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Summary. We study the normal modes of oscillation of a per-
fectly conducting and self-gravitating fluid, pervaded by a force-
free magnetic field. A polytropic structure is assumed for the fluid.
We use a gauged version of the Helmholtz theorem to decom-
pose the lagrangian displacements into an irrotational and a
weighted solenoidal component. We further split the solenoidal
part into poloidal and toroidal components. These components
are identified with p, g and t modes, respectively. The normal
modes of the fluid are determined using a Rayleigh-Ritz varia-
tional technique.

A direct consequence of the presence of the magnetic field is
the appearance of t oscillations with periods of the order of Alfven
crossing times; these are principally hydromagnetic oscillations.
The eigenfrequencies of the ever-present p and g modes are
slightly modified. More importantly, however, the later modes
acquire a toroidal component, absent in non-magnetized fluids.
The p, g and t eigenvalues and eigenvectors are computed for
different polytropes.

Key words: stars: oscillation of — stars: normal modes: magnetized
fluids — stellar interiors

1. Introduction

Possible effects of magnetic fields on the structure and stability
of stars were first analyzed by Chandrasekhar and Fermi (1953).
Since then many aspects of the problem has been investigated
by different authors. The interaction of toroidal fields with meri-
dional motions and dynamo effects was studied in a number of
papers by Mestel (see Lust, 1965 and the references therein).
Polytropic stars in the presence of toroidal magnetic fields were
considered by Anand and Kushwaha (1962). They used the virial
tensor method of Chandrasekhar (1960, 1961) to discuss rotating
and magnetized configurations. They also obtained an approx-
imate formula for the frequency of radial pulsation of the fluid
assuming that the magnetic field and rotation of the fluid do not
alter the spherical symmetry. Anand (1969) studied fluids with
toroidal magnetic fields. He also used the virial tensor method
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and tabulated some frequencies of radial pulsations and toroidal
modes. Miketinac (1973a,b) used Stoeckly’s method (1965) to
solve for the equilibrium structure of polytropic fluids. He con-
sidered the case of weak and strong toroidal fields. His weak field
frequencies were in good agreement with those of Anand (1969).
Discrepancies developed rapidly, however, with increasing field
intensity, and he concluded that first-order perturbation theory
is not a suitable method in highly non-linear problems. Kovetz
(1966) extended the variational formulation pioneered by Ledoux
and Walraven (1958) and expounded upon by Chandrasekhar
(1964), to include magnetic fields. Kovetz’ paper presents a care-
ful analysis of the boundary conditions in the presence of fields
of a quite general nature. Sood and Trehan (1972) used the varia-
tional method to discuss the radial and non-radial modes of
oscillation of a gaseous polytrope pervaded by a toroidal field.
They showed that the frequencies of the acoustic and Kelvin
modes increased in the presence of toroidal fields. They con-
cluded that the distortion of the spherical symmetry due to the
magnetic field played a significant role in altering the frequencies.
Sobouti (1977) considered a convectively neutral fluid immersed
in a force-free field. He showed that the magnetic field removed
the degeneracy of the neutral convective motions and the neutral
toroidal displacements. Two sequences of modes developed, both
with periods of the order of Alfven crossing times. The nature
of the displacement fields for the two sequences were, however,
markedly different. One was mainly of toroidal nature and the
other mainly of poloidal type.

Here we generalize this last work to convectively non-neutral
fluids. We use a gauged version of Helmholtz’ theorem to decom-
pose the displacement fields into vectors derived from a scalar
potential and two vector potentials. Each component in such
decomposition is closely associated with the familiar p, g and
toroidal modes of the fluid, and they are driven mainly by pres-
sure, buoyancy and magnetic forces, respectively. This greatly
simplifies the task of mode classification and calculation and
gives a better understanding of the role of each force term in
the equations of motion. For computational purposes we use a
variational technique. Details of accommodating Helmholtz’ de-
composition in Rayleigh-Ritz variational calculations are taken
from Sobouti (1977a, 1981).

In Sect. 2, we present ideal linearized hydromagnetic equa-
tions. In Sects. 3 and 4, we introduce the potentials for the dis-
placement field and give the appropriate trial functions. In Sect.
5, we outline the Rayleigh-Ritz variational technique and cast the
equations of motion into algebraic matrix forms. In Sect. 6, we
discuss the computational procedure and results.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989A%26A...217..127N

rIOBOAGA T SZ17 TI27N!

