The modes
of the rotating fluid will be partitioned into their poloidal and
toroidal components. The equations resulting from this operation
will then be expanded with respect to the rotation of the fluid. This
part of the analysis will heavily rely on a previous work of the
author on the axisymmetric modes of rotating fluids (Sobouti,
1978, hereafter referred to as Paper IV). (ii) The equations
pertaining to the poloidal modes which develop in step (i) will be
partitioned into their g- and p-components. The equations result-
ing form this operation will then be expanded about those of the
reference fluid. This part of the analysis will utilize the procedures
of Silverman and Sobouti (1978, hereafter referred to as Paper II)
and Sobouti and Silverman (1978, herafter referred to as Paper
I1I).

4. Partitioning of Modes into Poloidal and Toroidal Components

By virtue of the partitioning of the basis set {£} into the poloidal
and toroidal subsets, the matrices W, C, and S undergo a
corresponding block-partitioning:

A= [Aw Ast

te 11

,A=W,C,S. 4.1)

For example, W, is obtained from Eq. (3.9a) by a pair of {, (either
of g- or p-type) and ¢, vectors. The various blocks of W=, C-, and S-
matrices are functions of the pressure and density. The latter in
turn are functions of a and b, and are Taylor-expanded in
accordance with Eq. (3.4). Therefore, any block of the W=, C-, and
S-matrices can be considered as a function of a and b and can have
a Taylor expansion. Thus,

B(a,b)=B,+aB,+bB,, @2)

where B is any block of the W-, C-, and S-matrices. To clarify Eq.
(4.2) let us consider an example: W, (a,b)=W, ,+aW,,,+bW,,.
Here, W,,, is generated from Eq. (3.9a) by p,, ¢,, and a pair of
basis vectors {, and {,. The matrix W,, or W,, is generated by
substituting the expansion of Eq. (3.4) in Eq. (3.92) and isolating
the first order a-terms, or b-terms, respectively.

Not all blocks of the matrices have the zero order or the first
order a- and b-terms. In a non-rotating fluid the toroidal modes
are neutral and are orthogonal to the poloidal g- and p-modes.
Therefore, W,,, W,,, S, and S,, are zero in zero-order and in a-
order. The leading terms of these matrix blocks will be of order b.
Furthermore, the W,,-block generated by a pair of toroidal vectors
will at most have the second order b2-terms. This order-of-
magnitude information up to and including the first order b-terms
is summarized below:

W, bw,m]

= (13 .3
. @3a)
S,, |bS '

S= [L’ﬂ] (4.3b)
bbee Stt
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The terms W,,, S,,, and S,, contain a- and b-order terms. They are,
however, left unexpanded for economy in writing. Evidently, the
C-matrix has the zero and higher order terms. In the Equation of
motion (3.10), however, the Coriolis matrix is accompanied by the
factor b'/2. Therefore, in a first order analysis only the zero order

terms of the C matrix are needed. For the time being we let

C.|C
C —_ [ EE Bt] .
th Clt
The matrices Z, E, and E'/2 are to be obtained from Eq. (3.10).
Since W, C, and S in this equation are block-partitioned, Z, E, and
E'2 will also admit a corresponding block-partitioning. In the
absence of rotation the toroidal eigenvalues, &, s=1,2, ..., are all

zero. Therefore, in the presence of rotation their leading terms are
of the order of b. Thus, E and E*? will have the following forms:

E

(4.3¢)

0
== 44
E=|% bEb,]’ (44a)
B 0
EV= [_{—— ] . (4.4b)
0 [BPET?

The order of magnitude of the various blocks of the Z-matrix
will emerge from the equations of motion. Let us only note the
following partitioning

&t
Zte

7|’ 4.5)

t

where Z,, and Z,, definitely have zero-order terms.

Substituting Egs. (4.3), (4.4), and (4.5) in Eq. (3.10) carrying out
block multiplication of the various terms, and keeping terms up to
the b-order gives

ee"ee eeee

modes and vanishes for the axisymmetric displacements [see
Paper IV, Eq. (16b)].

(ii) The te-block. Solution of this block for Z,, is

Z,=8;'[ib'?C,Z,E " +b(Wy Z,E " =Sy, Z..)]. 4.9)

We shall see in Egs. (5.8) and (5.9a) that the first term in Eq. (4.9) is
of zero-order for ¢ representing a g-mode, and is of b*/2-order for &
denoting a p-mode. In any case, the first term in Eq. (4.9) is the
leading term and will be used as such in the forthcoming
reductions.

Again, according to Eq. (3.7), Z,, is the projection of the
poloidal modes of the rotating fluid on the toroidal subspace {{,}
of the non-rotating fluid. The leading term in this projection is due
to the Coriolis forces. We further note that this leading term is the
same for both axisymmetric and non-axisymmetric displacements
[see Paper IV, Eq. (13)].

(iv) The es-block. First we eliminate Z,, from this block. Fro
Eq. (4.9), keeping the leading term, one obtains :

ib'?C,Z EY?*=-bC,S;'C,Z,E,. (4.10)
Substitution of Eq. (4.10) in the ge-block of Eq. (4.6) gives
(‘/Vee - bcetSl: lcle) ZEB + ibl/zceaZuEellz - S€£Z£2ES = 0 M (4' 1 1)

The normalization condition on Z,, is obtained by substituting
Egs. (4.3b) and (4.5) in the se-block of Eq. (3.11b) and keeping
terms up to the first order in b. Thus, one obtains
(28,2 )" =1,5=1,2,....

EeTge

4.12)

W, Z, +ib''*(C, Z, +C,2Z,)EY*-S,Z. E, ]WHZ“ +bW,.Z,,+ ibCS,ZﬂE;,/2
ianZnE;t/Z - bSanbet

bW,,.Z, +ib"*C,Z, E'* —(bS,,, 2., +S,Z,) E.|

e eee

Equation (4.6) will be studied blockwise.
(i) The tt-block. Dividing this block by bEL/? gives

iCyZ,— S, ZEN2=0. (4.7a)

Equation (4.7a) is an ordinary eigenvalue problem. The matrix iC,,
is Hermitian and S,, is Hermitian and positive definite. Therefore,
the eigenvalues (i.e. the diagonal elements of E}/?) are all real and

are solutions of the following secular determinant:

[iC,—ep?S,|=0. (4.7b)
The orthonormality condition for the eigenvectors is
ZI,S,,Z“=I, (4.7c)

where I is a unit matrix. It should be noted that the orthogonality
of the eigenvectors expressed by Eq. (4.7c) is a property of Eq.
(4.7a). The normalization, that is, the diagonal elements of Eq.
(4.7¢) be unity, is arbitrarily imposed and is in accordance with Eq.
(3.11). Further discussion of Egs. (4.7) is given in Sects. 7 and 10.

(ii) The et-block. From this block one obtains

WeZ o= —b(W,, Z,,+ icathE;rlz) : (4.8)

This is an equation for Z,, in terms of Z,, and E,,. We recall from
Eq. (3.7) that Z,, is the projection of the toroidal modes of the
rotating fluid on the subspace of the poloidal modes of the non-
rotating fluid. This projection exists only for non-axisymmetric

=0. 4.6)

Given the matrices W, C, and S, Eq. (4.11) should in principle be
solvable for Z,, and E,. In spite of its resemblance to Eq. (3.10), Eq.
(4.11) has a much simpler structure. The latter equation is defined
over the subspace of the poloidal displacements of the rotating
fluid, while the former is defined over the entire space of all
possible displacements of the fluid.

Let us summarize the findings of this section. The normal
modes of a rotating fluid are resolved into their toroidal and
poloidal components. a) The toroidal modes are non-neutral and
stable. The corresponding eigenvalues and eigenvectors are so-
lutions of Egs. (4.7). b) These toroidal modes excite some poloidal
motions given by Eq. (4.8). ¢) The poloidal modes of a rotating
fluid are solutions of Eq. (4.11). d) These poloidal modes excite
some toroidal motions given by Eq. (4.9). Partitioning of the
poloidal modes into their g- and p-components is discussed in
Sects. 5 and 6.

5. Partitioning of the Poloidal Modes into the g- and p-components

This and the next sections are concerned with the analysis of Egs.
(4.8), (4.9), and (4.11) into their g- and p-components. Next, the
components are expanded about the corresponding equations for
the reference fluid. The various components of the W-, C-, and S-
matrices are needed for this purpose. Explicit expressions for these
matrices in zero-, a-, and b-orders are developed in Sects. 8 and 9.
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Here we summarize those symmetries of these matrices that are
needed in the present analysis.

The W,,-matrix. In accordance with Eq. (4.2) one has
I/V££= VVOu’+aW +bw/;786'

acge

(5.1a)

The matrix W,,, pertains to the reference fluid. Its g- and p-
partitioned form is

Wy, =W, = [9_0_]_
W/OPP

(N 0 (5.1b)

The vanishing of W, reflects the neutral nature of the g-modes of
the reference fluid. The vanishing of W,,, =W, is a consequence
of the fact that the g-modes of the reference fluid are spanned by
the basis set {,} of Eq. (2.5) with no projection on the subspace of
the {{,}-set of Eq. (2.6), and vice versa for the p-modes. The

matrices W,,, and W,_, have the following forms:

aege bee
W, |W,
W, =W, = [—““ —P] (5.10)
* * w/;PG VVGPP
0 |W,
W= Wh= [y, (1)
’ Wipg | Wopp
see Eq. (9.16d) for the vanishing of W, .
The W,,-matrix. From Eq. (9.17) one has
Wyee= W}, = [ 0 ] (5.2)
bet bte VVMP . -
The C,,-, C,-, and C,-matrices. These matrices are anti-Hermitian
and have no vanishing blocks. Thus,
Co=—Cl= [&ﬁ , (5.32)
CPE CPP
C,=—Cl= Cu (5.3b)
C,
The S,.-, S,,, and S,,-matrices. The expansion rule for §,, is

Sea=SOse+aS +bS

ace bee*

(5.4a)

The basis sets {{,} and {{,} are orthogonal to each other in sense
of Sect. 2. Thus §,,, has the following form:

00 =Sbee= [ﬁ (5.4b)

0

o
SOpp .
The first order a- and b-matrices have no particular simplifying

features. Thus,

S,

S
S, =SZ = ._Ml__"_gl]’ (5.4c)
’ * S"Pg S"PP
Sa0lSsar |
S4ee =5, =[—””—’—”ﬂ. (5.4d)
e prg prp
For the mixed component one similarly has
s =t —|Sa 5.4¢
b =St = | 5. ‘ (5.4¢)
bpt

The E,- and Z, -matrices. An order-of-magnitude information on
these matrices is readily available. The g-modes of the reference
fluid are all neutral. Therefore, the g-component of E, vanishes at
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zero order. Thus,
E|O
E =|=4—|, 5.5
=3l (559)

where we shall see from Eq. (6.19a) that, E_ is of first order in a and
b.

The non-diagonal blocks of Z,, i.e. Z,, and Z,, vanish in zero
order. This again follows from the fact that the g-modes of the
reference fluid are expressible in terms {{,} alone, and the p-modes
in terms of {{,} alone. The leading terms of Z,, and Z,; could,
however, be of the order b'/2. Thus,

Z,.|Z
Zee=,:_Zﬂ'2£]’

pgi“= pp

(5.5b)

where we only note that Z_, and Z,, are of higher order than zero.
We are now in a position to analyze Egs. (4.8), (4.9), and (4.11) for
detailed information on the various components of the E- and Z-
matrices.

(i) Reduction of Egq. (4.8)

Let us substitute Egs. (5.1), (5.2), and (5.3b) in Eq. (4.8), block-
multiply the various terms, and solve the gz- and pt-blocks of the
resulting equation for Z,, and Z . For Z,, one obtains

b
Zy=—i WoaCoZ E?.

