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Allowing for virtual paths in phase space permits an extension of Hamilton’s principle of
least action, of lagrangians and of hamiltonians to phase space. A subsequent canonical
quantization, then, provides a framework for quantum statistical mechanics. The clas-
sical statistical mechanics and the conventional quantum mechanics emerge as special
case of this formalism. Von Neumann’s density matrix may be inferred from it. Wigner’s
functions and their evolution equation may also be obtained by a unitary transformation.

1. Introduction

The hamiltonian formalism of classical dynamics treats the coordinates, ¢, and mo-
menta, p, on an equal basis. When it comes to quantization procedure, however,
one either chooses a coordinate or momentum representation and ends up with state
functions either in ¢ or in p space. The equal status of ¢ and p is lost. It is possible
to keep the symmetry between canonical coordinates and momenta in the process
of quantization and, at once, arrive at state functions in a phase space representa-
tion. In his pioneering work(1932), Wigner! uses conventional quantum mechanics
as a bridge to the phase space problem. The characteristic function method of
Moyal,? Hillary et al.,> Mehta® and others, also depart from the same tenet. See also
Agarwal and Wolf,® Han et al.,® Kim and Wigner,” Jannussis et al. ® and references
therein. The present paper begins from a somewhat different level of abstraction
and aims directly at quantum mechanics in phase space. Ertended lagrangians and
hamiltonians in phase space are introduced in Sec. 2. The idea behind the ex-
tension is the virtual paths in phase space as opposed to those in configuration
space. A quantization rule based on these extended entities is proposed in Sec. 3.
This, in turn, leads to state functions in phase space and to an evolution equation
most suited for quantum statistical mechanics. Two limiting cases are elaborated in
Sec. 4. In the limit of zero Planck constant one recovers the distribution functions
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of classical statistical mechanics, satisfying Liouville’s equation. In the limit of
pure states one arrives at the conventional quantum mechanics. Von Neumann’s
density matrix is derived in Sec. 5. The logic behind it, however, is different. In
particular, no need arises to postulate ensembles explicitly. Wigner’s functions and
equation are obtained by a canonical transformation on those of this paper. This
is demonstrated in Sec. 6.

2. Review of Hamiltonian Dynamics and Generalization

Let £%(q, ¢) be a lagrangian, where ¢ = {q;} is the collection of the generalized
coordinates specifying a system. A trajectory of the system in ¢ space is obtained
by solving the Euler-Lagrange equations for ¢;(t),

55— a—=0. §))

The derivative 8L£9/8¢; calculated on an actual trajectory, that is, on a solution
of Eq. (1), is the momentum conjugate to ¢;. The same derivative calculated on a
virtual orbit, not a solution of Eq. (1), exists. It may not, however, be interpreted
as a canonical momentum. Let H(p, q¢) be the hamiltonian. It is related to ¢
through the Legendre transformation,

oLt N _ 0L .
i1 (5e0) =i - 0w @

For a given £, Eq. (2) is an algebraic equation for H. One may, however, take
a different point of view. For a given functional form of H(p, q), Eq. (2) may be
considered as a differential equation for £?. Its non unique solutions differ from one
another by total time derivatives.

So much for the description of the system in configuration space. One may also
study it in the momentum space. Let LP(p, p) be a lagrangian in p representation.
(See Goldstein,® 1980, p. 372, for this type of lagrangians). It is related to H(p, q)
as follows,

acr aLe
—_— ) = —py— q )
H< , af’i) Pi 3 + L(p, p) , (3)

where the functional dependence of H on its argument is the same as in Eq. (2). In
principle, Eq. (3) should be solvable for £? up to an additive total time derivative
term. Once L? is known the actual trajectories in p space are obtainable from a
Euler-Lagrange equation analogous to Eq. (1) in which ¢ is replaced by p. The
derivative 0LP /0p; along an actual p trajectory is the canonical coordinate conju-
gate to p;. Calculated on a virtual orbit, it is not.
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A third option is open. One may combine the two pictures and define an extended
lagrangian in the phase space as the sum of p and ¢ lagrangians,

where p and ¢, as is the tradition in phase space studies, are independent variables.
The first two terms in Eq. (4) constitute a total time derivative. The equations of
motion are