128

2. Linearized equations of motion

Let &(r,t) denote a small lagrangian displacement of a fluid ele-
ment from its equilibrium position. The linearized equations of
motion can be written as follows

¢

Pz =", 1)

where

WE=VSP+5pVU + pP(5U)

—%[(VxéB)xB+(VxB)><5B], @)
Sp=—pV-E—¢& Vp, )
6P = —yPV-E—&-VP, @
SB=V x (£ x B), ®
VX(3U) = +4nGdp, ©)

_ o

The Eulerian variation of a quantity is denoted by 5. Multi-
plying Eq. (1) by &* and integrating over the volume initially
occupied by the fluid, one has
@ [dv&* - pE = [dv&* - WE

=[dv&* V6P + [dvdp&*-VU
+ [ dv p&*-V(6U)

1
—Efdvé*{(V x B) x B]

1
_Efdug*-[(VxB)xéB], ®

where £ is assumed to have an exponential time dependence, ¢'“".

Integrating by parts and letting the surface integrals vanish
(for details of boundary conditions and vanishing of the surface
integrals see Kovetz 1966, and Hasan and sobouti 1987), we
obtain

w—w?’s=0 or a)2=?, ©)
where
s=[dvp&*-&>0, (10

and
w = w(1) + w(2) + w(3) + w(4) + w(5) (11)
1 dpP
w(1)=fdv;%6p*6p20, (12)
W) = [doaPV g7 -¢; a=y_ L (13)
pdp
w3) = —G [[dvdv $p*x)dp(r)r —r| ' <0, (14)
1

w(4)=EfdvéB*-6B20, (15)
w(5) = ;—nlfdvéB- [&* x (F x B)]. (16)

All integrals in Eqs. (10)—(15) are symmetric under the
exchange of £ and &*. Equation (16) is also symmetric as will be
shown shortly. This property is a reflection of the symmetry of
the operator of Eq. (1) and guarantees the existence of an eigen-
value problem with real w?. From Eq. (10) s is positive definite
(p > 0). This enables one to write Eq. (9) in its alternative form
o?* = w/s. From Eq. (12), w(l) is positive (dP/dp > 0) and con-
tributes positively to w2 It vanishes only for p = 0, which is
possible if p€ is a solenoidal vector field. From Eq. (13), w(2)
is positive, zero or negative, depending on whether the fluid is
convectively stable (¢ > 0), neutral (« = 0), or unstable (« < 0).
From Eq. (14), w(3), is negative, or zero if 6p = 0 (Sobouti 1984),
since, using Poisson’s equation, it can be written as

w(3) = —(1/4nG)|w?| [|V 6U[?dv.

From Eq. (15), w(4) is positive, or zero if 6B = 0. We have not
been able to establish a definite sign for w(5). Numerical results,
show both negative and positive values.

Equation (1) or its equivalent variational form (9) constitute
a generalized eigenvalue problem.

At this stage, we assume a force-free magnetic field, essentially
to keep the equilibrium configuration spherically symmetric and
to avoid complications. Thus

V x B=fB, 17)

where f is a constant. An axisymmetric solution of this equation
consisting of toroidal and poloidal components can be con-
structed as follows (Ferraro and Plumpton, 1966).

1 1/d 1 ay,0
B=B, ["("ﬂf 'znmo). (; + ;) 2, 20,
ay,o
2.0 2| a9
where
T 1/2
Z,,(X) = <E> Jn+ 1/2(X), (19)

is a spherical Bessel function and Y,(0) is a spherical harmonic.
Confinement of the magnetic field to the interior of the fluid
requires vanishing of the normal component at surface. Thus

Jus 1/2([3R) =0, (20)

where R is the surface radius. Equation (20) gives SR as a zero
of the Bessel function. Only the dimensionless combination SR
will appear in the manipulations of the magnetic field. Hereafter,
we will use the first-order Bessel function, n = 1, and its first
zero, BR = 4.493409.
Substituting Eq. (17) in Eq. (16) gives
_ —B * _ —B * .

w(5)——4;—fdvéB (éxB)——“;—fdv(é x B)- 0B. 1)
The second equality follows from an integration by parts and
shows the symmetry of w(5) under the exchange of ¢ and &*.