(5.6)

We recall that Z, is the projection of the toroidal modes of the
rotating fluid on the subspace of {{,} vectors. This projection
turns out to be proportional to b/a, a feature that will be
encountered again and again in further studies of the g-modes.
For Z,, one similarly has

Z,=—bWo, (W, Z,,+i(C,— W, W 1C)Z,E)*].

Opp apg " agg

(5.72)

The third term on the right hand side of Eq. (5.7a) includes two
summations over the entire subspace of the {{ }-set. Therefore,
this term should be independent of the {{ } vectors. Indeed, using
the closure property of {{,}, it can be shown that W,, W_1C,, is
equal to C,, (see Paper IV, Appendix B for the closure property of
the basis sets). Thus, Eq. (5.7a) reduces to
prt= ~Wop vvbptztt .

Opp

(5.7b)

where we have used the expansion Z,=bZ, .

(ii) Reduction of Egq. (4.9)

One substitutes Egs. (5.2), (5.3b), (5.4e), and (5.5) in Eq. (4.9),
block-multiplies the various terms, and solves the tg- and tp-
blocks for Z,, and Z, . For Z,; keeping the lowest order terms one
obtains

Z,=ib"*s;'C,z, E 2.

9999

(5.8)

The fact that E_ is a first-order quantity in a and b [cf. Eq. (6.19a)]
renders Z,, of order lower than b'/2 In fact Z,, as given by Eq.
(5.8) becomes a function of b/a. However, since E, does not have a
Taylor expansion in a and b, one may not expect a corresponding
expansion for Z,.

The tp-block of Eq. (4.9) presents no problem. One can readily
conclude that Z,, has b"/?- and b-order terms as follows

Zo,=iS;'C,Z, E, "2, (5.9a)
thp=S; ! [W’LWZ”E; ! —Sbthpp] . (5.9b)
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The analysis of Egs. (4.11) and (4.12) is somewhat laborious and is
carried out in Sect. 6.

6. Reduction of Egs. (4.11) and (4.12)

(W,,—bC,S;1C,)Z,, +ib'?C,Z EN*~S, Z, E, =0,

e eeTe (4’11)
(Z18,.Z, ) s = 1. 4.12)

Let us substitute Egs. (5.1) and (5.3)+5.5) in Eq. (4.11) and retain
the zero-, b'/2-, a-, and b-order terms. One obtains the following
information.

A. The gp- and pp-blocks of Eq. (4.11) give

(amgp +bW, chgtS OttCO_ul’)Z + lbl/z(COM HP pr PP)E )
[SOEG 9P+(aSagp+bSbgp)pr]Ep=0 > (6.1a)
(%PP + aw/;PP + bW, bCOplS(;!tl COtp)pr
+ lb”z(Conggp + COpPZ )Ell2
- (SOPP + aSapp +bS bpp)Z ppEp 0. (6.1b)

The matrices Z,,, Z,,, and E, in various order of approximation
will be obtained from the coupled Egs. (6.1). These matrices admit

double Taylor expansions of the following form:

Z,,=b"?Z,,,+aZ,,,+bZ,, (no zero-order term), (6.2a)
Z,,=Zopp+b"2Z 0 +0Z sy + DZ (6.2b)
E,=E,,+b'?Eg,+aE,,+bE,, (6:2¢)

From the last equation one can easily obtain a corresponding
expansion for E}/2. Thus,

EY2=E}2[1+4b"2Eg Ey} +3aE, Eqi+1b(E, E;l—1E2 E52)],

E§2=+|E}?|, (6.2d)

where we emphasize that the root Ej; 2 is a double signed quantity.
To find the expansion terms Zogw Z and Zy,p» ONE substitutes
Egs. (6.2) in Eq.(6.1a) and separates the b1/2-, a-, and b-order
terms. Thus, one obtains

991’_ lSOagCOapZOPPE— M2, El/z * |E1/2| > (6.3a)
099 [ VV;‘”ZO”E op =S ang 0 pp] s (6.3b)
Z bgp = S aa; [( VVb” - COatS 5"1 COtp)Z Opp +i COaaZ QapE (114’2
+ I‘C(,‘",(Z‘,‘,I,E(l)ﬁ,2 +ZoppE.QpE 12)
- SbGPZOIJp op SOggZﬂngQp] EOp . (630)
Equation (6.3c) can further be reduced by eliminating Z,, , from

Eq. (6.3a). Thus

bgp Oga [( bgp + Rng)Z Opp + iCOap(Z ﬂppE (1>p2 +Z Opp’ -QPE 1/2)

- SbGPZOPPEOIJ - SOggZQngQp] E(;p ’ (6.3d)
where the new matrix R, is defined as follows
ROGP =- (CogtSOtt COtp + COggSOggCOQp) (633)

We shall return to this R-matrix as soon as its remaining
components are encountered.

Expansions of E, and Z,, are similarly obtained from
Egs. (6.1b). Let us first eliminate Z,, from this equation.

Neglecting terms of the order b*2, Eq. (6.3a) gives
16120, Z0pE 2 = —bCo,ySo,iCopZ

gar—'p Opg* 0gg™ 0gp“Opp *
Substitution of Eq. (6.4) in Eq. (6.1b) gives
(WOpp ta app+ bmn"' bROpp)Z

+ib'2C,,,Z, EL*—(S,,,+aS,

ppp

(6.4)

+b8,,)Z,,E,=0,

ppp

(6.52)

PP

where R, is defined as follows

(COptS COtp+ COpgS Cogp) .

0g9

Ropp= (6.5b)

Equation (6.5a) should be supplemented with the normalization
condition. This is simply the pp-block of Eq. (4.12). Thus,

(VAR

)dlagonal I. (6.5C)

ppTppP PP

The procedure is again to substitute the expansion of Eqgs. (6.2b)
and (6.2c) in Egs. (6.5), and to solve the resulting equations
successively in zero-, b'/2-, a-, and b-orders.

a) In zero order Egs. (6.5) give

WonrZopr— SoppZoprEop=0, (6.62)
ZOPPSOPPZOPP =1I. (6.6b)

This is simply the eigenvalue problem of Egs.(2.11) for the
p-modes of the reference fluid.
b) In b'/2-order Egs. (6.5) give

WorrZapp T iCoppZoppE (1122 = SoppZappEop—SoppZoppEa,=0,(6.72)
(z} - Qpp)d“‘”“l 0. (6.7b)

Equations (6.7) are a set of linear non-homogeneous algebraic
equations for Z, , and E, . Their solution is best obtained by a
Q-matrix formalism developed in Papers II and 111, with appropri-
ate modifications to suit the present problem. Let us pre-multiply
Eq. (6.7a) by Z}, . and reduce the result by employing Egs. (6.6)

Opp>

and the Hermitian character of W,,,. One gets
E OpZ OppS OppZ ampt iz OPPCOPPZ OppE (llpz

-z}, oppZappEop— Eqp=0. (6.8)
The diagonal elements of Eq. (6.8) give E,, at once:
Enp=i(ZI,m,COI,I,ZO“,)"i*"“"““Eéﬁ,2 . EYF=*|EJR. 6.9)
The non-diagonal (r, s)-elements of Eq. (6.8) give
(sz)p—sf)p)(zappSOPp ﬂpp)r = l(ZOppCOPpZOpp)'s(af)P)l/2 B

r¥s,  (gp)?=1 /5, (6.10)

Let us define a matrix Q, , as follows
Qgusenal = (6.11a)
Qopp= i(sf)p— €0p) " N(Z,,CopZopp) (€)1, Ts. (6.11b)
In terms of this Q-matrix, Eqgs. (6.10) and (6.7b) become
Z OppS Oppzﬂpp= Qﬂpp . (6.12a)
From Egs. (6.12a) and (6.6b) one immediately obtains
Zopr=Z0ppQ0pp - '(6.12b)

Due to the + signs of Eg}? in Egs. (6.3a), (6.9), and (6.11), the
matrices Z,,, EQE, Qoo and Z,,, acquire + signs. Consequently,
Z,,Z,, and E}/* of Egs. (6.2) turn out to be double-valued (not

to be confused w1th double-signed) quantities. In physical terms,
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the eigenfrequencies of a non-rotating system appear in pairs of

symmetric values, + ]/%, say. Each pair belongs to only one
eigenfunction (degenerate eigenfunction, one might say). In a
rotating system the Coriolis forces alter this situation. A sym-
metric pair of eigenfrequencies are still replaced by one positive
and one negative eigenfrequency, but with different absolute
values. Each of these eigenfrequencies have their own distinct
eigenfunctions. This completes solutions of Egs. (6.7) in b'/2-order.
The a- and b-order equations will be solved similarly and by
appropriate Q-matrices.
¢) In a-order Egs. (6.5) give

WopsZapp+ WapnZopp— SoppZappEop— SoppZoppE

app app Opp™~ap
= SuppZoprFop=0, (6.13a)
(Z Ipps 0ppZ Opp +Z I)pps Oppz app)dmonal == (Z z)ppsappz Opp)dimm‘ml :
(6.13b)

These equations are the same as Egs.(24) of Paper III. Their
solution, similar to those of Egs. (6.7), is as follows:

E,= [z z’pp( WepvZopp— Sappz oprE OP)]diagonal ’ (6.14)
Zapp=Z0ppQapp > (6.15)
where @, is defined as follows
lei)apgonal - _ % [\ Z‘t) op Sapp ZOpp] diagonal , (6 15 a)
;;p = (33 p 6’01:)— ! [z (Y)pp( VVBN,Z 0p1; =S appZ OppE Op)] ©, rEs.
(6.15b)
This completes the solutions of Egs. (6.13) in a-order.
d) In b-order Egs. (6.5) give

VVOPPZ bpp + (Vprp + ROpp)Z oppt i COppZ OppE (1)412

+iCoppZ oppEarE 5})1/2 ~SopsZsppEor— SeppZoprE op

- SOppzoppEbp_ SOppZQppEnp=O 5 (6.16a)
z gpps OppZ opp T 4 BppSOx:pZ bpp)diagoml

=— (Z;gppsowzﬂpp + Z;f)pprm,Zopp)di“""“"l . (6.16b)

These equations for E,, and Z, , are again of the same form as
Egs. (6.7) and (6.13). Their solution is obtained by a similar
technique. Thus,

Eyp=EgpEoy +[Z8,(Wipp+ Ropp)Zop,

+1Z8,,C o000 Z app B8 — Z8 58 sppZ oppEop 28 (6.17)
prp=ZOprbpp > (6.18)
where @, . is defined as follows:

O™ == 3LZ4,,SprZopp + ZhpySoppZapp] 5 (6.18a)
bop =80, €0,) " {Z} . [(Wypp+ Ropp)Zop
+iCoppZoprEty +iCoppZoppEarEoy
~StpeZoppEop—SoppZappEapll™s TES. (6.18b)
This completes solutions of Egs. (6.16) in b-order.
B. The gg- and pg-blocks of Eq. (4.11) give
(@W,,,+bRo,)Z ,,+ib**Coy Z  Es* —S0,,Z, E,=0, (6.192)

Z,,=— W, [(aW,,,+bW,

pg bpg

+bRp)Z,,+ib"?Co, Z, EV?, (6.19b)

321
where R, and R, are as follows
Rogg==CouSou Corg» (6.20a)
Ropy=—CopSou Cory- (6.20b)

Equation (6.19a) is an eigenvalue problem for Z, and E,. This
equation is of the same form as Egs. (3.10) and (4.11). It is,
however, defined over the much smaller space of {{,} vectors,
rather than the full space of all possible displacements of the fluid.
One peculiarity of Eq. (6.19a) should be noted. There is no zero
order W-term (i.e., no zero order force) in this equation of motion.
Of the two other force terms, aW,,, and bR, neither could be
considered as the dominant term. Therefore, one cannot Taylor-
expand Z,, and E, in terms of a and b. For the same reason
neither Z,, of Eq. (6.19b), nor Z,, of Eq. (5.8) admit expansions in
terms of a and b. We shall return to Egs. (6.19) in Sect. 10.

