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It is suggested to formulate a nonequilibrium ensemble theory by maximizing a time- 

integrated entropy constrained by Liouville’s equation. This leads to distribution functions of 

the form f = Z-’ exp(-g/kT), where g(p, (I, t) is a solution of Liouville’s equation. A further 

requirement that the entropy should be an additive functional of the integrals of Liouville’s 

equation, limits the choice of g to linear superpositions of the nonlinearly independent 

integrals of motion. Time-dependent and time-independent integrals may participate in this 

superposition. 

1. Introduction 

It is a first principle of statistical mechanics that the ensemble distribution 

functions satisfy Liouville’s equation, dfldt = 0. This is a purely dynamical 

requirement and is a statement of the fact that the system points in an en- 

semble do not interact. Liouville’s equation, however, is a first order differen- 

tial equation in time and the phase space coordinates, (p, q). If f(p, q, t) 

is a solution of the equation, so is any arbitrary but once differentiable F(f). 

Considering the fact that initial preparations of ensembles can at most specify 

the values of few macroscopic variables, how does nature choose from such an 

enormous forage of arbitrariness ? Equilibrium statistical mechanics resolves 

the dilemma by introducing a second postulate, the principle of equal prob- 

ability for all microstates of isolated systems. This is a statistical assumption 

and falls outside the realm of mechanics. On the other hand, nonequilibrium 

statistical mechanics has not come out with an explicit and wholesome statisti- 

cal assumption of its own; and perhaps that is why it has not grown much 

beyond its infancy. The limited success of nonequilibrium statistical mechanics 
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in explaining linear transport phenomena, hydrodynamic approximations, etc., 

should, in most cases, be credited to the assumptions of local thermodynamic 

equilibrium and quasistatic processes, and therefore, to equilbrium statistical 

mechanics. 

Balescu [l] highlights the point as follows: “We may say that equilibrium 

statistical mechanics is mainly statistical, whereas the nonequilibrium statistical 

mechanics is mainly mechanical”. This need not be so. It is possible to derive 

nonequilbrium distribution functions from an entropy principle and Liouville’s 

equation as a constraint. Zubarev [2-61 has actually pioneered in this direction. 

In implementing dynamics, however, he has used the three conservation laws 

of mass, momentum and energy, rather than the full Liouville equation. 

In section 2 we review a variational derivation of the equilibrium distribution 

functions as a reminder. In section 3 we summarize some features of Liouville’s 

equation and the eigenvalue problem associated with it for later reference. In 

section 4 we propose an action integral for nonequilibrium ensembles, and 

derive and solve the Euler-Lagrange equation for the distribution functions. 

The action is the time integral of a Gibbs entropy constrained by Liouville’s 

equation and the normalization integral for the distribution functions. In 

section 5 we study the thermodynamics emerging from these considerations. In 

section 6 we treat an example from simple harmonic potentials as an illustra- 

tion and in section 7 we give concluding remarks. 

2. A background review 

Equilibrium ensemble theories are, traditionally, developed from the Gibbs- 

Tolman principle of equal probability for the microstates of isolated systems. It 

is known [7], however, that the same results can be obtained by maximizing a 

Gibbs entropy, 

r=dpdq, 

subject to the constraints imposed on the ensemble. 

Example 1. Microcanonical distributions: One maximizes S subject to the 

normalization constraint 

In a variational procedure one considers I = J h dT, h(f) = -kf In f + crf, 

where (Y is a Lagrange multiplier. One varies f by Sf( p, q) 4 f, calculates the 
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first order variations, 61 = J (dhldf) Sf dZY One requires 61 to vanish for all Sf 

and obtains 

dh 
df=-klnf+cu-k=O. 

This has the solution f = constant, that is equal probability for all states (p, q) 

of the system. 

Example 2. Canonical distributions: One maximizes S subject to the normali- 
zation condition and a constant mean energy, 

I EfdT=(E). (4) 

Again one multiplies the constraints (2) and (4) by the constants (Y and (-p), 
respectively, and adds to eq. (1) to obtain an Z-integral. One varies f and lets 
6Z=O. ThusZ=JhdT, h=kf In f +af-/3fE, and 

dhldf=-klnf-k+a-PE=O. (5) 

Eq. (5) has the solution 

f = z-1 e-PE ) 

It should be noted that the derivation presented above by no means relies on 
entropy increase in actual thermodynamic processes nor implies it. In fact the 
question here is not how a distribution function evolves in time, but how 
nature chooses an appropriate static distribution from a vast number of such 
solutions. The answer is, through a minimum principle (for minus S), a stunt 
that works in most branches of physics. 