3. Decomposition of lagrangian displacements

This section is a short review from Sobouti (1981, 1986). All pos-
sible displacement fields of a fluid, {(r,t), constitute a Hilbert
space H in which the inner product is (¢,{') = j' pC* - {'dv = finite.
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By a gauged version of Helmholtz' theorem, { can be written as
the sum of three fields, one derived from a scalar potential, one
from a toroidal vector potential and the third from a poloidal
vector potential. Thus

(=0 +¢,+¢, 22
where

==V, (23)
{,= % VXV x(fr,), (24)
§=V x (), (25)

and y,(r), x,(r) and y,(r) are three scalar fields. As will become
clear, they are closely associated with p, g and the toroidal nature
of the displacement in question, respectively. The merit of the
decomposition (22) is the mutual orthogonality of the three com-
ponents. Thus,

IPC: ) dev = 0 lfa ;é ﬂ’ a, ﬂ = p3g9t~ (26)

Equation (26), in turn divides the Hilbert space H into three
orthogonal subspaces H,, H, and H,, whose members are, {,,
¢, and {,, respectively.

4. Trial functions for scalar potentials

The scalar potentials in Egs. (23)—(25) can be expanded in terms
of spherical harmonics. Thus,

) = 3 AOYFO.0% 2= p. g, @7)
m

where yi(r) is a function of r only. For the expansion of x(r)
in 0 < r < R, one needs a complete set. By the Stone-Weierstrass
theorem, the set {r*,s=0,1,...} has this property. However,
Hurley et al. (1966) show that r&,/r' = finite at the center. This
will place a limitation on the power index s, as shown below.

4.1. Trial functions for p modes

We choose

xé(r) = 2 =01,2,....

k+2i @8)

Equations (23) and (28) yield for axially symmetric displacements

29

r
. i 2 KE+D)
V{y= {xp" o = (r "}Y(B)

The radial component of this vector behaves as described by
Hurley et al. (1966). Equation (3) gives

. (2 o\ . k(k+ 1)
ki __ 11ki - ki kz
op} —p{xp +<r+~p>xp T Y.(0),

where primes indicate derivatives with respect to the argument.

g = —{k 2wy, L x’” Y4(0), 0}

(30)

€2y

129

Equations (5) and (18) give

] Z
oBY = {%(Z’ + r> * (sin 0Y}, + 2 cos 0Y,)

2Z 2
- 3X:u(sm 0Y, + k(k + 1)cos QYk)’F
(Z'xy +rZyy = Zyy)cos0 Y, + Br %

(Z’ + E) sin 0Y, + l[(Z' + Z) ki — (/32 - —) ZZ]Y,,
r B r

z z
—[(z' + r) ki) Zx""']sin 0%, + 2 [kik + DX,

+ (cotgf — cos 0)Y§‘]} , (32)
where Z = Z(fr) and Y, = Y,(0).
4.2. Trial functions for g modes
We assume the following expression for y¥'
240 = AL 5012, (33)

k(k + 1)

Note that the p introduced in Eq. (33) produces finite displace-
ments at the surface. See Eq. (24). Using Egs. (33) and (24) gives

o= {5(5;3 Ve (’; " m—’“) Y, } (34)
poghi= (V x AM) = p M 21Y,(0). (35)
By Egs. (3) and (5)

Spki =0 (36)
5B = 'k—(lc—fT)ﬁ—Z'( z Z) pi(cos 0, + Y)

ki

[3 — [sm 0Y;, + k(k + 1)cos 8Y,],

1 Z
[(k(k S o) (247)
VA
~gre (5 (7 -3) ) mo

., Z zp
L2 2 |:Z X;,k, 1 X;kz(zl JE— p)]COSHY;‘,
) p roe

ki P

1 . z
70 ki ki r__ :
KD [(pxg + Py ) 2tk (Z r>]sm9Yk
zZ ..
~ 1 [(cotgf — cos )Y, + k(k + 1)Y,]. (37

4.3. Trial functions for t modes
The following is assumed
i) = pr*t?  i=0,1,.... (38)
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One obtains

. 1.
= (0.0, 404), )
Sp =0, (40)
V-gi=o0, (41)
SBF = L {0,0,2Y; cos 0| xMZ + x| Z' — z
t ﬁrz e k t t r
ki 1 4 :
+ k(k+ Dy Z' + " Y, sinf. (42)

There are no pressure or buoyant forces associated with ¢ mo-
tions, for ép, = V - {, = 0. This ensures the neutrality of toroidal
motions in the non-magnetic case.