_____—_=_———-_—-:O, (53)

doc_oc_dor oo _ o)
dtdp; Opi  dt Op;  Opi

The two equations in (5) are uncoupled. Equation (5a) with initial data for g;
and ¢;, gives a ¢ trajectory. Similarly, Eq. (bb) with arbitrary initial values for
pi and p;, gives a p trajectory. In order for the two orbits to represent the same
state of motion, the initial data should be constrained to p; = 8£%/3¢; and ¢; =
OL? [8p;. In other words, p; and g¢; should initially be canonically conjugate pairs.
It will be shown below that if p and ¢ are canonically conjugate for one time they
should remain so for all the time. A state of motion so constrained will be referred
to as a pure state. The extended lagrangian is zero on a pure state. For, by
Egs. (2) and (3) and the conditions that p and ¢ are canonically conjugate, one
finds £ = H(p, ¢) — H(p, ¢) = 0. In general, however, an unconstrained solution
of Egs. (5) is, simply, two independent solutions in ¢ and p representations. Such
solutions will be referred to as mized states. The nomenclature, pure and mixed, is
borrowed from quantum statistical mechanics and, as we shall see later, they convey
the same notions as therein. The extended lagrangian is non zero along a mixed
state trajectory. A word of caution is in order. One may not infer a doubling of
the number of degrees of freedom of the system, contrary to what the outlook of
the extended lagrangian may suggest. Equations (4) and (5) simply carry the p
and ¢ representations of the motion side by side in a symmetrical way, a provision
that will prove to be essential for a formulation of quantum mechanics in phase
space. The concept behind the extension of lagrangians and the resulting equations
of motion is simple to explain, though it is somewhat unorthodox. Hamilton’s
principle postulates minimum action along the actual trajectories in configuration
space as compared with the action along neighboring virtual paths. In the extended
form of these notions, one assumes minimum action along the actual trajectories in
phase space and compares its value with those on virtual paths in the same space.
For a virtual path in phase space there is a much larger choice than for those in ¢
space. This point of view is elaborated in the Appendix.

Second canonization: The p and ¢ in Egs. (4) and (5) are not, in general, canoni-
cal pairs. They are so only on pure states and through a proper choice of the initial
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values. This gives the freedom of introducing a second set of canonical momenta
for both p and ¢. One does this through the extended lagrangian. Thus,

oL aLe

qu—'a—q.;—'a—d:’-my (6a)
ac ocr

o T o ")

Evidently, 7, and 7, vanish on pure state orbits and remain non zero on mixed
ones. From these eztended momenta, one defines an eztended hamiltonian,

H(p) g, Tp, 7"q) = qudi + Wpipi - ‘C(pa q i)a q) . (7)
To eliminate ¢ and p, one substitutes for £ from Eq. (4), and for £? and £L? from
Egs. (2) and (3), respectively. One then uses Eqs. (6) to eliminate 8£¢/8¢; and
OLP [8p; and arrives at

H(p: q, 7rp: 7rq) = H(p+7r4) q) - H(p) Q+ 7rp)
1 ("H , OH_,
_nglm{apan—aqnwp}. (8)
Example: For H = 1p? + V(q), Eq. (8) gives

H= -;—(p + )’ +V(g) ~ %pz —Vig+mp) . 9

To see the implications of the extended hamiltonian let us write down the equations
of motion:

oH 0H

- 2 - , 10a

? 57rl’ 0q Py gt+7p (102)

j= o , (10b)

o, p p+7q, 9

gy = _ 0 4 , (11a)
op Op P74 0P lp, gtm,

irqz—gﬂ=—aa—H +%I£ . (11b)
oq 9 lptrng,q T lp, g+,
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One possible solution of Eq. (11) is #, = m, = 0. By Egs. (6), this simply asserts
that p and ¢ are canonically conjugate pairs on this solution and remain so for all
the time. Hence, Egs. (10) reduce to the familiar Hamilton’s equations of classical
dynamics. These are the pure state solutions. There are other solutions with non
vanishing 7, and 7,. These are the mixed state solutions, each consisting of two
independent motions in ¢ and p representations.

3. A Phase Space Quantization

Beside the ¢ and p representations of quantum mechanics, many others have been
entertained in the literature. See Bopp,'® Aharonov,!! Berezin et al.!? and Jannussis
et al,'® Kim et al® and Ghosh et all* In Berezin et al’s notation all these may
be summarized in the form of a commutation relation [P, @] = ik, where P =
ap+Big+mg +6F and Q = crp+ Frag+ 125 + 622, and ai, 5, 7 and &
are appropriate constants. Our presentation below, in the final examination, comes
close to the Jannussis!® formalism. In his analysis one solves two Schrédinger’s
equations in a ¢ @ ¢ space. In ours one does the same in a p @ ¢ space. Departing
points in the two approaches, however, are different.