3. Liouville’s equation 

Let f( p, q, t) be a time dependent distribution function, where (p, q) is the 
collection of all canonical momenta and coordinates of the system. f satisfies 
Liouville’s equation 

df/dt=f +[f,H]=O, (7) 

where H is the Hamiltonian. As noted earlier Liouville’s equation is a first 
order differential equation. If f is a solution then any once differentiable F(f) 
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a solution, for dF/dt = (dF/df)(df/dt) = 0. The derivative dF/df’ should 

exist at all (p, q, t) for the argument to hold. 

The eigensolutions of eq. (7) will be needed. For this purpose let :? be the 

Hilbert space of the square integrable complex valued functions of phase 

coordinates. The inner product in SY is defined as (s, f) = ] s*f‘dT = finite, 

g, f E 2. We also define Liouville’s operator, ,Y, as ZZf= -i[f, H]. It can 

easily be verified by integrations by parts that 2 is Hermitian in 2, and an 

eigenvalue equation may be set up: 

%(P? 4) = W,k(P? 4) ’ w, real , (f,? f,) = 4,. (8) 

With each f, there is associated a time-dependence exp(-iw,t). This eigenvalue 

problem is discussed extensively by Prigogine [8] and Sobouti [9, lo]. Here, we 

summarize some salient features. 

That the eigenvalues, w, are real and the eigenfunctions, i, are orthogonal in 

X follows from the Hermiticity of Y. 

If w, # 0. 

(1) J is complex, and J S, dT = 0, 

(2) If (w,,f,) is an eigensolution so are (-w,,fT) and ((n - m)w,,fT”lf’y), n, 

m = integers, 

(3) If (w,, f;) and (u,> 4) are eigensolutions so is (w, + w,, fj;). 

(4) Any fTf, is a constant of motion. 

If w, = 0, 

(5) &, can be chosen real and ] h, dT # 0. 

Because of property (1) above no (ji, o, # 0) nor any linear combinations of 

them can give an all positive real probability distribution. However, linear 

superpositions of fo’s and f;‘s and their complex conjugates can give acceptable 

distribution functions. 

All eigenvalues, whether zero or not, are infinitely degenerate. This is 

evident from the properties (2) and (5). The spectrum of w is. in general, 

continuous, discrete or both. An example of an all discrete spectrum is that 

corresponding to the simple harmonic potential, 4 = 4 C kiqf. In this case one 

may also prove the completeness of the set of the eigenfunctions and arrange 

them in an orthonormal set [lo]. Completeness and orthogonality of the 

eigenset will be assumed for all potentials. This enables one to use the eigenset 

as a basis for X and by so doing decompose it into the direct product of 

subspaces, X, (8 %$@9 . . . , where X, is spanned by the eigenvector S, and is 

orthogonal to other Xi’s. This feature will be used in discussing the additivity 

of the entropy. 
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4. A variational formulation of nonequilibrium problem 

The concepts and procedures presented below are closely parallel to those of 
the conventional Lagrangian formulations of mechanics and fields. In a time 
interval (tl, t2) define a time integrated entropy as follows: 

12 I2 

Y= Sdt=-k 
i il 

flnfdrdt. (9) 
fl f, I’ 

This time integration is a mathematical provision only. It will turn out that for 
conservative and isolated systems that we are dealing with, S is constant. And 
Y = (t2 - t,)S becomes the same concept and with similar implications as the 
conventional entropy. 

Postulate 1. Evolution of the system from t, to t, will take place through that 
distribution function which renders Y maximum, satisfies Liouville’s equation, 
and remains normalized for all times. 

In other words, to find a statistical and mechanical distribution function one 
should maximize eq. (9) subject to the constraints of eqs. (7) and (2). Eq. (7) 
is a point constraint to hold for all (p, q, t). One multiplies it by an 
undetermined Lagrange multiplier A( p, q, t) and integrates over the phase 
volume and time, 

f2 

ii 
A( p, q, t) (dfldt) dT dt = 0 . (loa) 

11 l- 

Eq. (2) is also a point constraint as far as the time is concerned. One multiplies 
it by another Lagrange multiplier a(t) and integrates over time, 

12 

il 
a(t)(f-l/r)dTdt=O. (lob) 

11 I- 

One now adds eqs. (9), (10a) and (lob) to form an I-integral analogous to the 
action integrals of mechanics or of other branches of physics, 