5. Matrix representation in H

We give a brief description of the procedure used to construct
solutions of Eq. (9). For details, the reader may consult Sobouti
(1977a, b and 1986). Let & be an eigenvector of Eq. (1) or its
equivalent variational form Eq. (9). The subscript 4 specifies the
p, g, or t type of mode. The superscript a = (I, j) denotes a pair
of wave numbers, [ in the first position for the tangential wave
number, and j in the second position for the radial wave number.
This composite superscript will be chosen from the first letters
of the alphabet. Let {{%} be a basis for H, where {. are given in
Egs. (29), (34), (39) and (o, b) have the same meaning as (4, a).
Expanding & in terms of {¢2}, we have
&= bZ 0Z35, (43)
where Z% are constants of expansion and will be treated as
variational parameters. Substituting Eq. (43) in Eq. (9) and using
the variational procedure to minimize the eigenvalues, gives the
following matrix equation (Sobouti, 1977a)

WZ = SZE, (44)

where E is a diagonal matrix, whose elements are the eigenvalues
&5 and Z = [Z%] is the matrix of the variational constants. Using
Egs. (10)—(16) the elements of S and W are

S = fdvpls - &8, 45)
W = W(l) + Wh(2) + WS3) + W5h(4) + Wi(5), (46)
where
1dp
W) = [dv— = 6p2" 5p° 4
Aa’() f vpdp pl po‘r ( 7)
W) = [dvaPV -5V, 48)
W(3) = —G [dvdv 5p () Spr)|e —r| 1, (49)
1 .
W) = — f dvBY - 5B (50)
4n
and
Wb (5) = _L f dv B - (¢ x B). (51)
Ac! 477.' y a

The angular integrations in Egs. (45)—(51) can be carried out
analytically. These are given in appendices 1 and 2. Integrations

over r should be done numerically. Once W and S are known
Eq. (44) can be solved for E and Z in different approximations.
Equation (44) is a set of homogeneous algebraic equations, in
contrast to the differential equation (1).

5.1. Partitioning according to displacement types

The basic vectors {£3|¢5|¢s} are partitioned according to their
g, p and t type and their spherical harmonic numbers which
are indicated as superscripts. This entails a corresponding parti-
tioning of all matrices. Thus,

M, M, M,
M=|M,, M,, M|,
Mtg Mtp M,

(52)

where the generic M denotes any of the matrices E, Z, W and
S. Each block in M is a matrix in its own right. For example
M,, has the following structure

M, =[Mg]s  ij=12..., (53)

where each element is generated by a pair of vectors ¢}’ and {}).
The matrices S, W, Z and E have many vanishing blocks, each
of which reflects a physical characteristic of the problem, as
discussed below. Orthogonality of j, Cg and { renders S
block-diagonal:

S, 0 0O
S=|0 s, 0 (54)
0 0 S,

A typical element of a block, Sk say, is obtained by introducing
the pair ¢ and {¥ into Eq. (45) and integrating over the volume
of the fluid. Explicit expressions are given in Appendix A.
Recalling that W is the sum of five terms, it is convenient to
consider each term separately. From Eq. (47), W(1) has only the
pp block for only the p displacements are responsible for changes
in 6p. Thus

[0 0o o0

W) =0 W,(1) 0 (55)
K 0 0

Elements are given in Eq. (B.1).

There is no contribution to W(2) from the ¢ motions

[ WD) W,2) 0

W(2) = | WD Wyl 0 (56)

0 0 0

Elements are given in Eqgs. (B.2)—(B.5). We note that each term
in W(2) is proportional to a = y — (p dP/P dp). For a polytrope

1
of index n, « =y — [ 1 + — |. A convectively neutral fluid is de-
n

fined as one in which o = 0 and, therefore W(2) = 0.
W(3) is the self gravitation of the perturbation and has the
same structure as W(1), and for the same reason:

0 0 0
WE) =0 W,3) 0 (57)
0 0 0

Elements are given in Egs. (B.6)—(B.7).
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W(4) and W(5) are the magnetic terms. Since all displace-
ments of g, p and ¢ type give rise to magnetic forces, they are
fuller matrices. Thus,
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level. It will be employed in all its details in the subsequent
numerical work.

Harmonic partitioning is introduced in Eq. (44) and for brevity
g, p, t partitioning is momentarily suppressed. Thus

- _
99(4) W/fll’(4) Wg‘(4) wi-21-2 | pi-21 0 N[ zi-21-2 | zi-21 0o |
W@) = | W,(4) W, 4) W4 (58)
_VI/tg(4) [/‘/;p(4) VV;[(4)~ Wl,l—2 Wl,l Wl.l+2 Zl,l—2 Zl,l Zl,l+2
and 0 Wit2d | pitzi+2 0 Zit2l | Zi+21+2
- - [ Ql-2,1-2 N[ 7t-21-2 1-2,1 7
Wo5) Wo(S)  Wyl5) s 0 0 Z Z 0
W(5) = ng(S) pr(5) Wpt(s) . (59) — 0 Skt 0 Zhi=2 AL ZLi+2
LWe(5) W,(5 0
L 0 0 |s*2+2 ]| o Zital | girziea ]
W,(5) in Eq. (59) is zero. This is because of the orthogonality of CE-21-2| 0 ]
SBfand ({? x B)in Eq. (51). Elements of W(4) and W(5) are given
in Appendix C. x 0 EY 0 (63)
Combining Egs. (55)—(59), we obtain the following expression
for the block form of W: - 0 |E'"F2F2 ]
Wog(2) + Wog4) + W(5) - Wyp(2) + Wop(4) + Wy, (5) Wyd4) + Wy(5)
W =| Wi + Wigd) + Wig(5) Wy1) + Wp2) + Wy3) + Wigld) + W,(5) Wild) + WylS)|  (60)