The Hilbert space: Let X be the function space of all square integrable complex
functions, X : {x(p, ¢); [ x*xdpdg < co}. The inner product in X is defined as

(x, 0)=/x‘adpdq; x, 0 €X, (12)

where dp and dq denote the volume elements of p and g spaces, respectively.

Postulates: a) p and ¢ will be considered as independent c-number operators in
X. For w, and my, however, the differential operators and commutation brackets
will be borrowed from the traditional quantum mechanics,

0 .

Mo = -ﬂi-—aqi s [Wq,', qj] = —lh&,'j s (138.)
. 0 .

Tpi = —lha—p,- y [7pi, pj] = —ihéy; . (13b)

Note also the following
[pi) 4] = Ipi, pi} = l4i, ;] =0, (13c)

[1l’p,', 7l'qj] = [7(,,,', ij] = [7l’q,', 7rqj] =0. (13d)

By virtue of Eq. (8), the extended hamiltonian, H(p, q, 7, 7,), is also an operator
in X . All these operators are hermitian.



Int. J. Mod. Phys. B 1993.07:3255-3272. Downloaded from www.worldscientific.com

by UNIVERSITY OF TORONTO on 10/08/14. For persona use only.

3260 Y. Sobouti & S. Nasirs

b) A state function x(p, ¢,t) € X will be assumed to satisfy the following

Schrodinger type equation
., 0 ., 0

(=if)” {6"H o oH o }
Db o o £ (14)

L Ox
ﬂia—ﬂx

i

¢) The expectation value of an observable f(p, ¢), a c-number operator in the
present formalism, will be calculated from

(f) = / f(p, 9x* (p, Q)dpdyq . (15a)

Not all solutions of Eq. (14) are admissible state functions. Admissible ones: (a)
should give real expectation values for observables, that is, for those f(p, ¢)’s whose
operator equivalents, in either ¢ and p representation, are hermitian, (b) should give
positive values for positive observables, (¢) in particular for f = 1, Eq. (15a) should
give

/x‘dpdq =1. (15b)

Criteria for the realization of these conditions will be given in Sec. 5. Equation (15b)
should not be confused with the norm f x*xdpdg. In fact, a state function satis-
fying Eq. (15b) may not, in general, have unit norm. The formalism presented by
postulates a, b and ¢ above is conjectured to be a formulation of quantum mechan-
ics in phase space or of quantum statistical mechanics (apart from thermodynamic
considerations). It contains the classical statistical mechanics and the traditional
quantum mechanics as special cases. It also accommodates the well known density
matrix formalism in a natural way. First, however, let us familiarize ourselves with
Eq. (14).

Solutions of Eq. (14): Let

X(p, 4, 1) = F(p, g, t)e?¢/" . (16a)

This transformation is suggested by the total derivative added to the lagrangian of
Eq. (4), —d(pg)/dt. The effect is the appearance of a phase factor, exp(—ipg/Fh), in
the state function that would have been in the absence of the total derivative. It is
easily verified that

(p— m%) X = -—ih%e“”q/h , (16b)

(q - ih%) X = ——ih%—ie"‘”” . (16¢)
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Substituting Egs. (16) in Eq. (14) and eliminating the exponential factor gives

., 0 ., 0 _ L OF
{H (—zhg—q-, q) -H (p, —zﬁé;)}F = zh—at— . 17)

Equation (17) has separable solutions of the form

Fop(p, ¢, t) = Yalg, t)é5(p, ) , (18a)
where
.. OYa ., 0
ih gt =H (—lhgq.y Q> d)a ’ (18b)
90 AR
—ih 8t” =H <p, —zn%) & - (18c¢)

Equation (18b), however, is the Schrédinger equation in ¢ representation, and
Eq. (18c) is the complex conjugate of the same in p representation. The o and
B in Egs. (18a) are not, in general, eigenindices, though this possibility is open. To
¥4 (g, t) there corresponds a Fourier transform ¢,(p, t) and conversely

ba(g, t) = (2nh)~N/2 / ba(p, t)e'P?/ dp (19a)
balp, 1) = (27R) 17 / Yalg, e ?1/dg (19b)

where N is the number of degrees of freedom of the system, the dimensionality of
p and ¢ vectors.

Equations (14), (17) and (18) are linear. Hence a state function xy may be
constructed by superposition:

X = GapFape™P™ = asstpa(q, t)o5(p, t)e /™, (20a)
a = al, positive definite ; tra=1, (20b)
where summation over repeated indices is implied. The reason for limiting the
matrix of the expansion coefficients to positive definite hermitian matrices is to

guarantee the conditions set forth for the admissibility of x in the paragraph fol-
lowing Eq. (15a). We will return to this point in Sec. 5.

