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ABSTRACT

Let the linearized Liouville-Poisson equation be ¢3f/3t = Af, f =
f(g, ?)’E = momentum coordinate. A on f's is not a Hermitian operator.
However, an eigenvalue equation, Af, = wf,, with real w’s and non orthog-
onal eigenfunctions can be set up. For spherically symmetric potentials A
and A2 have 0(3) symmetry. There exists an angular momentum operator,
J;, which commutes with A. This classifies the eigenfunctions inte classes
specified by a pair of eigennumbers (5, m) belonging to {J?,J,}. This in turn
enables one to separate the dependence of the eigenfunctions on the direction
angles of {¢, p} and reduce the six dimensional phase space problem into a

two dimensional one in terms of the magnitudes (g, p}.



1. INTRODUCTION

In Paper I of this seriea (Sobouti, 1988) the symmetries of the six
dimensional Liouville equation pertaining to a time constant potential were
studied. The eigenfunctions were found to be square integrable functions of
phase coordinates it a complex Hilbert space. They were orthonormal and
complete. For an even potential the real and imaginary parts of the eigen-
functions possessed definite symmetries in configuration and in momentum
coordinates. For a spherically symmetric potential Liouville’s equation had
0(3) symmetry and the eigenfunctions could be chosed as simultaneous with
those of an angular momentum operator. The latter was in turn the sum of
two angular momenta in configuration and momentum spaces. These sym-
metries allowed a classification of the eigenfunctions. A reduction of the six
dimensional phase space problem to a two dimensional one became possi-
ble and a tractable computational algorithm was found. Paper II {Sobouti,
1929} dealt with simple harmonic potentials in one, two and three dimen-
sions. Exact and complete eigensolutions were obtained by means of raising
and lowering [adders for the Liouville operator. This communication is a
continuation of Papers I and II. Here we show that the linearized Liouville-
Poisson equation has most of the symmetries, including the 0(3) symmetry,
of the Liouville equation based on a time constant potential. We construct
the simultaneous eigenfunctions of the linearized operator and the “angular

momentum® operator developed in Paper L.

In applications to self gravitating stellar systems the combined Pois-
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son and Liouville equation is nonlinear. The linearized version, however, is
reasonably tractable. Antonov’s (1960} attempt is of this nature. Lynden—
Bell (1967, 1969), Lynden—Bell and Sanitt (1966), Ipser and Thorne {1968)
have elaborated on Antonov’s approach. The focus of most of these efforts
is the stability of a given distribution, a function of the energy integral in
most cases. Doremus et al. (1970, 1971}, Doremus and Feix {1973), Gilion et
al. (1976), Kandrup and Sygnet (1985) investigate stabilities of anisotropic
distributions. More on the stability of the linearized equation may be found

in Sobouti {1984) and Barnes et al. (1988).

Some investigators have . :tempted actual solutions of the linearized
equations. Shu (1970} puts forward the notion of spiral density waves as per-
missible modes of oscillations of a stellar disk. In this theory a central role
is attributed to the gravitational potential induced by the density variations.
On the other hand there are spherically symmetric systems with dimensions
smaller than Jeans’ wavelength {to avoid Jeans’ instabilities) where variations
in the gravitaional potential play a lesser role. Doremus and Feix ( 1972}, and
Doremus and Baumann (1974) consider such systems and attempt to obtain
eigensolutions for a one dimensional system consisting of two phase space
regions of constant phase density. Along with extensive numerical study of
dynamical instabilities, Barnes et al. {1986) analyze the linearized Liouville—
Poisson equation for “thin—shelled® spherical systems. A noteworthy aspect
of their analysis is their emphasis on the symmetries and commutations of
the operators involved. Sobouti (1984, 1985, 1986) attempts eigensolution of
Antonov's equation applicable to epherical systems with no Jeans’ instabili-
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ties. His approach is to assume a variational ansats and go throngh elaborate

analytical and computational analysis of the variational integrals.