Wiy(8) + W, (5) W (4) + W,(5)

W.(4)

Several conclusions can be drawn here, without delving into
detailed numerical calculations.

1) The presence of gt and pt blocks in Eq. (60) shows coup-
ling of the g, p, and ¢ motions. The g and p modes of a mag-
netic star will contain toroidal components in their displacement
vectors and vice versa.

2) However, since the gt and pt block are small (they are
proportional to the magnetic energy density) the coupling will
remain small. This enables one to calculate a perturbation cor-
rection on g and p modes due to magnetic forces and on magnetic
modes due to buoyant and pressure forces.

3) The modes of a non-magnetic star have definite spherical
harmonic parity . See §,; in Egs. (A.1)—(B.6). A magnetic field
couples harmonics [ and [ + 2. See J, ., in Egs. (c.1)—(c.43).

The matrix of eigenvalues is by definition diagonal:

[E, 0 0O
E=|0 E, 0], (61)
[0 0 E

where each block is in turn a diagonal matrix. The Z-matrix has
no vanishing blocks, for W is so:

’—Z!IG ng th

Z=\2,y Z,, Z,|. (62)
Zw Z., Z,

L=tg

tp

5.2. Partitioning according to harmonic numbers

As noted earlier the magnetic field couples spherical harmonic
numbers [ and [ + 2. Thus, [ is no longer a ‘good’ mode specifier
in magnetic stars. For weak fields, however, one could still speak
of modes belonging to I, meaning that the dominant component
of the mode in question comes from that I. To disentangle this
complication and arrive at a working procedure for numerical
computations, we partition the matrices once more on the basis
of harmonic numbers [ — 2, I, | + 2. We emphasize that this is
not an academic question and will not be abandoned at a formal

Off-diagonal blocks in Eq. (63) are small, for they are induced
by the magnetic field. This is the property that will enable us to
assign approximate mode numbers ! to each mode.

6. Computational procedure and results

To resolve the question of units, the following dimensional
analysis is adopted:

s = p.R%s, (642)
w(1) + w(2) + W(3) = Waonmag = PR Wronmag (64b)
W) + W(S) = Winag = (BER®/87)Wpnag (640)

where p_ and p_ are the central density and pressure, respectively,
R is the physical radius of the star, B, is the amplitude of the
magnetic field in Eq. (18). Barred quantities are dimensionless
integrals. Equations (9) and (64) now give

652 = wZ/wJZ = (Wnonmag + ).Wmag)/»?, (65)
w} = 4nGp /(n + 1)y for polytropes, (66)
A = B}/4np, (67)

where w; is the Jeans frequency and is used as the unit of w, #,
is the first zero of Lane-Emden’s equation, and n is the polytropic
index. The parameter A is an indication of the ratio of the mag-
netic energy density to the internal energy density of the gas
at the center. Equation (65) is cast in matrix form and solved
by standard algorithms of matrix diagonalization for different
values of 4 and n.

The eigenvalues of polytropes 1 and 2 for / =1 and 2 and
several magnetic field intensities are presented in table 1-4. The
p eigenvalues for the non magnetic case (4 = 0) are the same as
those of Sobouti (1977b). Magnetic fields increase them slightly.
The percentage change is proportional to A and increases slightly
with mode order. A study of the eigenvectors shows that the
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lagrangian displacements remain dominantly irrotational. One
may conclude that the p-modes are robust formations and retain
their accoustic nature in the presence of magnetic fields or, for
that matter, any other perturbative force.

Unlike the p, the g spectrum undergoes drastic changes. We
recall that the field-free polytrope 1 is convectively unstable and
has negative g eigenvalues. Magnetic fields of order 4 = 0.05-
0.10 are capable of suppressing all unstable modes but g, and
g,. Their suppression requires stronger fields. The suppressed
modes are replaced by a new sequence of stable oscillations with
radically different characteristics. Their eigenvalues increase with
the radial mode number, contrary to non magnetic g frequencies,
which decrease (in obsolute value). See Fig. 1. The eigendisplace-
ment vectors, however, remain mainly solenoidal poloidal (in fact
this is the only reason that makes us classify them as g modes).
Their driving force is dominantly magnetic.