12 

I= 

II 
h(f, i af&, afh, P, q,O dr dt, W> 

‘1 I- 

where 

h = -kf In f + a(t) f + h(p, q, t) dfldt . (lib) 
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The remaining steps are standard. (1) One lets f undergo a change Sf( p, q, t) 

which vanishes at t,, t2 and at the boundary of the phase space. The 

corresponding derivatives of f change by s(df/at) = d(8f) /at, etc. (2) One 

substitutes these variations in eqs. (11) and calculates i3h and 61 to the first 

order in SJ In doing so one eliminates the time and space derivatives of Sf by 

integrations by parts and letting the integrated terms equal zero by virtue of 

the boundary restrictions on Sf, and arrives at the following Euler-Lagrange 

equation: 

ah a ah a ah i) ah --. --. 
af i)t a(af/at) a4 a(af/N) dp d(df/dp) =” 

Substituting eq. (lib) in (12) gives 

(12) 

-klnf+(a-k)-{);+[,i,H]}=O. (13) 

For brevity let 

(144 

a(t) - k = k In z(t) , ( 14b) 

where T is a constant introduced for later convenience. Eq. (13) now has the 

following solution: 

To determine z and G one applies the constraints. Substituting f in eq. (7) 

gives 

G + [G, H] = -kTi/z = -kTX(t) , ( 16) 

where X(t) stands for i/z and is a function of time only. Formal solutions of 

eq. (16) are 

I 

2 = Z exp 
iI J 

xdt , (17a) 

G=g(p,q,t)-kT ,ydt, 
I (17b) 

where 2 is a constant and g is a solution of the homogeneous Liouville 
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equation 

dgldt=g+[g,H]=O. (18) 

Substituting eq. (17) in (15) gives 

f= Z-l e-@r. (19) 

The terms containing x drop out and Z emerges as a time-independent 
partition function, 

Z = 
I 

e-W- dr = e-FIkT , 
(204 

F=-kTlnZ. (20b) 

That Z is a constant can be double checked easily, 

g = (kT)-’ 1 z e-glkT dr = 0, cw 

where we have used Liouville’s theorem that an element dT of phase space 
volume is invariant in time. The constancy of Z means that one may go back to 
eq. (lob) and begin the argument with a constant multiplier, CY. The x-terms of 
eqs. (16) and (17) then disappear, z gets replaced with Z and G with g. There 
remains to ascertain that the Lagrange multiplier h(p, q, t) of eq. (14a) exists; 
for the variational derivation of eq. (19) requires its existence. This is simple. 
Eq. (14a) with G = g and g a solution of Liouville’s equation has 

The crucial question of what to choose for the exponent function, 
discussed below. 

the solution 

(21) 

g(p, 4, t) is 

Additivity of entropy. Equilibrium entropies are extensive variables. The same 
will be expected from the nonequilibrium ones. The concept, however, re- 
quires generalization. For the sake of argument let us consider the canonical 
ensemble for a system, consisting of two non-interacting components 1 and 2. 
Thus, f= Z-’ exp[-(E, + E2) lkT]. One observes the following. (a) The total 
phase space and the total Hilbert space of the phase space functions are the 
direct products of two subspaces. Thus, I( p, q) = lY1(pl, ql) C3’r2(p2, q2) and 

x(I) = x,(I,) 8 xz(r,). (b) x1 and X2 are orthogonal in the sense of eq. (8). 
(c) E, and E2 are in X1 and X2, respectively, and are orthogonal. In fact they 
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are eigenfunctions of Liouville’s equation corresponding to a zero eigenvalue. 

(d) The exponent in the distribution function is a linear superposition of these 

integrals. Under these circumstances the partition function gets factorized into 

2 = Z,Z, and the additivity of entropy follows. In nonequilibrium problems we 

will retain as much of the properties (a)-(d) as possible. 

Postulate 2. The entropy of a system is a real valued additive functional of the 

independent integrals of Liouville’s equation. 

In systems composed of non-interacting components the postulate is no more 

than the additivity requirement of Gibbs. In general, however, the integrals 

may be constants of motions, such as the energy and angular momentum, or 

time dependent such as the eigenfunctions of eq. (8). The number of (non- 

linearly) independent integrals is 2N, the dimensionality of the phase space. 