The R-matrix defined by Egs. (6.3¢), (6.5b), and (6.20) ap-
parently requires the intervention of the toroidal modes. The case
is, however, unduly complicated. It is shown in Paper IV
Appendix B that the domain of definition of R is the poloidal
subspace of the modes. Such that, the elements of R can be given
in terms of a pair of basis vectors from this subspace. Thus,

Ry =Rio= oz [0 @xC)-@x 0o, e=gp. (621

Let us conclude this section by reiterating the salient points.
Separation of the poloidal modes of a rotating fluid into their g-
and p-components has been achieved. (a) The g-eigenvalues and
eigenvectors are solutions of Eq. (6.19a). (b) The projection of the
g-modes on ({,}-subspace, Z,, is given by Eq. (6.19b). (c) The p-
eigenvalues and eigenvectors admit expansions in terms of a and
b. At various orders of approximation, the expansion coefficients
are given by Egs. (6.6), (6.9), (6.12b), (6.14), (6.15), (6.17), and (6.18).
(d) The projection of the p-modes on {{ }-subspace, Z,, are given
by Egs. (6.2a) and (6.3). In the case of the p-modes, Eq. (6.6a) is the
only eigenvalue problem to solve, and this is an ordinary eigenval-
ue equation.

We now address ourselves to another feature of the problem.
In a non-rotating fluid a mode of oscillation is given in terms of a
single spherical harmonics, Y7* say. Rotation mixes the motions
belonging to different harmonic numbers, . Partioning of modes
into their spherical harmonic components is carried out in Sect. 7.

7. Spherical Harmonic Components of the Modes

Small oscillations of a spherically symmetric fluid can be expand-
ed in terms of the spherical harmonics Y"(6, ¢). The motions
belonging to different - and m-symmetries are not coupled
together. A slowly rotating fluid is only axially symmetric. This
and the Coriolis forces cause a coupling of motions with different
I-values. The motions of a given m-symmetry, however, remain
independent. This section deals with the expansion of the eigen-
values and eigenvectors of the preceding sections into their
spherical harmonic components.

Let us begin with the basis set {{}={{I{,I(,} of Eq. (3.6). The
elements of the {{;} subset, for instance, have the spherical
harmonic expansions given by Eq. (2.5). One may arrange all
elements belonging to the same spherical harmonic number !’ in
one group, and thus partition {{ } into blocks designated by their
I values:

{3 =1 =15l 3 (7.12)
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The notation should be understood carefully. The supeript / in Eq.
(7.1a) is new and is in addition to the superscript s of Eq. (2.5). This
last superscript, which labeled the radial functions y, and y,, is not
displayed in Eq. (7.1a). If both superscripts are desired to be
written out, s will precede I. The same consideration will apply to
the p- and the toroidal-subsets, {{,} and {{,}. Henceforth, a single
superscript (either the letter  or k) on {’s will denote the spherical
harmonic number. If there is a pair of superscripts, the first one
will indicate the radial wave number and will be chosen from the
letters p, g, 1, s, t, u, and v.

Each of the matrices W, R, C, and S, or their a- and b-
expansions is generated by a pair of basis vectors. Harmonic
partitioning of the basis set entails a corresponding block-
partitioning of these matrices. The blocks will be disignated by a
pair of superscripts indicating the harmonic numbers of their ge-
nerating vectors. For example, W:i, will denote the matrix block
whose generating vector sets, C;‘ and C;,, have k- and [-symmetries,
respectively. Finally, harmonic partitioning of W-, R-, C-, and S-
matrices, via the equations of motion, requires a similar partition-
ing of Z- and E-matrices, and of their various expansions. The
notation for harmonic partitioning of a matrix will be as follows

A=[A"],A=W,R,C,S,Z,E,...; k 1=0,1,2, ... (7.1b)

A summary of the harmonic structure of W, R, C, S, and their a-
and b-expansion is given below. Most of this information can be
inferred from symmetry considerations. Full details, however, are
given in Sects. 8 and 9.

The W- and S-matrices. In a spherically symmetric fluid the
motions of different I-symmetries are not coupled. Therefore, W,

EE

and W, pertaining to the non-rotating fluid will be block-
diagonal:

Woee =[Whe.1,(9.11), (7.2a)
Woeo=[Wee.1,(9.13), (7.2b)

where only the non-vanishing blocks are displayed. All blocks (kl)
for which k=1 are identically zero. Parentheses following an
equation indicate the equation number in which the elements of
the matrix in question are given. The equilibrium figure of a
slowly rotating fluid is an oblate spheroid, a surface of revolution
of the second degree. Furthermore, the density, pressure, and
other parameters of the rotating fluid are expanded in terms of the
zero and second order spherical harmonics. Two motions with [
and !+ 2 symmetries will be coupled. Therefore, W,,, will have the
following form:

Wy =[WH 1, k—1=0, £2, (9.16). (7.2¢)

.» one observes that a toroidal vector ¢! has the
angular dependence of symmetry /+1, see Eq. (2.7). Therefore,
W,,. will have the following structure:

As regards W,

Wy =Wh, =[Wi ], k—1= £1,0.17). (7.2d)
The S-matrix has the same symmetries. Thus,
Soe.=[56:.1,(83), (7.3a)
Seze=[Sixe) (84), (7.3b)
Spe=[SK 1, k—1=0, +2,(8.5), (7.3¢)
Spa=She=[Speds k—1= £ 1,(8.6), (7.3d)
Son=[S6:]. (8.7). (7.3¢)
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The C- and R-matrices. An inspection of the angular integrals in
the defining Eq. (3.9b) will reveal the following structure of the C-
matrix :

Co.. =[Ch;.), (8.10), (7.4)
Cou=—Ch=[CY 1, k—1=+1,(8.11), (7.4b)
COtt = [C'B':,], (812) . (74C)

The a- and b-order components of the C-matrix are not needed
and are not discussed here. The R-matrix is the product of two C-
matrices: see Eq. (6.3e), (6.5b), (6.20), and (6.21). Therefore, from

Eqgs. (7.4), R,,, will have the following components:
RO;e = [R’(‘)lgg]’ k—1=0, £2, (813) . (7.5)

We are now in a position to turn to the harmonic components of
the Z- and E-matrices.

a) Harmonic Components of Z,,, Egs. (4.7)

All matrices in this equation are block-diagonal. Thus, Z,, will

also have the same structure:
z,=[2}1, (7.6)

where Z¥ and its corresponding eigenvalue E}, are solutions of
the kk-block of Egs. (4.7).

b) Harmonic Components of Z,, and Z,,, Egs. (5.6) and (5.7)

Both of these matrices have the same structure as C,, and W,
which enter Egs. (5.6) and (5.7). Thus,

£t

Z,=[Z}]k—1=+1, (7.7a)
where from Egs. (5.6), (7.2b), and (7.6) one obtains:

2= i W) CHZIEL) P k= 1. (1.70)
Similarly,

prt=[Z’l:§)t Jk—1=11, (7.8a)
where from Eq. (5.7b) one has:

zZy =—(We ) Wi Zink—l=+1. (7.8b)

¢) Harmonic Components of Zg,,, Z,,,, Egs. (5.9)

Both of these matrices have the same structure as C,, and W, See
Egs. (5.9). Thus,

Zop=[Zg,) k—1=%1, (19)
where from Egs. (5.9a), (7.4b), and (7.14) one gets

2, =i(S) T CoZ ,p(Eop) ™ 2 k—1=%1. (7.92)
Similarly,

Zyu=1Z3, ) k=1= =1, (7.10)
Z =(S¥) " [we Z8 (Eb ) 1-SE.Z8 T k—I=+1. (7.10a)

The case of Z,, Eq. (5.8), is not the same as that of Z,,, and Z,,,,.
This is because of Z , in Eq. (5.8). We shall see later in this section
that a harmonic expansion of Z_, does not lead to a convergent

series.
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d) Harmonic Components of Z,,,, Z,,, and Z, , Egs. (6.3)

All matrices on the right hand side of Eq. (6.3a) are block
diagonal. Therefore, Z,, , will also have the same structure. Thus,

Zop=125,1, (7.11)
where Z¥ is obtained from the kk-block of Eq. (6.3a). The same is

Qgp
true for Z, , Eq. (6.3b). Thus,
Z,,=1Z%,1, (1.12)
where Z%  is the kk-block of Eq. (6.3b). The harmonic structure of

Z,,, is the same as that of W,,,, R,,,, and C,,,. See Eq. (6.3c).
Thus,

Z,y =12} 1 k—1=0,%2, (7.13)
where from Eq. (6.3c) one has:
Zigy=(St5e) " {(Wigy Ry 283, +1C00, Z gy (Ec)

+iCkE (78 (Bk)V2+ 78 E% (EX )=4/2]

- Sl';:PZ’g;’PE’BP - Sg’;yzlg:sz’;?p} (EOP)— ! ’ (7.13a)
Zhp=(S059) ™ [(Wyyp + RG,) 25,

— ShepZ0ppEop(Eh ) ™  k—1=+2. (7.13b)

e) Harmonic Components of Z,,, Zgpps Zapp ahd Zyy,

The zero order matrix, Z,,,, pertaining to the reference fluid is
block-diagonal :
z Opp=[Zkk ],

Opp

(7.14)

*
where Z’(‘,’;p and its corresponding eigenvalue, Ef ,, are solutions of
the kk-block of Egs. (6.6). The matrix Q, , Egs. (6.11), is block-

diagonal. Therefore, Z,,,, Equation (6.12b), is block-diagonal,
ZQpp=[Z?)kpp] ’ (715)
where Z¥% s obtained from the kk-block of Egs. (6.11) and (6.12).

Qpp

The corresponding eigenvalue E’,‘,p is given by the kk-block of Eq.
(6.9). The same holds for Z,,,, Eq. (6.15):
Z,pp=[Z}3,1,

app.

(7.16)

where Z% and its corresponding eigenvalue Ef,,

kk-blocks of Egs. (6.15) and (6.14), respectively.
The b-order matrix Z,,, has the same structure as W,,,, Ro,,»

are given by the

and S,,, See Eqgs. (6.18). Thus,

Zypp=[Z3pp) k—1=0, +2. (7.17)
From Egq. (6.18) the diagonal block is:

Z =7 0, (7.17a)

where Q, . is given by the kk-blocks of Egs. (6.18a) and (6.18b).
The off-diagonal blocks, Z¥ k=142, are similarly given by:

bpp®
Zopp=ZppQpp k—1= %2, (7.17b)
where Q! is obtained form kl-block of Eq. (6.18b). Thus, the rs-

element of this matrix is
(08, =ty a) 2L L0V,

+ R’("IIJP)ngp - Sﬁ;ngppEz)p]}rs s

(7.17¢)
for all r and s, and k—I=+2.
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We note that Qf  is an off-diagonal block of the larger matrix
Q> and does not have elements falling on the main diagonal of
the larger matrix. Thus, Eq. (7.17¢), for all r and s, uniquely defines
the matrix Qy, . Corresponding to Zj% of Eq. (7.17a) is the b-
order eigenvalue matrix Ej,. This is given by the kk-block of Eq.
(6.17). This completes the harmonic analysis of the p-modes in
various expansion orders. We note that the zero-order eigenvec-
tor, Z,,,, is block diagonal. Coupling of one spherical harmonic
to others comes in the first b-order perturbation.

f} Harmonic Components of the g-modes

The g-modes of Egs. (6.19) do not have the simplifying feature of
the p-modes, just mentioned. This is again because of the absence
of a zero-order force in Eq. (6.19a). In any given mode, all
harmonics are present with comparable strength. If one attempts
at @ harmonic expansion of the g-modes, the expansion terms will
not be readily calculable neither will the convergence of the
resulting series be guaranteed. This is true for Z,, of Eq. (6.19b)
and Z,, of Eq. (5.8). Both of these matrices are given in terms of
Z,,. We shall return to this issue in Sect. 10.

