
Vtlfasin A~ronomy,  Vol. 31, pp . .425--429,  1988 
0083-6656/88 SO.Off+ .50 

Copyright © 1988 Science Press & 
Pergamon Journals Ltd. 

THE NORNAL MODES OF OSCILLATIONS OF FLUIDS IN THE 
PRESENCE OF MAGNETIC FIELDS 

Y. Sobouti S. Nasiri 
Physics Dept. and Biruni Observatory, Shiraz Univ., Iran 

The possible effect of a magnetic field on the structure and 

stability of stars was first analyzed be Chandrasekhar and Fermi 

(1953). Since then many aspects of the problem have been investigated 

by different authors. Interaction of toroidal fields with meridional 

motions and dynamo effects was studied in a number of papers by 

Mestel (L~st 1965 and the references therein ). Kovetz (1966) 

extended the variational formulation pioneered by Ledoux and 

Walraven (1958) and Chandrasekhar (1964), to include magnetized 

fluids. Kovetz's paper presents a careful analysis of the boundary 

conditions in the presence of magnetic fields of quite a general 

nature. Sobouti ( 1977c) Considered a convectively neutral fluid 

immersed in a force-free field. He showed that the magnetic field 

removed the degeneracy of the neutral convective motions and the 

neutral toroidal displacements. TWo sequences of modes developed. One 

mainly of toroidal nature and the other of poloidal, both with 

periods of the order of Alfven crossing times. Here we generalize 

the last work to convectively non-neutral fluids. 

We assume a prefectly conducting and self-gravitating fluid, 

prevaded by a force-free magnetic field (Ferraro and Plumpton, 1966). 

A polytropic structure is assumed for the fluid. 

Let ~ (r,t) denote a small Lagrangian displacement of a fluid 

element ~rom its equilibrium position. The linearized equations of 

motion can be written as follows: 

P 32~; =-FE (I) 
at2 

where 

F~ = V(6p)-dpV U - pV(6U) - ~ - I ( ? x l  6B)xB+(~xB)x6B I 
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(2) 
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6p = - pV . Ej - Ej 

6P = -y  P V. C - 

6B = V x(~ x B ) 

V 2 (6U) = -4~ G 6p 

Vp 

VP 

(3) 

(4) 

(5) 

(6) 

In equations (1) - (6) , 6 denotes the Eulerian variation of a quan- 

tity, y is the ratio of specific heats, U is the potenial due to 

self-gravity, and the other symboles have their usual meanings. On 

multiplying equation (I) by ~*, integrating over the volume initially 

occupied by the fluid, we get 

W - ~2S = 0 or w 2 = 
S 

where 

S = I dv p~*. ~ > 0 

w = w(1) + w(2) + w(3) + w(4) + w(5) 

W(1) = /dv _I __dP 6p* 6p 
P dp 

W(2) = I d v  ~p V . ~* V.~ ; ~ = y -  _ 

W(3) = - G / / d v d v ' 6 p * ( r ) 6 p ( r ' ) ] r - r ' l  - I  

~J~ f dv 6B*. 6B W(4) 

W(5) = - . .  _ ].~'~'- fdv6B?(~xB),  

(7) 

P dp 
p ~- 

(8) 

(9) 

(10) 

(11) 

(12) 

(~3) 

(~4) 

iw t 
and ~ is assumed to have exponential time dependence, e All 

the integrals in equation (8)-(4) are symmetric under the exchange 

of ~ and ~ This property is a reflection of the symmetry of the 

F operator of equation (1) and guarantees the existance of an 

eigenvalue problem with real m 2(Sobouti, 1977a) We use a gauged 

version of Helmholtz's theorem (Sobouti, ]98]; 1986) to decompose 

the displacement field, ~ , into vectors derived from a scalar 

potential and two vector potentials. Each component in such a 
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decomposition happens to be closely associated with the familiar p , 

g and toroidal modes of the fluid and greatly simplifies the task 

of mode classification and calculation. Further using the Rayleigh- 

Ritz variational technique we cast equation (l) into algebraic 

matrix form which is suitable for computational purposes. A direct 

consequence of the presence of the magnetic field is the modifica- 

tion of eigenfrequencies and eigenfuction of ever-present p-and g- 

modes. More importantly, however, the later modes acquire a toroidal 

component, which is absent in non-magnetized fluids. The effect of 

the magnetic field on p modes, as shown in Fig. l, is to increase 

the p eigenfrequencies. However, the p character of the modes is 

not destroyed. The stability of g modes in the presence of a mag- 

netic field is shown in Fig.2. We see that the g-spectrum is des- 

troyed by the magnetic field. 