Some useful properties of x: It was noted earlier that ¥4(g, t) and da(p, t)
are mutually Fourier transforms and are related through Eqs. (19). Integrating
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Eq. (20a) over p or g gives
(@702 [ x(p, 4, 1)dp = aptule, W30, 1), (21a)

(2xh)~ N/ / x(p; ¢, t)dq = aapdal(p, t)d5(p, 1) - (21b)

Furthermore, if the sets {1,(q, t)} and {¢4(p, t)} are orthonormal ones, one obtains
[xxdo = @a)ar¥la, 00, 1), (222)

/ X" x4 = (a'a)py 5 (p, 1)65(p, 1) - (22b)

The normalization condition for y, is
(6 x) = / X" xdpdg = tr(a'a) = 1. (23)

This condition, however, will be abandoned in favor of tr a = 1 to ensure the more
useful requirement of Eq. (15b).

Eigensolutions of Eq. (14): Let {E,, ¥n(q)} and {—E,, ¢.,(p)} be the set
of eigensolutions of Eqs. (18). Hereafter, Latin indices will denote eigensolutions.
Otherwise the Greek indices will be used.

e The eigenvalues and eigenfunctions of Eq. (14) are (E, — E,,) and Xnm(p, ¢) =
¥n(q) b7, (p) exp(—ipq/h), respectively. Each eigenfunction has an associated
time factor exp[—i(En — Em)t/h]. The proof is a matter of substitution in
Eq. (14).

o The zero eigenvalue has all xnn, n = 1, 2, ... as eigenfunctions and is infinitely
degenerate. All xpnrs, n # n' are time dependent.

o [ Xnm(p, 9)dpdq = bnm.

Proof: [ ¥n¢},e P4/ dpdg = [ Ynip},dq = bnm.

The properties above also hold for the solutions of classical Liouville’s equation!®
and of Wigner’s equation.»? This is not a coincidence. We shall shortly see that
Liouville’s equation is a special case of Eq. (14) and Wigner’s equation can be
obtained from Eq. (14) by a unitary transformation.

4. Correspondence Principles

In this section two limiting cases of the proposed phase space quantization are
explored. (a) The limit of classical statistical mechanics and (b) that of the con-
ventional quantum mechanics. It will be seen that the main axioms of these two
disciplines are contained in those of the present formalism.
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I. The classical correspondence: Dividing Eq. (14) by i% and letting A — 0
gives

Ox/ot+{x,H} =0, (24)

where {. ..} is a Poisson bracket. Equation (24), however, is Liouville’s equation that
lies at the foundation of equilibrium and nonequilibrium classical statistical mechan-
ics. Its real and positive solutions are interpreted as classical probability densities.
In general, however, Eq. (24) has complex and non positive solutions. Alone, they
may not be used as probability densities. See Prigogine!® and Sobouti.!® Two fea-
tures of the present derivation is noteworthy. 1) Nowhere in quantum mechanics,
and the classical limits i — 0 inferred in as lucid a way as Eq. (24) is obtained, a
remark that has also been made by Snygg!” for Wigner’s evolution equation. More
worthy of contemplation, however, is the notion of probability that has crept into
Eq. (24) through the commutation rules of Eqs. (13). It stands in contradistinction
with what one finds in the classical derivation of Liouville’s equation. In statistical
mechanical theories one considers a system of many degrees of freedom. One is
usually not capable of or interested in knowing all details of the system. Hence, one
creates an ensemble of such systems, assigns a probability p(p, ¢, t) to each state
(», 9), and proceeds to calculate ensemble average of the dynamical.qua.ntities. This
notion of probability is a matter of choice by the observer. It could be avoided if
the observer is prepared to spare sufficient patience and computing capabilities. It
does not stem from an inherent limitation put forward by nature, of the sort that
one encounters in quantum mechanics, that prevents precise and simultaneous de-
termination of non commuting observables. On the other hand, Eq. (24) is derived
from a quantum principle, from Eq. (14) which itself is based on the uncertainty
principles implied by Eqgs. (13). There is no notion of ensemble in Eq. (24). Perhaps
one could say that the statistical aspect of the classical statistical mechanics has
a quantum origin. And if so, it should be accepted as an inherent inhibition by
nature on the way of precise data acquisition?