Polytrope 2 has stable g modes with eigenvalues decreasing
with mode number. Here too, magnetic fields replace them with
an increasing sequence of eigenvalues. Actually, for weak fields,
the first few modes keep their identity up to a point. In such
circumstances, one encounters a sequence of modes with eigen-
values decreasing to a minimum and then growing. The in-
creasing branch becomes asymptotically proportional to 1. See
Fig. 2.

One might say that the higher order non magnetic g modes,
stable or not, are fragile structures. They are produced by minute
buoyancy forces and are liable to destruction by perturbative
forces, such as the magnetic ones in the present problem.

The t modes are mainly standing hydromagnetic waves.
Their lagrangian displacements are toroidal fields with small
irrotational and solenoidal poloidal components. These small
components diminish in higher-order modes. We have inferred
this by examining the eigendisplacement vectors, but it is also
reflected in the t eigenvalues of Tables 1-4, where the higher
order frequencies are almost proportional to the magnetic field
(eigenvalues proportional to A).

The non-magnetic polytrope 3/2 with y = 5/3 is convectively
neutral with zero g frequencies and, of course, zero toroidal
frequencies. In the presence of small magnetic fields, a sequence

-1

0 2 T T B i T
Wg
-3
0L e i
A a7
— _ -
5 - '
10 /Y e .
/ Ve
Ve
/ -
0 T
/¥
// —— x=10"
s ’, e — 2z05x10"
107 /7 X=0 =
1/
/
a0 A// B
/
f
_10.1 1 B | Mod? numbers
0 1 2 3 4 5 6

Fig. 1. The g eigenvalues in unit of w? versus radial mode number,
polytropic index, n = 1, harmonic number, [ = 1

€03,
27 L

24 -

Mode In umbers

0 |
0 1 3 4 5 6

Fig. 2. The g eigenvalues in unit of w} versus radial mode number,
polytropic index, n = 2, harmonic number, | = 1

of modes with frequencies proportional to the magnetic field
develops. The structure of their eigenvectors, however, is complex
and it is difficult to assign a g or t type to them. The p modes
behave normally and are only perturbed by the magnetic field.
A more extensive analysis of this convectively neutral case will
be presented elsewhere.

From Tables 1-4, the t eigenvalues for 4 = 107° fall in the
range of (1071 —107%) w?. As an order of magnitude estimate,
let us take the oscillating mass to be the convective layer of a
solar type star with a total mass of 0.002 M and a radial ex-
tension (0.65-0.75) Rg. The Jeans period for this layer is about
Py =2n/w; ~10 hrs and the magnetic field corresponding to
A = 1079 is of the order of 10 kilo gauss at the inner boundary
of the zone. The corresponding periods of toroidal oscillations
fall in the range of P, =~ 100—1 yrs. Are these values of any
relevance to the sunspot cycle? Aside from any details and mech-
anism of spot formation, one sees a periodicity of 11 or 22 years.
Is it not possible to identify this basic periodicity with the global
oscillations of a large scale magnetic field hidden (toroidally)
inside the sun and to attribute spots to small scale and transient
surfacing of the deeper-lying oscillations?

Appendix
A. Matrix elements of S

Equations (45) after integration over angles yields

. RU[KK+1) o i

St = ke + 13y | ;[ i ) 2 + X;“X;J] dr (A1)
- R [kEk+1D 0 i

Spp = 0w fo P[ R x,,”] r2dr (A2)
ilj R 1 i lj

S = ke + 1) 8y | el (A3)

The superscripts i and j are used to indicate the order of rows
and columns of the matrices. As indicated before the off-diagonal
blocks are zero.
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Table 1. The p, g and ¢ eigenvalues of polytropes. The unit is w? of Eq. (64), A is the ratio of 133
magnetic energy to internal energy, Eq. (66), polytropic index, n = 1, harmonic number [ = 1
A Radial mode number
1 2 3 4 5
p modes:
0. 0. 1.155 3.623 7.131 11.723
1076 0. 1.155 3.624 7.134 11.741
0.05 0.017 1.187 3.726 7.382 12.220
0.1 0.132 1.217 3.818 7.608 12.632
g modes:
0. —3.40610"2 —1.7231072 —6.8211072 —4.29910°3 —2.99610"3
10°¢ —3.4061072 —1.2721072 —6.8061072 —4.2591073 —2.83910°3
0.05 —1.65910"2 —2.14710°6 3.8531073 24681074 8.38310° 4
0.1 —2.2681073 1.9621075 1.535107* 7.628 10~ 4 2.50110°3
t modes:
0. 0. 0. 0. 0. 0.
10-¢ 59821078 1.76610~8 47151078 1.13810°7 27341077
0.05 2.64010°2 3.0441072 44781072 6.47810°2 1.40710°!
0.1 41021072 44631072 6479102 9.2841072 °  2839107!