In these figures % = yV2/V 2 , in which V is the ~ifven speed 
a s a 

given by V = B/~ 470 and V is the sound speed given by V = 
a c' s s 

respectively denote the pressure and YPc / Pc where, Pc and Pc 

density at the center of the fluid. This dimensionless parameter 

stands for the strength of the magnetic field. 

Eigenvalues and eigenfunctions for different polytropic index, 

n, are computed and some of these are given in Table I, 2 and 3. 
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Figure l .  Variation of the eigenfrequency w 2 with mode order, i, 

for p modes in units of 4 n GO /n+], assuming n=].0 and 
C 

y =5/3. The solid and dashed lines correspond to the 

fluid, respectively. non-magnetized and magnetized 
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Figure 2. Frequency dependence of g-modes with i, for a convec- 
tively unstable flu~( ~ <0), assuming n=1.0 and ~=5/3. 
The solid line corresponds to B=0 and the dashed lines 
correspond to two different magnetic field strengths. 

Table ] .  The frequency ~2 for p modes with different % , assuming 
n=l.0 and y=5/3. 

I 

~ Pl J P2 

• 0 0 '1.15;9 

i0 "6:2.1473x10"711.15~$ 

0 .Sx lo ' l l .6898x lO "2 1.1866 

io "1 1.3184xlO "1 1.217S 

I 
P3 P; 

3.6235 7.130~ 

3.6239 7.1341 
! 

3.7260 I 7.3gl8 

3.8183 7.6O78 

P5 P6 P7 

1.1723x10 i 1.7619~101 2.$243x10 I 

1.17~1x101 1.7(~7x10 i 2.5467x10 I 

1.2220x101 2.0128x101 4.'3616x10 I 

1.2632x101 2.0128x101 4.3616x101 
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Table 2. The frequency ~0 2 for g modes with different 
nE|.0 and ~= 5/3. 

, assuming 

0 

10"6 

i 

0.SxtO ° 

i0 " l  

gl 

-3.~063x10 "2 

g2 

-I.2773xi0 "2 

-I.2724xJ0 "2 

g)  

-6.8212x10 "3 -~.2954xlO'3 

-4.259|x10 "3 

-2.gSSgxlO ") 

I 

I ++ 
-I.8616x10 "3 

g7 

I ~'761|x10" 2 

-I .k87~10 "J 

.3.kO56xlO "2 -6.80~9x10 "3 -2.8393x10 "3 -I.8335x10 "3 -I.2982x10 "3 

-i,6586x10 "2 -2.1466x10 -6 3.8~32x10 "S 2.4680x10 "4 8.3826x10 "~ 2.3201xi0 °3 5.5631x10 "3 

-2.Sk31xlO "3 1.9616x10 "5 1.53~6x10 °~ 5.285~x10 "4 1.6762x10 "3 1.1291x10 "2 

Table 3. The frequency ~2 for t modes with different %, 
assuming n-|.~ and y-5/3. 

1 

0 

10"6 

I 0.5xlO" I 

i0 °1 

I I 
t |  c 2 J t 3 t~ t5 c 6 t7 

i 

0 0 0 0 0 0 0 

5.9817x10 "8 i.7663x|0 "8 4.7146x10 "8: 1.1377x10 °7 2.73~5x10 "~ 5.6513xl0 "7 1.1833~10 -6 

2 I 
2.61oMxlO "2 3.0~k3xlO "2 k.i1782xlO" 6.1o755x10 "2 | .40~xlO "1 3.3755x10 "1 1.92Q5 

i~.1023xlO "2 Iol~632xlO "2 6.1o755x10 "3 $.2838x10 °2 2.8351x10 "! 6.767ilx10 °1 3.8459 