8. The S-, C-, and R-matrices

In this section the elements of different matrices in various
expansion orders are calculated. We begin with the expansion of
Eq. (3.4) for the density:’

o(r,a,b)=0o(r) +ag,(r) + be,(r, 6).

By the definition of Eq. (3.4a), the derivative g, is .the rate of
change of the density of the reference fluid with uniform rotation
of the fluid. For a constant ratio of specific heats, the reference
fluid is simply the polytrope of index 1.5. Chandrasekhar (1933)
has studied the rotating polytropes and has shown that g, has the
following Legendre-Polynomial expansion:

Qb(r’ 9) =00 (r) + Op2 (r)PZ(COS 9) .

Numerical values of the radial functions 0po(r) and g,,(r) can be
obtained from Chandrasekhar (1933) and Chandrasekhar and
Lebovitz (1962). As for g,, a technique was proposed in Paper III,
Sect. V which did not require the numerical values of this
quantity. The formal existence of g,, however, is assumed in the
subsequent developments.

Expansion terms of the pressure in terms of those of the
density are discussed in Paper IV, Appendix A. Considering the
fact the p=p(a,0) and g=¢(r,a,b), one obtains

(8.1a)

(8.1b)

p(r,a,b)=py(r)+ap,(r)+bp,(r,0), 8.2)
where
Po(r)ocad (), (8.2a)
p.(r)= zgp—"ea(r)ﬂpo Ing,, (8:2b)
0o
po(r,0)="22,(1,6). (8.20)
Qo

A derivation of Eq. (8.2b) is given in Paper IV. We now turn to the
matrix elements.

The Elements of the S-matrix. The (rk,sl)-element of S, is
obtained by inserting {™* and ¢(e=g, p) of Egs. (2.5) and (2.6) in
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the defining Eq. (3.9¢), replacing ¢ by ¢,, and integrating over the
angles. The non-vanishing terms are the (rk, sk)-elements:

Srk ,sk__

1
Oce IQO 2 W;klpik

ok sk e oo . 8.3
+k(k+1)x: % } r,e6 =99, pp (33)
The mixed matrix S, is identically zero. For the a-order matrices
S 2000 Saap Sapp ONE similarly has

agg> ~agp> ~app

1
S;’:tzsk jga[ 2 we lpa

k(k+1) — ]dr e=g,p (8.4a)

The mixed matrix S,,, can suitably be calculated from Eq. (8.4a).
An alternative simpler expression, however, can be obtained by
eliminating x; and w, by means of Egs. (2.52) and (2.6a),

respectively. Thus,

k,sk sk,rk rk. k
Segp =Sapg = k(k+1) .(Qo dr( ) dr. (8.4b)
In the b-order the non-vanlshmg elements are
1 .
rk,sk __ rk. sk k'
Sbae IQbo[ 2 Ve we k(k+ 1) Xr
(k*+k—3m?) R i [
DT 7V
kK2+k=3) .. 4
TRV . .5
+ k2(k+1)2 X; Xe dr’ (8 a)
ghskez_ 3 [UeAmA2)(k—m+2(k+m+1)(k—m+1)]"
" T 2(2k+3) (2k+1)(2k+5)
1 sk+2 1 k' . sk+2’
: ———— .5
IQbZ[Zsze +(k+1)(k+2)X: x: dr: (8 b)

Splosk=2 - gk~ 2.1k ¢ =g and/or p. (8.5¢)

The last equation follows from the Hermitian character of S,,,.
The mixed matrix S,,, has the following components:

Srksk+1 3im (k+m+1)(k—m+1) 12
bet k(k+1) (2k+1)(2k+3)
d
I A rr, (8.62)
Srk ,sk—1 _ 3im (k+m)(k m) 12
bet k(k+1) (2k—1)(2k+1)
dr
I Ry AR A (8.6b)
For §,, one obtains
L ar
SB’iﬁ"—k(kH)I v v > ®.7)
Tha a-order matrix S,, has the same form as S,,. However,

neither S, nor S,,, is needed in the present first order analysis.
The Elements of the C-matrix. The defining Eq. (3.9b) can be
written as follows:

Crk, sl

f e[l L= C1dv, @.8)

where {, and {, are the radial and the azimuthal components of {
in the cylindrical polar coordinate (w, ¢, z), where z is along the
rotation axis. In particular the w-components of the poloidal and
toroidal vectors of Eq. (2.5}H2.7) are:

rk k'

rk __ Ve : 1 xr oYy k

= = Ypsinf+ —— kk+D) T 20 ——cosf,e=g,p, (8.92)
”" Yrcot. (8.9b)

The element of the various blocks of the C-matrix are obtained by
substituting Egs. (8.9) in Eq. (8.8) and integrating over the angles.
For C,,, one obtains:

rk, sk

Crk, _——-l"l__? [l( rk k'+ rk’ sk)
Oge k(k"l'l) Qo r Ve X: Xe Ve
k'
k(k+ kT~ X ] ®10)

The mixed matrix C,, has the following non-vanishing
components:

[(k+m+1)(k—m+1)]*/2
rk,sk+1 _
Coa™ "=+ =505 1)(2k+ 3)
R
1 rk K| skt 1 47 dr
gQO[ ;w: (k+ I)X' ] r > (8'113')
_ k+m)(k—m) ]1/2
Crk,sk 1_ k—1 (
Oet k=1 (2k— 1)(2k+ 1
LI dr
. — K skt — 8.11b
gQO rlpz er ] r ( )
Similarly C,, has the following component§ :
Crk,sk___ —im? ) wrkwskd_r = im Srk sk (812)
Ort ° (kg3 t 2 k(k+1) ot *

Again the a- and b-order C-matrices will not be needed in the
present analysis.

The Elements of the R-matrix. Substitution of Egs. (8.9) in Eq.
(6.21) and integration over the solid angles gives

Akl Dem =115 e
Qk—1)(2k+3) %% ¥ 2
k(k+1)— 3m?
TRk D) Ck—1)2k+3) )
k(k+1)(2k2+2k—-3)—é(2k—1)(2k+1)(2k+3)m+(2k2+2k+3)m2

rk,sk __
ROee -

dr
5eo[w"‘ g

* K2(k+ 1)%(2k— 1)(2k + 3)
R
g QX X dr, (8.13a)
Rrsk+2 1 [(k"'m‘f‘z)(k—m+2)(k+m+1)(k—m+1)]1/2
% T (2k+3) k+1)(2k+5)

dr
o rk, s, k+2 "
{ ge A
R R R dr
rk k+2 k sk+2_
(2k+1) 2k +3) 2k + 5)m }

T 2k(k+3)(k+m+2)(k+m+1)

+w+nw+m[
R v
. Sgoxzk'x.:k+2 dr},

rk,sk—2 _ sk 2,rk
ROea R ?

(8.13b)

(8.13¢)
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where the last equation follows from the Hermitian character of
the R-matrix. The a- and b-orders of the R-matrix will not be
needed. Furthermore, there are no mixed or purely toroidal
matrices, R,, and R,,. It is evident from the defining Eq. (6.21) that,
the R-matrix is defined only over the poloidal subspace of {{,}-
vectors.

9. The W-matrix

Scattered information on the W-matrix exists in Paper I, III, IV,
and in other literature. Due to its central role in all oscillation
problems, however, we undertake its comprehensive study in this
section. Substitution of Egs. (3.52)«3.5d) in Eq. (3.9a), and
carrying out two integrations by parts gives:

1
er,sl P J' V~C"“6"pdv— IE grk‘, Vpé”gdv

—G[[o™*a(r)o%o(r)ir—r|"* dvd'.

The first and third integrals in Eq. (9.1a) are the results of
integrations by parts. The integrated terms have vanished.
Substitution for dp in terms of g gives:

14 d
er,sl= Iad_25rk‘aaslgdv+ I[(_Z_Z) _ é] QV'C’k‘V'CSldU
ad

=G {8 a(r)6%o(r)r—r|~* dvdv' . (9.1b)

In the equilibrium state p=p(g). The derivative obtained from this
relation is denoted by dp/dg. The derivative at constant entropy is
denoted by (0p/de),,- By Eq. (3.2), the difference between these two
derivatives is proportional to a. Thus,

™

From Eq. (9.2a) it also follows that

%:(1+a)y§. (9:2b)

Substitution of Egs. (9.2) in Eq. (9.1b) gives

Wesl =(1+a)y jg%é”"gé"gdv— ay[pV-L*v-{dv
—G([o™o(r)&%e(r)lr—r|~* dvdv'. 9.3)

A density change generated by a poloidal vector, &0, has the
following form:

1 ’ ! ()
otro=— {lotwr — )+ vl

1 oy sz}

kk+1) 20 d0J° ©.4a)

+bo,, 12

where P, is the Legendre Polynomial. Expanding ¢ according to
Eq. (8.1) gives

1
8=~ = ((F+aF:+bFh, + bF5 P ¥y

+bGrk 1 6Y,Z” dPZ

b2 lk+1) 0 40’ (9.4b)
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where for economy in writing, the following notation is
introduced :

Fin =0 —xF)+awk,

rk _ rk’
Gh2:=02Xp -

¢=0,a,b0,b2, (9.52)
(9.5b)

A density change generated by a toroidal vector is as follows:

b im dP
5fk9=—VQ'C,=—r—zFf,kz,gm—é fi d—Oz’ (9.6a)
where

1
Fo)=— 059" (9.6b)

Certain integrals of F- and G-functions introduced above will be
encountered in the subsequent analysis. These integrals are de-
noted as follows:

R

Yol=—¢ [ F¥(s)s™'"'ds, ¢=0,4,b0,b2, (9.7a)
R

Zihi=—r [ Gis)™ " Mds, (9-75)
R

Yikt=—r j Fk (s)s™' " 1ds. 9.7¢)

Differentiation of Eqgs. (9.7) with respect to r leads to the following
differential relations between F-, G-, Y-, and Z-functions:

Flt=ryl=IYFY,  ¢=0,4,b0,b2, (9.82)
Gote=rZiti =125, ©.85)
F;’;,‘—'rYbr;;l_ler;;l’ . (98C)

The Elements of W,,-matrix. Equation (9.3) in zero order and for
a pair of poloidal vectors gives

Woes'=7 .’.Z_% 50003 00dv

=G [[lr—r|71 5 0q(r)5eo(r)dvdr (9.9)

where from Eq.(9.4b) 6g,= —r 2F¥(r)Y™(0, #). Let us first
reduce the self-gravitation term in Eq. (9.9),

Iy= G [[Ir—r|~ 18 0o(r)5%0o(r)dvds’
~-6 i roRLo 5 [} (& e
n=0 LT \"

n rl (;)nH(r’ - r)] P,(cos ©)

Y6, $) Y0, ¢')drdr’ sin Osin 6040 dpdg’ (9.10a)

where @ is the angle between the r and ' directions; P, is the
Legendre polynomial of order n: the summation Y [...]P, is the
Legendre-Polynomial expansion of [r—r|™!; H(x) is the step--

function, defined as H(x)=1 if x>0 and =0 if x <0. The addition
theorem for Legendre polynomials is

PcosO)= 5 3 V0PI, 4). (9.100)

p=-n
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Substitution of Eg.(9.10b) in Eq.(9.10a) and carrying out in-
tegrations over the angles gives:

4G R
" | (PR Ygkk+ Yob Feh)dr.