They will be independent if their Jacobian determinant is non-zero. The 

additivity postulate severely limits the choice of the exponent function. Thus, 

in terms of the eigenfunction of cq. (8) one has 

g(p, 4, t> = ,T, [P,f’Tf, + ff,f, ev--iw,f) + cf:fT exp(iq)l 1 (22) 

where j3; and cr, are 2N constants. Eqs. (19) and (22) contain equilibrium 

ensembles as special cases. Setting g = constant or E, both legitimate eigenso- 

lutions of Liouville’s equation and special cases of eq. (22), gives the mi- 

crocanonical or canonical distributions. In section 5 we will return to constants 

(p, a) and discuss a method of obtaining them. In passing, however, let us 

note that a canonical ensemble employs only one constant, p. the coefficient of 

fTf, = E. 
The nonequilibrium distributions and their technique of derivation presented 

here have similarities to and differences with those of Zubarev [6]. He 

maximizes an entropy constrained by the Fourier transforms of the conserva- 

tion laws of energy, momentum, and the particle numbers. Since the conserva- 

tion of these fundamental quantities is a consequence of Liouville’s equation, 

Zubarev’s approach does indeed take into account a good deal of the dynamics 

of the problem, but not all of it. Even so, the closed form of the conservation 

equations is, in general, based on certain simplifying assumptions. In Zubarev’s 

formulation one assumes the existence of Bogoliubov’s hierarchy of relaxation 

times of different orders of magnitude. MacLennan’s [ll, 121 distributions are 

identical to those of Zubarev. His approach, however, is to consider systems in 

contact with an external bath and assume an entropy flow into the system 

characterized by a temperature field, a mass flow, etc. 
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5. Thermodynamics considerations 

5,1. Global invariants 

Let h be a solution of Liouville’s equation, dhldt = 0. The integral $ h dris 
time invariant. Proof: 

$1hdl‘=j-$dl.=O; QED, (23) 

where we have used Liouville’s theorem that a phase space volume, dT, is 
constant in time. By eq. (23) the following are invariants of the system: 

z = e-&‘lkT dr = e-FIkT , 
(24) 

13( T In Z) 
dT=k aT =-yT, (25) 

(~f:)=z-‘IRfT~-~‘~~dr=-kT~. 
I 

(304 
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Similarly 

(f,q)=-kT(&&)InZ. 
I I 

(3Ob) 

Eqs. (30) are expressions of the various macroscopic constraints on the 

ensemble in question. A knowledge of these constraints will enable one to 

calculate the constants p and (Y and thereby construct the distribution function 

of eqs. (22) and (19). This point of view bypasses the convention of solving an 

initial value problem for a time varying system. Instead it places emphasis on 

the macroscopic conditions imposed on the ensemble. 

5.2. Densities in configuration space 

Among the local variables of mechanical nature are the following: 

P-Jfdp. mass density , 

Pu=J-fpdp, mass flux density , 

P= f(J- fp’dp-Pu’), pressure , 

cl=jfHdp=$P+;Pu’+P+, energy density , 

4, potential energy 

These macroscopic variables are solutions of equations of continuity, of Euler’s 

hydrodynamics and of energy flow in the conventional hierarchical scheme. 

This is because f is a solution of Liouville’s equation. More interesting, 

however, is the entropy density, pv = -k J” f In f dp. Substituting for f’ from 

eq. (19) and after simple manipulations one obtains 

+ TWn P) . 
C?T 

=-$;+kT*, 
l3T (31) 

It is remarkable that u has retained its thermodynamic character of being a 

function of p and T only. It is an implicit function of space-time through p. In 

general, the entropy density does not satisfy a macroscopic equation of 

continuity. Simple caculations show the following: 

a( PU) 7+V.(p,,,=-+‘. (32) 

The motion of an element is not strictly adiabatic. At any fixed locality there 

are entropy fluctuations not caused by flow terms. However, the time averages 
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of eq. (32) over different periods, Ti = 27r/w,, are either exactly or nearly 
equal to zero. Exact cancellations will occur if W,‘S are commensurate and the 
system is exactly periodic. One should, however, bear in mind that the least 
common multiple of T;‘s (if there exists one) are of Pointcare time scales. By 
way of illustration, a simple example is given in the next section. 

6. Example 

Let the physical system be a single one dimensional harmonic oscillator (a 
Debye mode in a crystal lattice, say). Liouville’s equation for the Hamiltonian 
H= i(p’+ ~‘4’) is 

f= [H, f] = -p $ + w2q $ . (33) 

A complete set of the eigensolutions of eq. (33) are given by Sobouti [lo]: 

f,, = E”(p + iwq)” with eigenvalues nw , (344 

f,Tt, = E”( p - iwq)” with eigenvalues -nw , Wb) 

where E = i(p’ + w2q2), and m, n = non-negative integers. The set is com- 
plete. It is orthogonal with respect to n but not to m. 