II. The quantum correspondence: A single term from Egs. (20),
X = Yad} exp(—ipg/Hh), corresponds to what is called a pure state in quantum
statistical mechanics. It gives the same amount of information as the quantum
mechanical description of the system in t4(g,t) state. One may verify this by
examining the following instances.

e Using Eq. (19a) to perform integrations over p, one easily finds (27h)~V/?
J xdp = ¥%4%4; that is, irrespective of what goes on in p space the proba-
bility density in g space is identical with that of the conventional quantum
mechanics. Similarly (27k)~N/2 J xdgq = ¢%,¢4, with a similar interpretation.

e The uncertainty principle in its standard form, Ap;Aq; > #, holds.
Proof: From Eq. (15) one finds

(Agi)? = (2xh)~N/> / (g ~ @)°x"dpdg = / Uo(ai — %) adg,  (253)
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where §; is the expectation value of ¢;. Equation (19a) is used to perform
integration over p. For Ap; one similarly finds

2
(80" = a2 [ (i = 0P doda = [ 0 (=it~ 5c) wadoda

(25b)
where again we have substituted for ¢}, in terms of its Fourier transform
and carried out the integration over p. With Aq and Ap given by Eq. (25)
the proof of the uncertainty principle can be found in standard quantum
mechanical literature.1®

e For the expectation value of any Q(q) one finds

(@ = @) [ Quigae™ihapy = [viQudg.  (260)

e For p[* one finds

o) = e [ s ac i dpdg

- / v (—iha%)m Vadg . (26b)

e For functions P(p)Q(q), where each factor is expressed as convergent power
series or polynomials in their respective arguments one obtains

. ., 0
PQ) = [v:0(0)P (~ind) vada (260)
The proof proceeds along the lines for Eqgs. (26a) and (b).

There is a noteworthy feature to the averaging rules expressed by Eq. (26¢c). No
matter how the factors P(p) and Q(q) are arranged initially in a product, the
averaging procedure decides on its own unambiguous ordering: Q(q)P(—ihd/dq).
In other words, P and @ as operators do not operate on each other in the process
of averaging. This so-called standard ordering, is to be expected and indicates a
logical consistency in the present formulation. For, the averaging rules of Eqs. (26)
are obtained from that of Eq. (15) in phase space representation. Any operator
f(p, 9) is a c-number in this formulation. The variables p and ¢ are independent
and do not interfere with each other.

5. Quantum Statistical Mechanics

Finally we come to the main theme of this paper: that the phase space quantization
is a proper framework for quantum statistical mechanics. Traditionally one formu-
lates the quantum statistics by introducing a density matrix or density operator
for the so-called mixed quantum states of an ensemble of systems and proceeds to
calculate averages of the dynamical quantities over both the quantum states of a
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system and over ensembles of such systems. In what follows it is shown that the
usual density matrix theory of mixed quantum states can be reproduced from the
present formalism. The logic behind it, however, does not require to postulate an
ensemble of identical systems explicitly.

5.1. Density matrix in phase space quantization

Let
{Xmn(P, 9) = ¥m(9)gn(p)e~"/*} € X (26d)

be an orthonormal basis for the Hilbert space, X, defined in Sec. 3, where ,, and
¢m are mutually Fourier transforms. Orthonormality relations are (Y, ¥1) = 6y,
(Y, 01) = bnz, and (Xmn, Xkt) = OmikOne. Only completeness, and orthonormality
of {Xmn}, {¥m} and {4, } are of interest. They are not required to satisfy Eqs. (14)
or (18), though this is a possibility. A state function x(p, ¢, t) may be expanded as

X = @mn(t)xmn(p, ¢) - (27a)
a(t) = hermitian and positive definite ; tra=1. (27b)

Differentiating Eq. (27a) with respect to time and using Egs. (14), (16) and (18)
gives

ihx = thampPmLe PI/P

74 i) )
= amn | H (—ih——, q) Ynbin — YmH (p, m_) ¢:,,} e-ipalh
{ 0q Op (28)

Multiplying Eq. (28) by x},, integrating over the phase space, and using the or-
thogonality of {Xmn}, {¥m}, and {¢n} gives
iha =[H, a]; a=a' and positive definite , (29)

where H is now the hermitian matrix of the hamiltonian with elements Hy,, =
(Ye, H, Ym) = (¢¢, Hpm) = H,,,. Equation (29) is von Neumann’s equation for
the density matrix. Next we examine the averaging procedure with a.