= 9.10
IO 2k+ 1 5kl (.‘; ( ( C)
Further elimination of F’s by Egs. (9.8) yields:

R
I,=—4nGé,, | YoE*Ysk* ar. (9.10d)
V]

Finally, substitution of Eq. (9.10d) in Eq.(9.9) and carrying out
the remaining angular integrals gives:

dr

R R
Weks=y | %F;’;Ff)’;;z——MGj Y Yektdr. (0.1a)
0 ¥o 0

Equation (9.11a) can be used to obtain W,,,. For a g-vector
satisfying Eq. (2.5a), however, F,, and subsequently Y;, vanish.
Therefore, one concludes that

W,, =W, =W, =0 (9.11b)

Ogg ™ ""0gp™ ""Opg

The Elements of W, -matrix. The first order a-terms of Eq. (9.3)
for a pair of poloidal vectors give:

atge

Wiksl=y [ g% [1 + % -2 z—“} 8000500 dv
0 o 0

+y “‘ Do [5',“9055’9.: +5rk*Qa5sleo]dU

—7§po V-C:"‘V~C§’dv
—G[flIr—r |7 [8%0(r)d5 0,(r)
+87%0,(r)8% 0, (F)]dvdy’ . 9.12)

The reduction of Eq. (9.12) is almost identical to that of W¥,,,. The
final expression for the non-vanishing elements is:

R
wpkt=y [ 22 1+”—“—2"“]Fz';Fz':d’
0 Q0 Po Qo
+r RO CrLRE s FF
0@
X . . . dr
~1 ol — W ) 2

(9.13a)

ae

—AnG [ VYR 4 YEFE dr.
]

Equation (9.13a) can be employed to obtain W,, . In view of the

vanishing of Fo, and of Y,,, however, the gg-, gp-, and the

pg-components assume much simpler forms. Thus, using
Eq. (2.52) one obtains:
rk,sk dr
Wese ‘—Mpo 2 wg v T (9.13b)
k,sk  po Freps dr rk N
Wesr =7’I—E Fp z+IPo‘Pg(lP % )z
0 Qo r
—4rnG j' Yk Yskkdr (9.13¢)
0
where Fi in turn has the simpler form:
d (e,
Fr=00— e ( )wg (9.13d)

The Elements of W,,,-matrix. The first order b-terms of Eq. (9.3)
for a pair of poloidal vectors give:

er sl _ j‘po pb zb]égk.goéilgodv

bee
(4] V]
14 rk* S| r S|
+7] 2 [0 0000, +5 0y 00 dv
0

—G[[lr—r|" 1[5 04(r)60,(r)

+87"0,(r)87 0o (r)dvdy’, (9.14a)
where from Eq. (9.4b)
. 1 . t . 1 dr,oy”
5oy = _r—zFbOeXcm"r_zFb’;epznm“r_szgzm 792‘ _6_0"_
(5.14b)
Because of the presence of P, in the last equation, W,,, will have

the (k, k)- and (k, k+2)-blocks. The details of the reduction of
Eq. (9.14a) are again similar to those of W,,, and W,_,, except that
integrations over the angles are somewhat laborious. Most of the
angular integrals have been calculated in terms of the following

two simpler integrals:

e k2+k—3m2
. 3
[+ mt2)(k—m+2)(k+m+ 1) (k—m+ D]
2k+1)(2k+5) :

The details of the reduction of Eq. (9.14a) are again not presented.
The non-vanishing elements are:

. | Y—
Wbé“"?(? 2),[ 3QboFkFo’; )

Do F" S
+’y.[ kFi’(‘)e bOeFOi] 2

- 4nG f (Y Y+ Y5 Yo ¥ dr
dr
+ok b {ro-21% L 0 Pt o
+ l‘p [Frszk Frk F
Y 0L b2e Fpoe ] 72
T S| 'S} dr
k(k+ R I [FoksGbk25+ GbZaFOke ;2‘
G Y R+ TN
(9.16a)

3
Oy LG 2350+ 2 1},
dr

S| p T
Wrksk+2 — O(k, k+2) {y(y— )| Q—ggszo';Fg';” =
0

bee

IZO[Frszk‘FZI Frk Fsk+2|

pO 1 rk (ask+2 Grk sk+ 2
j [k 2 0e™-"b2e k 1 b2e T2

2
—4nG§Y"‘*[l¢§:2k+—k+zz::;:“]dr

—4nG |

Ybr;gk+2 k+ 1 Z;"Z:+2] Ysk+2 k+ 2dr} (9.16b)

er sk—2 _ Wsk 2rk (9160)
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For the gg- and gp-components, Egs. (9.16) assume much simpler
forms. Thus,

Weget'=0,  1-k=0, £2, (9.16d)
sk _ Rp Fr o dr rk ysk
Wogs™ = g_(z) bOgFOp—z' —4n Gj Yo, Yopdr
. 3 . % Aar
rotr [0+ i ]
—4nG | [11;;‘;‘+ HEr D) Z;’;»;] Y;’;”‘dr}, (9.16¢)

s Po| o 2 s dr
m:ﬁk+2_Q(k k+2){')’j. O[Fb’;g k+le§g:| 0’;7+2r—2

—4nG j [nr;gk-kZ Zgl;gk+2] Ysk+2 k+2dr} (9160

k+1

Si p 'r) 2 r) 'SK dr
Wik = 0tk k- 0 [ 28 Pt Lo i

—41G | [}1;;‘,," 2+iZ;’;’;‘“2} Yéﬁ‘z”“zdr}, (9.16g)

where

d
ch_QO dr (Qc)wg H C=b0,b2. (916h)

The Elements of W,,-matrix. This mixed poloidal-toroidal matrix
exists because of the fact that the rotating fluid is not spherically
symmetric. Therefore, this matrix will exist only in the b-order and
will depend on g,,. The equation for W,,, is most simply obtained
from the first-order Eq. (9.14a) by changing the second subscript &

~-
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From Eg. (9.17b) we also note that
W, =0. 9.17¢)

One observes that the domain of all integrals developed in
Sects. 8 and 9 is the volume of the reference fluid, while the various
matrices introduced so far were defined over the volume of the
actual rotating fluid. This change of the domain of integration,

however, does not affect the first order calculations of this paper.
R+A4R

§ f(r)dr, where AR(6) is the

R
difference between the radial distance of a point on the surface of
the rotating fluid and that of its image point on the surface of the
reference fluid. Obviously 4R is a first order quantity in a and b.
Let us now Taylor-expand f(r) about R, the surface of the
reference fluid, and carry out the integration. Thus,
R+ 4R

[ fOdr=f@AR+Lf (R)(4R)*+
R

Consider a typical error integral

(9.18)

If f(R) vanishes, the integral will be of the second order; if f(R)
and f’(R) vanish, the integral will be of the third order, and so on.
We observe that the integrands of all integrals in this paper vanish
at the surface. Most frequently, the first derivative and sometimes
the second derivative vanishes. Therefore, integrations over the
volume of the reference fluid do not introduce first order errors.

10. Concluding Remarks

The analysis of the preceding sections has resulted in a partition-
ing of the eigenvectors and eigenvalues into their g-, p-, and
toroidal-components. The components associated with the p- and
toroidal-modes have further been expanded into their zero-, b/2-,
a-, and b-order terms. The spherical harmonic components of each
of these terms have in turn been given. The matrix of the
eigenvectors, Z, has turned out to have the following form:

Z, |0 + bUPZE 4+ aZM, 4+ bZE, | bZikt!]
(6.19a) (7.11) (7.12) (7.13) (7.7a)
Z= ZP!? 4 ’(;kpp bl/zz-g‘PP + aZ:’;’P + bZ’l:;P bZ :,P’: £ (10 la)
(6.19b) | (7.14) (7.15) (7.16) (7.17) (78a) |’ ’
Z, |0 + bPZEEt 4+ 0 bZix*t | Z
(5.8) (7.9) (7.10) (7.6)
to t and noting that 6,0,=0. Thus, where =k or k+ 2. The reference equation number for each term
is indicated below that term. The matrix of the eigenvalues, E, has
Wiksl =y f Po 5rk‘ 0,050, dv taken the following form:
_[E EY, +b'?Ef,+aE%, +bE;, |bE}
1—1 srk* sl G ’ 9 Op ap bp bt . 1
- G” Ir—r|7" 87700 (1) ;"0 (r') dvd’, ©178) - E=l6 100714 (115) (1.16) (7.17) (7.6)] (10.16)

where J,0, is given by Eqgs. (9.6). The non-vanishing elements of this
matrix are

R
) Do dr
——
Q0

rk sl
Fo.F b2t 72

—4nG | YB'Z"‘Y?;'z"e‘dr}J=ki L 9.17b)
V]
where
sz
Qu Qm fyyy 20 —5-d0de, 9.17¢)
_ (k+m) (k—m) 11/
Qip-1= [(Z_k—-—l)w-l-—l)} (9.17d)

(i) The Toroidal Modes

These are given by the third columns of Egs. (10.1). The equation
of motion for the principal term, Z¥, and its associated eigenvalue
matrix, E¥, follows readily from Egs. (7.7), (4.7), and (8.12). Thus,

From Eq. (10.2) one immediately concludes that

Z¥ = indeterminate, (10.2a)
CCT - vz =1,2,.... (102

B = rgerp ™ o @ k(k+ T (10:25)
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This toroidal state of the motion is degenerate as regards the
radial wave number s. Any arbitrary toroidal displacement of
harmonic symmetry k is an eigenvector belonging to the eigenval-
ue of Eq. (10.2b). To remove this radial degeneracy, one may have
to include b-order terms in Eq. (4.7). We also note that, while the
eigenvalues Ef, are b-order quantities, the eigenvectors Z¥ are of
zero-order.

The projections of the toroidal modes on the {{,} and {{,}
subspaces, Z,,, and Z, ,, respectively, are given by Egs. (7.7a) and
(7.8a). These projections, however, are in terms of Z, and
therefore, are also indeterminate. This completes our discussion of
the toroidal modes.

(ii) The p-modes

These are given by the second columns of Egs. (10.1). The principal
terms, Z§ and Ef , are solutions of the ordinary eigenvalue Eq.
(6.6a). From Eq. (9.11a) one observes that the matrix W',
generating the p-states, consists of two terms. The first term 1s
positive difinite and the second, the self-gravitation term, is
negative definite. One immediately concludes that the effect of self-
gravitation is to reduce the p-eigenvalues. All other terms on the
p-column of Eq. (10.1) are solutions of some inhomogeneous
linear algebraic equation. One striking feature of the p-modes, not
shared by the g-modes, is noteworthy. The fact that the p-states of
the rotating fluid have admitted Taylor expansions in a and b is
due to the circumstance that the p-states of the reference fluid are
non-neutral and non-degenerate. In the equation of motion (6.5a),
from which the Taylor expansions of Z,, and E, follow, there is
the dominant zero order force term, W,,,. The remaining terms
are small compared with this zero-order force. A perturbation
procedure is permissible. Likewise, the fact that it has been
possible to analyze the spherical harmonic structure of the p-
modes is again due to the existence of zero-order, non-neutral p-
eigenvalues. The numerical values of the different components of
the p-eigenvalues and eigenvectors are given in the appendix.