Let the initial value of the exponent function be 

g(p, q,O)=E+ POP =ho + 1P”(f”1 +f;l)) (35) 

where p,, is a constant. The second equality is an expansion of this initial value 
in terms of the eigenfunctions of eq. (34). At any later time one has 

g(p, 4, t) =flo + ~pO(hl e-‘“’ +fgl e’“‘) 

= i( p2 + w2q2) + pop cos ot + 02qOq sin ot , (364 

f( p, q, t) = Z-’ epgikT , (36b) 

where wqo = po, and by straightforward integration 

Z = 2nkTK’ exp(w*qi/2kT). (36~) 

The ensemble so designed reduces to a canonical one in the limit of p. = 
wqO = 0. 
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6.1. Global thermodynamics of eqs. (36) 

The partition function of eq. (36~) has the dimension py, for J’ is the 

probability per unit volume of phase space. It is preferable to make it 

dimensionless by using (l>/p,,, c//y,,) instead of (11. 4). With this provision Z is 

replaced by 

2 = 2TrkT(wq,,) ’ cxp(w+$2kT) = e ~’ ” . (37a) 

where the second equality is a definition for F. The total entropy and energy 

are 

S = dFIBT = k + k In(2rkT/w’qf,) . (37b) 

U = kT + ;w’q,?, = F + TS + wq,,p(, (37c) 

The following relations may also be verified: 

(37d) 

(37e) 

The relations between z. S, U, T, F, and C’ are the same as those of the 

conventional equilibrium thermodynamics. In particular. T may be interpreted 

as the constant global temperature of the ensemble. Similarly. F and c‘ may be 

identified with the free energy and the heat capacity. respectively. The explicit 

values of the global variables. of eqs. (37) arc the thermodynamic values of the 

one dimensional harmonic oscillator except for the term wLqi. Even this term 

has precedence in equilibrium theory. if one treats the oscillator as a quantum 

mechanical one. A quantum oscillator has a zero point energy Aiiw an d 

occupies a phase volume hl> LQ = 2~rfi. On replacing $w’q,‘, in the energy cq. 

(37~) by $hw and wq,‘, = w/?,,q,, in the entropy eq. (37b) by 2~h, one recovers 

exactly the energy and entropy of the one dimensional quantum oscillator in 

the high temperature limit. See Morse [ 131 for the latter values. 

6.2. Local thermodynamics of’ eqs. (36) 

The word local is used to indicate densities in the configuration space. In the 

notation of section 5.2 one has 

p 
s 

f dp = o(2rkT)“’ exp[-w”(q + q,, sin ot)‘/2kT] (384 
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pv= fpdp=-pwq,cosot, 
I 

v=-OqOCOSWt, (38’~) 

U= fEdp=;p[kT+w2(q2+q:,coswt)], 
I 

P= fp2dp=pvZ=kTp. 
I (384 

These local variables are exact and closed solutions of the macroscopic 
conservation laws of mass, momentum and energy. Here, the energy equation 
takes the following form: 

(39) 

Interpreting u + P as the enthalpy density, this is identical with the convention- 
al flux defined on the basis of thermodynamic considerations and without 
recourse to statistical mechanics. See Landau and Lifshitz [14]. The entropy 
density is 

pa = -kp[ln p - 4 In(2nkTlw’qi) - i] . (40) 

Eq. (32) reduces to 

; (pa) + V. (puv) = -2kV. Euwz(q ;k”;: ‘ln . (41) 

7. Concluding remarks 

It is proposed to consider the time integrated entropy as an “action” for time 
varying ensembles. The formulation of nonequilibrium statistical mechanics 
then becomes a Lagrangian formalism, common to most branches of physics. 
Dynamics is accounted for by using Liouville’s equation as a constraint in 
extremizing the action integral. A clear distinction should be made between 
this maximization of entropy and its increase in actual irreversible processes in 
the course of time. Actually, for pedagogical reasons irreversibility is left out in 
the present paper. This is done by using the time reversible Liouville equation. 
Irreversibility and along with it the time increase of the entropy and transport 
phenomena could be incorporated into the formalism in a number of ways: by 
introducing nonconservative terms in Liouville’s equation, by replacing it by 
alternatives of Fokker-Planck or master equation type, by letting the system in 
contact with external reservoirs, by coarse-graining the distributions in time or 
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in space, etc. The quantum version of the formalism is easily obtainable. In 

fact, when applied to systems with a finite number of states (an Ising model of 

a spin chain, say), the problem is easier to cope with than the classical systems 

with a continuum of states. These aspects will be presented elsewhere. 
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