5.2. Ezpectation values

From Eq. (15a), for a simple c-number power function f = p’¢*, one obtains

(d'P) = (P ) = 2nh) " a;,, / Vi (9)éa(p)e /M ¢'p’ dpdg

; a9\’
= ap, [ Ve (—z‘h—) Yndg
0q

= apn(¢'P )mn = tr(alf) . (30a)
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The second equality in Eq. (30) is obtained from defining Eq. (15a), the third by
performing the p integrations by the known Fourier transform techniques. The
fourth equality uses the conventional notation for the matrix elements of f = ¢'p’.
Here, once more one encounters the standard ordering for powers of ¢ and 9/8q.
Generalization of Eq. (30) for an arbitrary observable is straightforward. Let f(q, p)
have a convergent power series expansions of the form f(g, p) = b;;¢'p’ The matrix
elements of f and its expectation values, will be

fam = /fx:.mdpdq (30b)

(fy =tr(a'f) . (30c)

5.3. Admaissible state functions

The only use of a state function is in the evaluation of the averages of dynamical
observables. Its properties should also be sought in this and only in this context.
(1) Expectation values of an observable f with a corresponding hermitian matrix
should be real. This requires @ in Eq. (30) to be hermitian. (2) Expectation values
of a positive definite observable f should be positive definite. This further restricts
a to positive definite matrices. (3) For f = 1, Eq. (30) should give tr a = 1.
This completes the list of the constraints on the matrix of expansion coefficients in
Eqgs. (20) and (27). In particular x(p, ¢, t) is not even required to be real, let aside
its positivity. From this point of view the usage of the word “probability density” in
phase space quantization becomes a matter of semantics. For, distribution functions
are expected to give averages over the entire region of the phase space and not over
portions of it. They are not required to serve any other purpose. The argument for
the positivity of a is taken from Glauber.!®

5.4. Comparison with von Neumann’s densily mairiz of
ensemble theories

Let {¢n(q)} denotes an orthogonal and complete set of the state functions of a
quantum system in ¢ representation. In an ensemble of such systems let ¥¥(q, t) =
Ak ()¢¥m(g) be a state function of the kth member of the ensemble. The quantum
and ensemble average of an observable f(g, p) is written as

(=5 SO 1) = g LAkt [svnde=uter), @
k k

where K is the number of systems in the ensembles, a = & 3=, A* A*! is the usual
density matrix of ensemble theories, and A* is the column vector of expansion
coefficients in ¥*(q, t). It is hermitian, positive definite, has unit trace, and satisfies
Eq. (29) (see, e.g., Pathria,2® Balescu?! for further details). Thus, a = ATA/K is
entirely equivalent to that of Eqgs. (27).
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There are differences, however. In ensemble theories two notions of averaging
are involved, one over ensemble members and the other over quantum states. These
are explicitly displayed in Eq. (31). As was pointed out in the classical correspon-
dence limit, Sec. 4, ensemble averaging and the probability assigned to ensemble
members have origin in the practical limitations of the observer to attend to all
details of the many parameter systems. This, in principle, should be avoidable by
improving the capabilities of the observer. In contrast, the quantum averaging and
the probabilistic origin of it are unavoidable and reflect an inherent reluctance of
the nature to reveal precise information beyond what is permitted by the uncer-
tainty principle. There are also two concepts of averaging and probability in the
phase space formulation, one over the ¢ space, the other over its Fourier replica,
the p space. Both of these, however, are introduced through quantum principles,
the pair of commutation relations of Egs. (13) and the pair of uncertainty relations
inherent in them. Could it be that the probabilities and averaging procedures as-
sociated with ensembles also have a quantum origin and should not be attributed
to practical limitations?

5.5. Wigner’s functlions

A simple canonical transformation on p, ¢, 7, 7, reproduces Wigner’s formulation
of phase space distribution functions. Let
pop+odmy, T —om, (32a)

q—q+6dm,, w— 7, (32b)

where 6A € 1. The generator of this infinitesimal canonical transformation is (see
Goldstein,® for notation and concepts)

62
Opdq ’

G = mpmy = —h? (33a)

where the second equality is the operator form of the generator. For a finite X, the

transformation operator is!®

U= e AGlih = g=iX%/0p00 - iy =1 (33b)

The case A = —1/2 is interesting. It transforms the present evolution equation and
phase space distributions to those of Wigner. The hamiltonian of Eq. (9) transforms

into
1 \? 1 1 1 \? 1
(p+§7rq> +V(q—§jrp) —E(p—5r4> —V(q+§7rp) .