(iii) The g-modes
The different projections of these modes are displayed in the first
columns of Egs. (10.1). The principal terms Z,, and E, are
solutions of the eigenvalue Eq. (6.19a):

(@W,,,+bRy,)Z,,+ibV*Cy,,Z, Ei*—S,,,Z  E,=0.

agg 0Ogg. 999 099999

(6.19a)

The g-modes of the reference fluid are neutral. There is no zero
order term in Eq. (6.19a). Of the two remaining forces, aW,,, and
bR,,,, neither could be considered as the dominant one. In fact,
from the asymptotic behaviors of the diagonal (sk, sk)-elements of
W,,, and R, , one learns that at large values of s and small values
of k the Coriolis term bR, is the dominant force. This is the case
for displacements having small radial and large non-radial dimen-
sions. At small values of s and large values of k the opposite is the
case. That is, displacements of large radial and small nonradial
sizes are predominantly governed by a W, term. In view of these
considerations, a series expansion of Z,, and E, in terms of a
and/or b is not permissible. If one formally carries out such an
expansion, one will soon find out that Eq. (6.19a) is incapable of
providing sufficient information to determine the expansion coef-
ficients. For the same reason it is not possible to decompose Z,,
into its spherical harmonic components, Z%. Again if one at-
tempts at such an analysis, one will end up with an infinite set of
coupled matrix equations for Z%’s. A mathematically oriented
reader can find the criteria for the existence of “Rayleigh-

Schrodinger” perturbation series in Rellich (1969, pp. 74-78).
These criteria are not satisfied by the operator (aW,,,+bR,,,).
To put in physical terms, the g-modes of a fluid, whether stable
or not, are driven by very minute buoyancy forces originating
from temperature fluctuations in the fluid. They are fragile
structures. The forces arising from even a very slow rotation are
capable of smearing out a good portion of the g-spectrum, and
creating a complex motion. The projection Z,; and Z,, of Egs.
(6.19b) and (5.8) are given in terms of Z_ . Therefore, neither their
expansion in terms of a and b will be permissible, nor their
harmonic components will be readily available. In connection
with solutions of Eq. (6.19a) the author finds the recent work of
Berthomieu et al. (1978) gratifying. The authors develop a new

technique to study the g-modes of a rotating fluid which indeed is
different from the conventional Rayleigh-Schrédinger perturbation
scheme.

In spite of these negative remarks regarding quantitative
solutions of the g-modes, certain properties of these solutions can
be obtained from the symmetries vested in Eq. (6.19a). The matrix

W,,, is negative definite, cf. Eq. (9.13b). The matrix R,,, is non-
negative, cf. Eq. (6.21). For a<0, the sum aW,,,+bR,,, will be a

positive definite matrix. Then from Barston (1967a,b) one learns
the following: All eigenfrequencies of Eq. (6.19a) are real, and fall
into two groups of positive and negative values, {0}, s=1,2,...}.
The two sets of the corresponding eigenfunctions {& 1} combined
together are complete in the sense that any g-displacement of the
fluid with arbitrary initial values and initial velocities can be
approximated infinitely closely by appropriate linear combination
of these eigenfunctions. There is also a generalized orthogonality
relation satisfied by the eigenvectors. What is noteworthy, how-
ever, is that the condition a<0 is a sufficient condition for the
stability of the g-modes of a rotating fluid.
If a>0, the sum aWagg+bR0“ will never have a definite sign.
See Paper IV, Sect. V. The eigenvalues of this sum will be either
positive or negative real numbers. An immediate conclusion is
that the presence of R, in Eq. (6.19a) suppresses some, but not all
of the unstable modes of the negative aW,,, matrix. The extent of
suppression is larger, the larger the ratio b/a. What about the role
of Cy,, in Eq. (6.19a)? Suppose &, <0 (if at all) is magnitudewise
the largest negative eigenvalue of the sum aW, +bR, . From
Barston (1967a, Sect. III), one learns the followings: Eq. (6.19a)
will have pairs of complex conjugate eigenvalues, w®=owj tiws,
s=1,2,.... In fact if the matrices are of finite size, the number of
complex pairs will be equal to the number of the negative
eigenvalues of the sum matrix. All complex eigenvalues satisfy the
relation |wf|?< —¢,. That is, the complex eigenvalues of Eq.
(6.192) all lie inside a circle of radius |ey|/? centered at the origin of
the w-plane. One concludes that the effect of C,, is to reduce the
growth rate of an unstable mode of the sum aW,  +bR,,,. The
extent of the reduction is again larger, the larger the ratio b/a.
Combining the remarks made above for the two cases of
positive and negative a leads to the following conclusions: The
necessary and sufficient condition for convective stability (i.e. the
stability of the g-modes) of a rotating fluid is a <0 throughout the
fluid, that is, the Schwarzschild criterion as in the case of non-
rotating fluids.

11. Bibliographical Notes .

The symmetry of the # -operator of Eq. (3.5a) or of the W-matrix
plays a crucial role in establishing the nature of the eigenvalues,
their variational properties, and the subsequent perturbation
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expansions. For a non-rotating fluid this symmetry can be found
in Ledoux and Walraven (1958), and Chandrasekhar (1964).
Clement (1964) has demonstrated the symmetry for rotating
fluids.

Whether or not an eigenvalue is obtainable from a variational
expression has important computational consequences. If the
answer is in the affirmative, then one may use an approximate
eigenfunction to compute a corresponding eigenvalue. While the
error in the eigenfunction is of first order, the error in the
eigenvalue will be of second order only. The real eigenvalues, of a
quadratic eigenvalue problem of the type of Eq. (3.5) are obtain-

able from a variational principle. The eigenfrequencies a)(l/f_; in
our notation) are the roots of a quadratic equation,
wo?+cw+s=0, where w, ¢, and s are some integrals of the
system. The quadratic variational expression for the eigenvalues
of Eq. (3.5) was first derived by Cowling and Newing (1949).
Clement (1964a) obtained the same in a more explicit form. In
both works, the real-value of the eigenvalues was tacitly assumed
but was not mentioned as a condition for the existence of the
variational principle. Barston (1967b), and Lynden-Bell and
Ostriker (1967) pointed out the complex eigenvalues of quadratic
eigenvalue problems are not obtained from a variational principle.

In a series of papers, Barston has presented a thorough study
of quadratic eigenvalue problems. His papers should be noted for
their mathematical rigor and the richness of information. In Sect.
10 some of his conclusions were quoted. Here we further note the
following : In (1976a) Barston has discussed the upper and lower
bounds for the growth rates of unstable modes, and orthogonality
and completeness of the stable modes. In (1967b) and (1968) he
has shown that the stable eigenfrequencies fall into two sequences
of positive and negative values. Each sequence has its own
extremal variational property. He has further shown that a
quadratic eigenvalue problem in the Hilbert space H can be
transformed into an ordinary eigenvalue problem in the product
Hilbert space H x H. In the latter space the eigenfrequencies are
obtained from a linear variational expression of the form w=ifj,
where i and j are some integrals of the system in H x H. In (1971a)
Barston has discussed completeness of the eigenfunctions of a
stable system, and has given the expansion of an arbitrary small
motion of the system in terms of the set of eigenvectors. The set is
the union of two basis sets for the negative and positive sequences
of the eigenfrequencies. Further information and some appli-
cations are given in his (1971b) (1972), (1974), and (1977) papers.
Examples treated by Barston are not from astronomical pro-
blems. This perhaps explains why his works are not noticed in
astronomical literature.

One of the themes of this paper has been the advocation that a
perturbation scheme is permissible only for the p-modes.
Perturbation corrections to the eigenfrequencies up to the order
©, the angular velocity of rotation, and in some case to the order
Q7 exist in the literature. Very little has been done on corrections
to the eigendisplacement vectors. To the best of the author’s
knowledge there is no warning against the inapplicability of such
analyses to the g-modes. Some investigators have restricted their
results to those eigenfrequencies which are larger than Q. The
author finds such restrictions unnecessary in the case of p-modes
and misleading in the case of g-modes. The picture we wish to
draw is the following: a) A p-mode of a rotating system can
always be expanded in terms of Q. The zero-order term in such an
expansion is the quantity pertaining to the non-rotating fluid. If
the the rotation is fast, the remedy is to include terms of high
enough order in the series. Admittedly there must be a radius of

329

convergence for such series, which is not discussed here. b) A g-
mode of a rotating system cannot have a perturbation expansion,
no matter whether the frequency in question is larger or smaller
than Q. Ledoux and Walraven (1958, Sect. 82) have reviewed the
older literature on rotational perturbation of the eigenfrequencies.
Elliassen and Kleinschmidt (1957) have reviewed the literature
pertaining to the terrestrial atmosphere. Clement (1964b) has
treated some aspects of the oscillations of rotating polytropes.
Simon (1969) has presented a more systematic and formal aspect
of the radial oscillations of rotating fluids. Osaki (1974) has
considered the unstable g-modes of rotating fluids in connection
with pulsations of p-Cephei stars. His problem is one of those
cases in which the slow rotation provides the dominant force to
drive the oscillations. Brickhill (1975), Hansen et al. (1977), and
Wolff (1977) have also discussed the g-modes of rotating fluids in
connection with white dwarfs. More extensive reviews of the
current literature may be found in Cox (1976) and in Van Horn
(1979).

Extensive and rigorous works on criteria for perturbation
expansions of ordinary eigenvalue problems exist in the ma-
thematical literature. The author found a book by Rellich (1969)
and a short chapter by Palmer in Hirschfelder, Brown, and
Epstein (1964) quite instructive.
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Appendix : Numerical Results

a) The Matrices

In calculating the S-, C-, and R-matrices the density of the
reference fluid is normalized in such a way that {g,r*dr=1. The
density perturbations, g,, and g,, of Eqg. (8.1b) are constructed
from Chandrasekhar’s (1933) work on rotating polytropes. Thus,

=l o on-
Q0 =0Cc0 7})‘(3@0 +n05'Y,), (A1)

-1
@2 =Cco y—zy— AnOy 1Y, (A2)
where y=5/3,n=3/2, @, is the polytropic variable, and 4,, B, ¥,,
and ¥, are defined by Chandrasekhar. Chandrasekhar’s per-
turbation parameter v is related to our perturbation parameter b
by v=b(y—1)/2y. A rotating fluid, in addition to flattening,
undergoes an isotropic expansion. The term involving B in Eq.
(A.1) accounts for this expansion. Thus, Eq. (A.1) is constructed
on the assumption that the rotating and the non-rotating fluids
have the same total mass rather than the same central density.
The eigenvalues are expressed in units of 4nGg,,/(n+ 1). This
choice of the unit and the normalization of the density of the
reference fluid mentioned above imposes a restriction on the W-
matrices. Thus, the W given in the tables is related to that defined
in the text as follows

4nGo,
u/;able = pVtext/( n+ 10 I QOr4dr) N

(A3)

b) The Eigenvalues and Eigenvectors

The p-eigenvalues and eigenvectors in zero-, b'/2, and b-orders are
calculated for the following combinations of the spherical har-
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monic numbers, (I, m): (0.0), (1.0), (1.1), (2.0), (2.1), and (2.2). For
(3.0), (3.1), (3.2), and (3.3) only the eigenvalues and their per-
turbation expansions are given. In zero-order the eigenvalue
problem is solved by using a Rayleigh-Ritz variational scheme. In
the perturbation orders, where solutions of non-homogenous
matrix Equations are involved, the Q-matrix formalism developed
in the text is employed. Computations are done for one to five
linear variational parameters.

For 1=0, 1, 2, and the corresponding m-values, the 5x5
matrices are given in Tables 1, 3, and 5. The eigenvalues and the
eigenvectors in various variational orders and perturbation orders
are displayed in Tables 2, 4, and 6. For [=3,m=0, 1, 2, 3, only the
eigenvalues in different variational and perturbational orders are
given in Table 7. The tables are self explanatory.