Table 2. Same as Table 1. n=1,1=2

A Radial mode numbers
1 2 3 4 5
p modes:
0. 0.303 1.886 4.764 8.723 13.829
10-¢ 0.303 1.886 4.766 8.735 13.879
0.05 0.321 1.942 4939 9.100 14.546
g modes:
0. —0.0614 —0.0280 —0.0163 —0.0107 —0.0077
1076 —0.0614 —0.0280 —0.0163 —0.0106 —0.0073
0.05 —0.343 0.0591 0.0984 0.111 0.321
t modes:
0. 0. 0. 0. 0. 0.
10¢ 6.4551071° 3.42410°° 1.08310°8 3.09910°8 82121078
0.05 1.09710°3 1.37510°% 52151074 15261073 4086103

Table 3. Same as Table 1. n=2,1=1

A Radial mode numbers
1 2 3 4 5 6
p modes:
0. 0. 0.698 1.647 2.957 4.604 6.569
1074 0. 0.690 1.649 2.954 2.555 6.525
1073 0. 6.955 1.685 3.084 4.845 6.924
g modes:
0. 2.5721072 1.18710°2 6.8301073 44471073 3.0801073 20831073

1074 2.5821072 12241072 6.2421073 34271073 26701073 17971073
1073 26771072 12251072 71281073 5.8531073 75191073 9928103

t modes:
0. 0. 0. 0. 0. 0. 0.
1074 9.23210°1° 9.90210°° 5770108 2.59610°7 9.8931077 3.284107°
1073 5.25910°° 84571078 5.5791077 2.581107¢ 9.87410°¢ 3.28010°°
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Table 4. Same as Table . n=2,1=2

A Radial modes numbers

1 2 3 4 5

p modes:
0. 0.273 1.012 2.103 3.517 5221
1076 0.273 1.013 2.103 3.517 5.222
1073 0.275 1.030 2.186 3.765 5.671

g modes:
0. 0.0494 0.0260 0.0161 0.0109 0.0078
10°¢ 0.0494 0.0261 0.0178 0.0136 0.0082
1073 0.0605 0.0503 0.0356 0.0202 0.0299

t modes:
0. 0. 0. 0. 0. 0.
10°¢ 248710711 1.863107 10 9.46110°1° 4.04310°° 15191078
1073 1.74910°8 1.728 1077 9.3631077 403910°¢ 1.51910°3

B. Matrix elements of W-non-magnetic terms

Non-zero blocks of the matrices W*(m), m = 1, 2, 3, have the
following elements.

wo-s g+ o)

+ 2PV - Bl + dnGpyiy

ym (x;’"x;f‘)] }

—P (B.1)

2

. P
W) = Kk + 1)%0y f: 7 %xa Ydr (B2)
W) = 8 aP(V - CE)V - Cirdr (B.3)
WiU(2) = W) (B4)
W) = 6, ﬁ) K aP(V - W - LY)r2dr (B.5)
W) = —4nGoy [, V&Y Ydr (B.6)
where,
’ R P , l

Yy = prigy — (1 + VP r1< = —xj,’> dr. (B.7)

C. Matrix elements of W-magnetic terms

The expressions for w(4) and w(5) and considerably more in-
volved than those already encountered. In partioning according
to spherical harmonic numbers, there are diagonal as well as off-
diagonal blocks with k = | and I + 2. Angular integrals are nu-
merous and complicated. These are denoted by the auxiliary
symbols I, — Is. Other symbols, a — h, denote a host of r-
dependent functions.