(34a)

H =UHU =

B =
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The second equality here can actually be obtained by a simple substitution of
Egs. (32), for 6A = —1/2, in the classical expression of Eq. (9). A state function
x(p, ¢, t) transforms into

W(p, ¢, t) = Ux(p, g, t) = e/ DiPO* 19905 (5 g 1) . (34b)

Multiplying Eq. (14) by U and using Eq. (34a), in its Taylor expanded form, and
(33b) gives

ow ow 1 A \2" gintly gintlyy
8 _pa_q' + Z (2n+1)! ('27) g2+l Jpintl - (34c)
n=0

For xop = z/;a(q)qbg(p)e""’q“, Eq. (34b) reduces to

Was(p, 9) = /t/)a (q + %hT> (] (q - %hf) e~7dr (34d)

where time dependence is suppressed. Equation (34d) is Wigner’s distribution
functions.! Wigner derived Eq. (34c) by arguing that ¢’s in Eq. (34d) are solutions
of Schrodinger’s equation. Moyal® reproduced Wigner’s functions and equation,
however, by a different approach, by an intricate manipulation of characteristic
functions and Fourier transform properties. Moyal also showed the equivalence of
Eqgs. (34b) and (34d).2 Arponen and Bishop?? point out that Moyal’s method is
an example of the modern deformation theory. It should be noted that a unitary
transformation of Eq. (34b) changes the averaging rule. In Eq. (15a) substitution
for x* from Eq. (34b), gives (f)y» = (Uf)w. That is, the expectation value of
f(p, ¢) with x* is only equal to the expectation value of U f(p, ¢) with W.

Derivation of Wigner’s formulation of quantum distribution functions from the
unitary transformations of Eq. (34b) indicates the possibility of a host of other
unitary transformations. They are not, however, entirely equivalent; it is a common
knowledge that different phase space functions imply different ordering rules for non
commuting observables in quantum mechanics. See Shewell?3 for a list of such rules
and criticisms. See also Mehta® and Agarwal and Wolf® for extensive discussions and
further references on the subject. For example, Wigner’s distributions imply Weyl’s
symmetrization rule,?® while those of the present paper, as shown in Eq. (26¢), are
compatible with the standard ordering. Of course, the final verdict, on whether
one or the other is preferable should come from observations involving products of
non-commuting observables. In the absence of such evidence, however, the authors’
argument in favor of x function is the consistency arguments raised in the closing
paragraph of Sec. 4, that is, p and ¢ as phase space variables are independent; in
their operator form they should leave each other alone.

The transformation of Eq. (31), however, is unique in one respect. It leads to
a real evolution equation with possible real solutions. Evidently, this was much
appreciated in the early attempts to compare Wigner’s distribution functions with
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the classical probability densities. The latter are real and positive throughout the
accessible region of the phase space. Positivify of Wigner’s functions is not realized,
a point that has often been considered a weakness. From the point of view taken
in this paper, however, this need not be so. The criteria for Wigner’s functions to
be admissible distributions could be the same as for x*’s.

Admissibility of negative or complex state functions is also pointed out by oth-
ers. Mehta,? in his investigation of different phase space state functions and the
ordering rule associated with each representation, concludes that: “The distribution
functions may not only be negative, but may even be complex ... . Thus, we see
that if negative and complex probabilities are admitted ... such a description is
completely equivalent to the quantum mechanical discription”.

6. Concluding Remarks

The new conceptual element in the proposed formalism is the consideration given
to virtual paths in phase space. Once this is accepted, the procedure of second
canonization, definition of extended lagrangian, £(p, ¢, p, ¢), of second momenta,
7, and 7y, and of the extended hamiltonian, H(p, ¢, 7, 7,;), may proceed parallel
to those of the conventional concepts. Quantization rules of Egs. (13), the state
functions y, their use and evolution, also have precedence in the ¢ space quantum
mechanics.

From a pedagogical point of view the following are noteworthy. a) The unifying
aspect : The classical statistical mechanics, the conventional quantum mechanics,
the density matrix theory, and Wigner’s distribution functions are brought under
one and the same umbrella. b) The state functions of Egs. (20) or (27) have simple
forms and are easy to work with. It may be said that they are complex valued
and may not be interpreted as probability densities, in the same way that Wigner’s
negative valued functions may not be. There is no need for such interpretation. It
was argued that the only use of state functions was to calculate expectation values
of dynamical variables. It is sufficient that they yield real values for observable
functions, real positive values for positive observable functions and 1 for the unit
function. c) Most students of physics become conversant in quantum mechanical
parlance rather early in their career. The situation is not so with classical and
quantum statistical mechanics. This, perhaps, could be traced to the somewhat
abstract concept of ensembles. The formalism of this paper does not require much
beyond the usual skills and techniques of quantum mechanics and are easy to master.