The a-order computations are not attempted in this paper. A
full computational procedure for this purpose, however, is de-
veloped in Paper III. The g-order numerical results for I=1, 2

Table 2 (continued)

with five variational parameters are also given in that paper.

Table 1. The S-, C-, R-, and W-matrices pertaining to the p-modes
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Table 3. The S-, C-, R-, and W-matrices pertaining to the p-modes

Table 2. The p-eigenvalues and eigenvectors of [=0 m=0

0.38850+0 1 =0
0.100CC+1

0.37€€24C Q.1S072+1

0.808C7+4C -0.22420+1

C.42983+4C C.8G9235+1

0.37€3€+40 0.175S€+1 C.t3520+1

of I=1,m=0,1
1 =1
0.5775174941 C.16€E6EEET+1 C.€127S50840 0.298968CE+0 0. 170SE4E3+C
C.166EE6ET+1 0.538S798340 0.2€353E€Z4C C,.15Z€30€54C €,.¢7774515-1
E%;P 0.€127CCCE+4C C,z€3535€2+4C C(.15(70827+0 0.9623363%-1 0.€5850349-1
0.,2989689840 0.1528246740 0,S€Z33€3E-1 0,ES€EE4SC-1 C.47227€46-1
0.170558€3+40 C.€7770¢€15-1 (0.€5ES4349-1 0.4722764€-1 . 2£271611-1
0.0 c.C c.0 2.0
0.0 0.24831C1640 0.13€35EE5+0 0 80195'67 1 C.5C150178-1
11 0.0 C.13835C€5+C C.10771388+40 C.E5305024-1
wm 0.0 0.802855%€7-1 0,7€E€:253=1 0.8956€133-1
0.0 +EC15E17€E-1 .£5305824-1 0,.49568133-1 0.82Z043530-1
1=1 p=0
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Table 3 (continued) Table 4 (continued)
-0.5551552941 =0, €5703€€340 =0, 27€B2€SC+0 -0.11478UES+0 -0.£3383719-1 0.319E64C =C.2€22E4C C.29226+40 0.€3813+C
1n -0.857036€3+40 -0.3794€172+0 -G..‘IE;EI"SHOO ~0.1C€31717+4( -C.€5300€43-1 0.0 0.1C95141 =C.17716+1 -C.13901+2 11
~0.Z76E2€SC+40 -C.162568G0+C ~C.114S13SB+0 ~0,71515238-1 -0, 8€327906-1 . . - . o123
prp 0.1187206540 -0, 1083171740 ~C.T1E1E230-1 ~C. 87067 1€1-1 =00 221641471 0.0 0.7139340 -0.€Z19€+1 (0. 8€55€+2 Zopp
-0.£3303715=1 -0.€53CCER3=1 ~C,8€3279C6-1 =0.32186147-1 =0, 22625750-1 0.0 C.1C0€6€+1 C.1327C+2 -C.2E578+2
«0.2562S53741 =0.127€€Z€241 -0.7S30819140 -0.55078383+40 -0.81022345+0
03050089741 o8 3un eaes0 0, aEI0H78040 0. INEICECIAC 02700 1EHAC 0.0 €.920C3+C C€.2z220741 (C.48530+1 0.9315: 41
Ship . 0. e3304 50000 ~6133631 MEr0 -6.26A21190 ~0.5130776840 -0, 1830208+
-0.85394280+40 -0,3352 40 =0.26% 40 -0. +0 -0, 3094+ -0.° v -
203253980340 -0.2667951140 -0.717417E840 -0, 1BZEEUECHC -0, 15E4ACEIHT g:g’ge"’o g';ggggzg _8:;3;38:2 ggﬂggg:ﬁ -g:ggﬁzg:g
0.0 6.0 0.¢ 0.0 0.¢ 0.0 0.€596640 O0.Z04€3+1 €.17808+42 0.18797+3
cl 0.0 o8 o i e 0.0 0.4796440 =0.E0511+41 ~0.E8Z3942 ~0.2711143
PP 0.0 c.C c.t 0.0 0.0 0.0 0.38082€840 0,72827+42 (.72604+42 0.15601+3
0.0 0.0 0.C 0.0 e.c
0.1308140 I1=1 =0
0.0 [ .0 0.0 0.c
0.0 C.77815243-1 (€.89606703-1 0.31895929-1 0.21577911-1 0.9C823-1
RY 0.0 €.4S606703-1 C€,35723080-1 0.ZRSEETZE-1 C.17SMEESU-1 . ‘=
opp 0.0 C.31€€E€26-1 C.28€6€725-1 0.1854083%-1 0.13950319-1
0.0 0.21577911-1 0.17585€54-1 0,13S5C31¢-1 C.10€7E350=1 C.26005+0
0.0 .0 0. 0.0 [
-0.1782971240 -0.73C€S227-1 -C.382€1405-1 -0.22958847-1 -0.15015025-1 0.1308140 -0.314E5+0

114z "0-1136€22840 ~0.EZE1CEEE-1 ~C.I9SETAIE-1 =0, 16CECEIC-1 ~C.130T€2€3-1
RY:1*2 -c.73CE27%S-1 ~(.3€77€2C5=1 =C.22252678-1 -0.18880521-1 -0.10535511-1 0.52873-1 =0.223C3+¢
OPP  -0.294841208-1 -0.2€433888-1 -0.16743152-1 ~0.11€731€5-1 -0, E4EE3330-2 ecErs .
0.228934C C.CE9Z€E+C
0.1278711041 0.433S78C8-1 -0.206429€2=1 ~0,2257053t=1 ~C,15€7¢€S34-1
0.03397€6CE=1 ~C.F2E278€C+C -C. 2515480340 ~0.152348C34C =0.1C0530814C

11 ceqa - - 0.44930+40 -0.€€91+0
-0.20882S82-1 ~0.2E15800340 ~C.2CECE1CA40 =C.15CS73E74C =0.1115£293+C
Whpp 101225702381 0. 153386034 -0.15GE73E740 -0, 1255076740 -0. 10090047 +0 -0.1010041 0.88236+1
~0.19676938-1 -0, 10053CE1+40 -0, 1115529240 =0.10C900474¢ -0.EE3REISE=1
3 - < - 2
0.33947987-2 0.72572036-2 0.1C7C€167-1 0.13S78€£5-1 (.17127¢C3=1 0.13CE14C -C.819184C -C.2008C+1
1,142 0.102C785C-1 =C.1CE62SBE+0 ~0.1CECISIBH0 -0,858198SE-1 -0, EEET1TE10-1

wa ~0.82658568-2 -0,125229C8+C -0.13732910+4C -o.1252n51<3 ~C.1CE1225€+C +£3728-1 -C.7C8CE~-1 C,Z17S5+C
~0.3726€85€-2 =0.1187ECEC+C ~0.13732285+0 =0.1381117740 =0.12258184+4C - -
0.798€3367-3 -0.98131885=1 =0, 1262650740 =0.129918E74C ~C.1238C123+4C 0.20336+0 0'262"2’0 0'33072”

corars 0.3871C-1 C.ZES03+41 C,3E8G541

I1=1 »=1 0.83002+4C -C,.1288S+1 (.134€1+41

- + [ - c4c+2

-0.ES51E£2041 C,ZE1EZ€2C4C C.5912336E+40 0.5859747240 0.46H401254C C'”E” M 2‘1:?]2;’2 0’29‘2 M

1 0.2615282040 0.SES05CI740 G.E2628Z7+40 0.a8€M0CEs+C C.377205624¢ 0+ 1356E+1 -( €5 +1 C.33€93+2

S;,Pp 0.f91z53cE 40 C.EZESUE2T4C 0.48825C63+40 0.374881704C 0.I19628524C N El
0.5859702240 C.QBENOSE3+0 0.374EE170+0 0.3151682€4C C.235227554C w0 8377240 - =z ~C.4c9L82
0.8688012940 C.377205S240 C,31C6285240 0.2752275540 0.23957C79+0 0.17308140 -0.5377240 -C.2323C47 -C.HZ9A341 bp
-0.2092€432541 =C.T1043SCES 41 0, €47516C140 =0,4497127540 =0, 23894608+0 0.5200€-1 -€,5%27C-1 C.51073-1 0.4240640

1,1+2 -g.eavvvnzuo -C.S219271€40 ~C.27CEHZ0240 -0.ZEZC1E314C ~C.2203(7C7+C 0.2515C+0 0.1501340 0.2899%+41 -0.78247+1 211

Sbvp ~0.521937164C =C.3€1153CE+40 =C.2736S878+0 -0.2178805640 -0.179111844C  _g . q€ -C.2 - bpp
-0,370€428240 0.2 €7640 =0,21€38850+40 ~0.177S€E¢C4C ~C, 1495081440 0'1'"5“0 C.;‘\BE:H 0.16€80+2 °-‘9957*3
~0.282C1€3140 =0.Z17EUCEE+0 =C.177569S5+0 -0.14907S6340 0. 1277338840 0.1883140 0.83243+41 0,1684742 -0, 1127€42
DTN ST S aTng At 08667000 03201 020760071 0,257 1002
-0. +1 -0.3 40 =C.12¢E -C. -1 -C,0382 - - 1 € +1 =0 < -

C‘l,ll,p ~0.6127S5084C ~C.13SE16EE+C ~C, E13S9€EET-1 -0.3381181E-1 -0.2103¢111-1 0'1*213” 0‘;:7" ] C.MOL*E 0'?2103'? 1,1+2
-0.2989685830 -0.73CS4ELZ-1 =0.33€11818-1 -0, 193132€E~1 -C.12351846-1 0.26303+41 0.332€842 O, EE100+42 0.222024: prp
-0.17055R€3+40 =C.4383C138-1 -C,21030111-1 -0,12351846-1 -0.£070z202-2 =0,388C€+41 -C,4630C+2 -C.Z22€47+42 -0.20517+3
0.2280€78C41 C.3IEEEEEEH+0 0.1313122240 0.63115671-1 0,35661821-1 1 o CEn4Q ~-C. 23S -0 & -

1 0.366€66€440 C.7295179C-1 0.ZSASICEC-1 0.152E2MEE-1 C.51021812-2 0.13081+4C -C.439€840 -C.2513241 -0.5291241 -0.8088141

R C.ZSHE3CEC-1 C.12838111-1 0.70224580-2 0.83862227-32

PP 0.63115671-1 0.15283866-1 0.70720580-2 0.355142€1-2 0.Z5836269-2 0.5028%-1 -C.€722€-1 C.117€14C -0.52306-1 0.5377340
0.35€€61031-1 C.S1C31€12-2 0.83862277-2 0.2583026S-2 0. 165738C7-2 0.1561540 -0.1156S+1 =0. 1915741 ~0.€5€C2+41 =0.139114%

0.48E2E4C O0.ET2€C+1 C.21731+42 C.61151+42 0.5814142

~0,211€(87840 ~C,E1EEE1ET-1 -C,31073320-1 -0.145035€€-1 -0.77811334-2 . 31 - - Z - 20ER4T = P <
-0.1910724840 -0.78161656~1 -C.37472888-1 ~0.21ES€38S=1 -0.14C51334-1 0.1171¢41 -0.1011042 -0.7072842 ~0.1295843 -C.720€142

REIZ 001073065340 ~C. EETEREET-1 (. 265012291 -0.16899071-1 -0. 1145£235-1 0.€7€134C 0.1285C+2 O0.E738E42 0.74283+2 0.2227S+Z
OPP  _(l65887€38-1 -0.3296220€-1 ~0.19373635=1 ~0.127SEEET-1 =C.50203716=2