- 1
nrkl 11(4) {11 fOR h’;'h;lrzdr +1, J:) ( kzhll 4+ o gy > dr
1
+ 1, fo (qg ¥ + ki u) dr

1
+ I4f < 2hkigh + o m"’qf,’) dr

+1 f ﬂ—z‘z"m m”dr+16f 4gki ”dr} (C1)
Whilid) = { ) vsdr + 1, [ ( o+ g L pim ,,) dr

+1 ) (d’“q;f +— fhin '1) dr

+14f (bkigh + ckiglydr

+1s [ ; Smfldr + 1 [ 4a';igj,fdr} (C2)
Wl;;tj(4) = ijyzz(4) (C3)
Whii(d) = {13 f Pe’;'b”dr} (C4)
WEL(4) = Whii4) (C.5)

T U s wias
Whlid) = 0 { Jo = by + 1, [ (72 akil + d';:c;,f> dr

+1, ) (72 bhig + a;;ag) dr Iy [ cicar

4 . .
+ I f: = a’;’a’,{dr}
Whlig) = —Q {I 3 f — ekibldr + 1, f — e"'xi’) (C7)
W:c;,l](4) = Wllg,h(4) (CS)
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s .
Wiid) = {Iz [s gz treabar
R R 1,
+1 || oy Db+ 1, fs Fs A

R4
+ I ﬁ) Wa{“aﬁ’dr} (C.9)

o P R i 1 1j
WES) = —Q {1 o —rBzriear+ 1 [ payglar
r 1 T R Z i lj
+1, fo B HNYdr + 1, fo 7 dq ‘Wdr} (C.10)
2
s R z 1kiplj RZ rkiy1rlj
Weh(s) = -0 {11 [s = w1, |, PR

+ Kk + I, [ % 2irtdr

RBz .
+ k(k + I, fo P c,,’dr} (C.11)
WL(S) = WH(S) (C.12)
L0 RZ . R, Z\ .
W) =5 A0 Jo & tvliar+ 1, [¥( 2 +

S A R4Z .
+14fOr—2<z +7> ’;a£’+15f0r—2¢:affdr} (C.13)

WHLI(5) = Wi (5) (C19
. R Z .o R 11ki, 1j
Wh(S) = —Q{I o 5 W — 1o [ @ ar
+ 1 [ dar + 1, ] /?ZrC’;ixﬁfdr} (€19

o RZ . ][ Z\
WhL(5) = _% {12 fs = abbdr + 1 ] (z -7> Xibdr

AN 4Z i i
+L [y (Z’ + 7) Kapdr + 1 [* T X'{,'af’dr} (C.19)

WiH(5) = Witi(s) (C.17)
WEL(5) = (C.18)
where,
_ 3B V2k + 121 + 1) (C.19)
2= 5 ‘
VA . Z .
ki _ ok~ 7 )k C.20
‘ap k(k+1)ﬂrxp +ﬂ<Z +r>x,, (C.20)
i ", 2 /ki__z_z i Cc21
bp_ﬁ<Z+r>xp > 7 (a1
i 1 1 4 ki i
)
| VA . .
d¥ = 3 (z’ + 7) (G + rpe (C.23)
4 Z\ i Z
di=r(z + =z — ke + 1) “ (C.24)

135
i ’ Z 11ki rZ ki hk(k + 1) i
f’; = <Z + 7)[27)(1," + <2 + 7))(‘," f}(’;]
1/5 .
+-(3- ﬂ2r2> P (C25)
. A (5
hl;t — Xgn |:<_ _ ﬂ2r2> ZZ _ r2 <Z/ + E) Z/]
4 r
+kk + 1) <Z' + %) (C.26)
(2
=7 <; whi \P;') (c27)
D\ Kk 1)
bhi = 5 <z + 7) phi 4 o VA (C.28)
. 1 VA . .
cb = ~ [(z + 7) P _ 2z¢§l] (C29)
dki VA ki ’ 4 ki
e =29+ Z T b, (C.30)
ki ki d Z ki ki
o =29 +(2 = Z )W — ik + 1) (C31)
ki 1 ’ Z ki 1 ! 2,2 ki

. VA .
B = [G — ﬁ2r2>r—2 -Z'(Z + %)] YR+ k(k + 1) (Z’ + %)

(C.33)
. . Z\ ..
a = gk 4 (z' - 7) 2 (C.34)
. zZ\ .
b4 = k(k + 1) (z' n 7) 27 (C35)
Pk = Y¥i/p (C.36)
W = k(e + 1ytp (C37)
I, = [% sin®0 PP, sin 0.0 (C.38)
I, = [§ sin 20 P,P} sin 0 d§ (C.39)
I = [% sin0 P,P, sin 0d0 (C.40)
I, = [§ sin 260 PP, sin 0 d§ (C41)
I5 = [§ cos?0 P,P,sin 6 d0 (C42)
I = [§ cos®0 PP, sind0, (C.43)

where, P, = P|(cos6) is the Legendre function. Agular integrals
of Egs. (B.42)—(B.47) restrict harmonic couplings to k — [ =0,
+2.
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