No statistical mechanics is complete without an underlying thermodynamics.
The theory developed so far is an initial value problem. Given an acceptable
x(p, g, t = 0), the state function x(p, ¢, t) may be obtained from Eqgs. (20) or
(27) by determining the matrix of the expansion coefficients. For a system of many
degrees of freedom, however, it is not practical to give a detailed state function at
some instant. This is true for the present equation of evolution, Eq. (14), and for
Liouville’s and von Neumann’s equation. Customarily, the dilemma is solved by
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brushing aside the question of initial values and inviting in a principle of maximum
entropy in the course of evolution. Through this principle the expansion coefficients
may then be determined. A formulation of entropy principle for the present phase
space quantization will be presented elsewhere.

Appendix

Virtual paths in phase space: To develop a feeling for the extended lagrangian
and hamiltonian and the concept behind them let us look at the variational founda-
tion of the Euler-Lagrange equations. By Hamilton’s principle one assumes that the
action integral, I = f:lz L(g, ¢)dt, is minimum along an actual trajectory in ¢ space,
the gt-plane of Fig. 1. To derive the law of motion, one considers virtual paths
in the infinitesimal neighborhood of the actual one, calculates the corresponding
infinitesimal change in the action in terms of the deviations, 8¢(t) = gvir(t) — gac(?),
between the actual and virtual paths, and requires the first order variation in action
to vanish. This definition of 8¢ associates with each point of the virtual path a neigh-
boring point on the actual one, situated on the line ¢ = constant. See Fig. 1. Hence
one concludes §¢(t) = dégq/dt, substitutes it in the action integral and integrates by

parts to obtain
2
doL oL
61 = —_——t = =0.
I /ﬂ ( &t 9 + aq)&th 0

One then argues that ¢ is arbitrary. The integrand should vanish, giving the Euler-
Lagrange equation. The rule for associating pairs of neighboring point, however,
may be changed arbitrarily. For example, let us define 6¢'(t) = gvir(t)—gac(t+€(t)) =
8¢(t) — €gac(t) where €(t) is infinitesimal and e(¢1) = €(t2) = 0; see Fig.1. Otherwise

Fig. 1. Trajectories in pqt diagram. alb and a2b are actual and virtual paths in g-space, respec-
tively. A1B and A2B are actual and virtual paths in phase space, respectively. Projections of A1B
and A2B on git-plane are alb and a2b, respectively.
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€(t) is arbitrary. For 8¢’ one now finds
d d d
8¢ = Z5q— Z(eg) # bq’ .
q' = 80— < (eq) # 584

For a given 8q(f) and, hence a given 64(¢), one may vary 8¢’ by assigning arbi-
trary values and functional forms for €(t). This example indicates the possibility
of accommodating a much larger class of variations in the variational derivation of
equations of motion. In this particular example one obtains

t2 daL ocC 20 48 oL
- LA _LOk Ok ceat
o / ( dtaq'+aq)6q +/u ( dtaq'+aq)“‘ !

which leads to the same equation of motion as it should be.

The extended lagrangian, L(p, ¢, p, ¢), is designed to take this larger class of
virtual variations into consideration by treating p and ¢ as independent variables.
Let us look at paths in phase space in pqt-diagram of Fig. 1. The solid curve AB is an
actual trajectory in phase space, whose projection on gt-plane, solid ab, is the same
actual g-space trajectory. The dashed curve AB is a virtual path in phase space
whose projection on gt plane, dashed ab, is the same ¢ space virtual path. Now, let
us consider the semi cylindrical surface abed generated by translating the virtual
path AB parallel to p axis. All virtual paths on this semi cylinder, that begin from A
and end at B have the same projection, virtual ab, on ¢t plane. All are treated as a
single virtual path in the conventional derivation of Euler-Lagrange equation. These
paths have identical 8¢(t) but differ in their 6p() = pyir(t) — Pac(t). This freedom
of arbitrary virtual variations in p is possible only with phase space trajectories
and through the extended lagrangian. Of course, the classical equation of motion
obtained from the extended lagrangian are identical with those obtained from the
ordinary lagrangian £(g, ¢). This is demonstrated in Eq. (5) in lagrangian formalism
and in Egs. (10) and (11) in hamiltonian formalism. The quantum implications of
the extension, however, are dramatic, the least being the emergence of a unified
view of classical statistical mechanics, quantum mechanics and statistical quantum
mechanics.
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