-0.83522372-1 ~C.22€923(7-1 -0.18350379-1 -0.98869625-2 -0.71554497-2 C.L190€+4C -0.1612S41 C,3EEE0471 (.S1862+1 =0.3797 141

0. 1177775641 =0, 3ECERSEGH0 ~C. 1989852040 =0,1232597240 =0, 924148201 0.6372140 0,1806042 -0.2105€42 -C.11989+2 C.18CE2+:
1 -0.389€498640 -0, 4CE€30A47+40 ~0.151427€840 ~0.51C63€2¢-1 -0.1372€€18-1 =0, 1CCT7€+42 -0.5212€+42 -0.Z4C6€+3 C.4C065543 -0.E7965+3
Nppp ~ -0-199SE£20+C -0.151027EE+C ~C.28C27051-1 0.31168742-1 0.£4001157-1 0.2510€+42 0.1813243 0.E3COE+42 -C.2E8114% 0.178CC+b

-0.1232592240 -0.51063825-1 0.31164782=1 0.731051¢E-1 C.ES68CE17-1 A . : s
0.92810820-1 -G, 1272€€18-1 C.50001197-1 0.89680617-1 0.104737176+¢ —O« TBBZE4Z -0,12€7943 -C.ECE97+3 -C.L4517+42 -0.11217€+4

0.27718&15-2 0.€9258£19-2 0.€7415888-2 '0.11410283-1 0.13980139-1 B1 B2 EZ E4 5
0.83387072-2 -0, EB6SESCT=1 ~C.EEE10C1€=1 =0.7CCT1EE3=1 =0, ERES€269-1

V,l,l’,ll,*z ~0.308€3230-2 ~C. 102012384C =C. 1121287040 -0.102261714C -0, EE2BEBE6-1 0.0 I1=1 »=1
-0.300282€63-2 -0,93725312-1 ~0,1121226440 -C.109501€C+C ~C.1C0CETI2+4C
0.64E€1567-3 ~0.€012831€6~1 ~C.1631113340 -0.106074€0+0 -0.10108328+40 0.0
0.0 0.2232540 -
] . 0.0 -0.126981-15
Table 4. The p-eigenvalues and eigenvectors of =1, m=0,1 0.0 c.0
0.0 0.2072040 0.1€S3340
0.0 0.79147-2 0.746237-2
0.0 1 =1 0.0 -C. 1020440 -C.24953-1
0.0 0.15127+0 -0.SCE55-1
.319e18
0.21980+0 0.0 0.20567+40 0.1€316+C C.1€7:14C  EL
0.0 0.99002+0 . .
0.0 0.€7EE€-2 C€.17100-Z 0.57489-2 1n
LZ18EL4C =C.2408E 0.0 -C.£35€3-1 (0.121C14C -0.33328-1
8'01 Eac 3,1c22512 0.0 -0.72822-1 -0, 5534€+C -C.109174C Zopp
°F 0.0 €.225C24C C.8C3974C 0.22159+C
0.0 €.S220540 C.2E75¢47 0.0 C.2CSS5+0 ©0,158534C 0.13932+40 0.1491€+0
0.21984+4C -0,25546+0 C.8809140 0.0 0.71623-2 0.25€58-2 -0.22227-2 0,8176%-2
0.0 O.ESEEE4C -C.€15SS+T 0.0 -0.687C6-1 0.40733=1 =0.125524C -0,3781€-1
0.0 0.173741 0.9191141 0.0 €.3C81€-1 0,117C8+C C.9C489+1 -0.1786€+0
1 0.0 0.19771-2 =0.114CC+1 =C,1673841 0, ESOEE+C
0.0 0.92006+0 0.25870+1 0.S€523+1  Egp 0.0 0.1067140 0.1C315+1 0.86917+C -0.71935+0
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Table 5 (continued)
Table 4 (continued)

n.1112841 I1=1 p=1 -0.7453559940 ~0.3262503440 =0, 1733187040 ~0.104C1CLE+C ~C. €TEE1110-1
1.2 -0.228375204C -C,121323C9+0 -C.728(7334-1 -0,87495777-1 =0.32917331-1

0.c08s:- Rop -0.1039512240 -0.€250€2E€-1 0. 4CT1CEE6=1 -0, 262148551 ~0.2047CST3-1
. zz ~0.E72C€7€2-1 =C.3731€111-1 =0.25€63617-1 -0.18765059-1 =0.14111028-1

~-0.35282577-1 -0.28452€78-1 -0.17741510-1 -0,133413

-1 -C.102247¢€5-1

0.15579+0 0.0 0.0 0.C 0.0 0.c
e ~0.66E51057-1 -0, 32€85CCT-1 ~0.1€501381-1 -0.120920€1-1 -0, E2856701-2
0.1112641 -0.20835941 1,142 ~0.53891102=1 -0.ZEHIZEUE-1 =0, 17RE€339~1 =0, 11€ST€SE=1 ~C.E3C77515-2
Ropp -o.ge:scvu-; -g.igmns-v -C.14256571-1 =0.98S60457-2 ~0,723300€2-2
-0.29020994-1 -0.17156€25-1 ~0.11435831-1 -0.81€9CART-Z ~C.€11 -
0.44871-1 -0,€33C€-1 : seani=z -C.en12€860-2
0.2716€+4C -C. 1331841 -0.1013747641 -0.2526C7C740 -0,10234794+0 =0,55E7155€=1 ~C,2743€6600-1
-0.252€C70740 ~C.2€8CC2524C -0.163S6765+40 -0.103285574C -0, 68ST€234~1
,Vu -0.1023479840 -0.1€39€7TE5+C =0, 1230ECT7+40 ~0.8€6€2473€-1 €51¢
0.32CEE+C -0.519€140 2 B = IR I SRS A S S E e S S S
-0.86280+0 0.35379+1 -0.37438600-1 -0.6897€238-1 -0.€1551948-1 -0, 49597CES-1 -0, 3E5SC€47-1
01112641 ~0.2637241 ~0.705€5+ 1 R R RIEI
,V1,1-z 0.16192506-2 -0, 1137€€1€40 =0. 1291085140 ~0,13537C(S+( -0.1222€354+4C
C.U9€ECE-1 C€.1701640 0.13143+C BPP _glceacE77¢-2 ~0.11127€524C ~C.182CT7S61+0 -0, 1451281340 -0. 1370003740
- -2 =0.,€702 31 - a - -
0.183274C =C.3867S47 C.USE2041 0.717686€9-2 -0, 70341831 -0, 121CE6€1140 0. 13SBSETC4C -0, 136ES2554C
0,15900+40 0.15745+1 -0, 1€29Z+2 -0,3279404440 -0.101292€840 ~C,69C24CE9-1 ~0,33€66752-1 =0.1375€$76-1
1,142 0+ TE2EICEE4C -0, 167226874 =0, 1363790240 01115120240 -0, €E07EE22-1
- - -0.1017626840 ~0, 1521518740 -0, 14€7031€40 -0, 1327U€SE+C ~0. 11UESEQE+C
0.30440+40 -0,1117€+1 C.1CE0Z+1 Vbbp 08020220000 Co1e250E000 0o 1a01572000 <0, 1338366590 0. 11180515+0
-0.333€74C C,€7223+41 -C.1€1404+2 -0.45089235-1 -0, 10SCHS0340 -0.12€5C73840 ~0,126708¢7+4C -0. 119E3138+4¢
-0,11533+41 -0,.70655+1 0.27335+42
1=2 p=1
1
0,11128+41 -0,270€541 -0.E8269+1 -0, 14Z1€6+2 Ebp -0.866C930640 0.22117218-1 0,15CE7780+40 0,1€3€125€4C G.1521TSE+C
1 0.22117216-1 (. 13C2€2C1+4C C.142434SE+0 0.138282E7+4C 0. 121821394¢C
S b ;

- bpp €.15057784+40 0.142034S8+40 0.13C2771140 0,11€20808€4C C.1(6053C34C
0.399€5-1 (.7952€-1 -0,43750+0 0, 2Z1434C 0.163€125€4C  0.1307S267+0 0.11820848+0 0.10527854+C  0.58304334-1
0.4525740 -C.490C7-1 O0.18€0C+2 C.105C7+zZ 211 0.1521979840 0.121821239+0 C.106CS303+40 C.94308332-1 O, EAEACETS~1

- +0 - 2982 “0.3673242 = t342 bpp
0.92260+40 -0,1298242 -0.3673242 -C EEEL342 -0.14238€65641 -0.8282075140 =0.EE20118840 ~0,602C015C+C =C.3(E231124C
0.10210+1 C TE+ C.34C12+1 ¢ 75443
<102 «1367¢€¢+2 C.3 + 1175442 1,142 ~0.730583034C -C.88120(76+4C ~C.3517514S+40 =0.272850594C ~0.22013156+4C
S, -0.4812807840 -0.3420059040 -0, ZE3TSSCE40 ~0,21250082+( =0, 17€E3316+C
0.3349€7+40 -C 162¢C C.2338441 ¢ [ P €.3517518640 ~C.Z€37SEC€+C =C.21C6431840 -0.1743803240 -0.14791006+0
. 740 -C.1162C+1 C. + .19207+1 cC.3sit cC.2€3728tE4C ~C.21C6031040 -0, 3240 -0.14791
-0.1148841 0.0217847 -0.3594242 ~C.4E00143 Zl’l*z -0.2728505940 -0.21250C8240 -0.17828032+40 -0. 1873516 14C =0.127C3607+C
0.2130141 C.2721%+42 C,7CE14+42 C.18100+2 bpp -0.1250000C+1 -0.38259692+40 =-0.1743585740 =0.95S36S€C-1 =C.ES1T(€E1-1
-0,3195641 - c - Z -C. < 11 -0.2829S€S240 ~C.13CTCES340 ~C.E3S579€6-1 ~0.36S816T€-1 ~0.ZIE5EET5-1
0.3195€47 -0.379€0+42 -0,187€242 -C.1€7C742 Copp -0.1743G85740 -0.63SEICEE-1 -0, 3267Z€C1-1 -C.1871572S=1 =C.125€<43E-1

-C.9593€SEC~1 ~C,3ECE167€~1 -C,1$715729-1 -0.1215884E-1 -0,€1751520-2
0.1112841 -0.2717041 -0,S4571+1 -0.1937842 -C.zU72C+42 -0.59170681-1 -0.2365E€75-1 -0, 12S6S43€-1 -0, €175152(-2 -C.E5641275-2

0.83485237840 0.1628:88240 O0.81€€2820~1 O0,475€3155-1 C.3I(4E23CE-1

+£5631-1 C€.25101+40 -0.140134C C.7€CS74C C.LUZ0Z+( 0.1628ZEE24C C.€3ZCICE4-1 0.8S822C77-1 0.32037227-1 0€,22115169-1

=0.175C4+C -C,7C213+47 -C.€3C01+1 -0.83946+42 0.2003€+2 R;p 0.81662820-1 0.89822C77-1 €.3233¢703-1 0,2Zz02E37¢-1 c.1e§53537-1
P 3243 z El 2212842 =C.303454% 0.875£3155-1 (.32€37237-1 C.22838376-1 0.1636505S-1 0,123UU6EH-1
_g:gg;gg:; _g:z::zg:; -g,gégg‘é:; _g';g:.“::s 8:535;;’:5 0.30852208-1 0.2211¢1€9-1 0.12340€ER=1 C.SECEZTUS-Z
0,5760C+1 0,€5717+42 0.2285G6+43 -C. 1235942 ~C.T1€ECE+Z -0.1005157540 -0.35598€60-1 -0, 16€224S9-1 ~C.83€1€CEI-% ~C, 4E2S3UTT~2
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Table 6 (continued)

Table 7. The p-eigenvalues of I=3, m=0, 1, 2, 3
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