Sec, 2 introduces the learized equation and points out some ana-
Iytical features of the eigenvalue problem pertaining to it. Sec. 3 discusses
the 0{3) symmetry. Sec. 4 deals with classification of modes and elaborates

on the simplest class. Sec. § is devoted to concluding remarks.

z. LINEARIZED LIOUVILLE-POISSON EQUATION

In a collisionless stellar system one maintains that the distribution

function, F{q, p,t) satisfies Liouville’s equation,

v LF, {1.a)
a U 3
L=—ilpy — -2 2 1.6

where the mean potential U/ (3- t) is the solution of Poisson’s equation
Ug,t) = —GfF(g'.g‘,tHg*g'l"df'. (2)

where dr' = dg'dp’. Let F — F(E)+6F(q, p,t), where F(E) a function of the
energy integral is an equilibrium distribution, and §F < F(E) for all (g, p, t}
is a perturbation on F(E). Actually this perturbation condition may break
down at the boundary of the phase space volume available to the gystem.
As an approximation we will dismiss such eventualities. Accordingly, the
potential splits into a large and a small term, U(q) + 6U(g,¢). Substituting

these in Eqs. {1} and (2) and retaining only the first order small terms gives

. QEF . 3F U
L] _Bt = .CF+‘ a aq‘ 5 (3)
§U = —GfﬁF(g',?',t)}_q—g'|'ldf', (4)

where L is now constructed with the time independent potential U(g). The

second term on the right of Eq. {3) may be written as

_dF 28U

TIER 5 s GF;;L'f&F(g',?',t)[_q—g'r]dr'. (5)
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We shall confine the analysis to cases where Fg = dF /dE is either positive or
negative for all permissible values of £, Let us introduce the transformation
6F = |Fg[‘/’f(§:,g, t). This is a provision of Antonov (1962) except for
the zquare root on Fg which is due to Sobouti (1984). Noting that £F =
L(Fg) = 0, for they are functions of £ and are integrals of motion, Eqs. (3)

and (4) can be combined into
3f
4 E = Af (5.0)
where A is defined ag
Af=Lf+Gsign (FE)[FE|’/3£/ FE[Y2f')g - o' 2dr!, {8.5)

where primed quantities are to be evaluated at the phase space point (g‘,f‘).
A simplifying feature of 4 which will be used repeatedly is that {a) the
integral vanishes if its integrand is odd in P (b} the term containing the
integral is odd in P for £ is odd in P and the integral is independent from P

These imply that
Av=Lu for ufg,p)=—ulyg, —p}, {6.c)
Ao = Lo+ G sign (Fe)|Fe 2 [ P57 oig - g1-tdr')
for  v{g,p) = v{g, —p). (e.9)
2.1 Integrals of the Linearized Equation

For a time constant and spherically symmetric potential the energy,
E = 1p* + U, and the angular momentum, A = €44, ps, are constants of
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Licuville's equation in the sense that LK = Lk, = 0. For the linearized
equation the energy is not a constant of motion for the cbvious reason that
the potential energy acquires a time dependent term, JU(E, t}. The angular

momentum, however, remains constant. One may readily verify that
Ak =0, hi = €0 qyPs- {n

Implications of Eq.(7) are interesting. {a) conservation of angular momen-
tum requires spherical symmetry of the total potential, U{q) + 6U{g, £). One
concludes that there are solutions of Eq.(6.a) which lead to spherically sym-
metric density variations and radial macroscopic motions. One must, how-
ever, be careful not to generalize chis statement to all solutions. We shall
see such solutions in Sec. 4.2. {b) conservation of angular momentum also
means isotropy of space and invariance of 4 under rotations of the phase

coordinates. This 0(3) symmetry of A is discussed in Sec. 3.
2.2 Antonov’s Equation

Let f = u(g,p) + iv{q,p), where u and v are odd and even in ?.
respectively. This is not a decomposition into real and imaginary components
at this stage. It will, however, turn out to be 8o as a characteristics of Eqs.
{8). The factor i is included in anticipation of this feature. Substituting
in Eqs. (6), and decomposing the resulting equation into odd and even
components gives

— =Av (8.9)

-E=.ﬂu=£u (8.6}



Differentiation of (8.2) with respect to time and substitution from {8.b) yields

3y

_ﬁ = J]u (9]

writing out 42 explicitly by means of Eqe. (6.c and d) gives
Au= L%+ Gsign {Fs)nglllzﬂf |Fe Iljzﬁ'u'@ - ¢ tar {9.bis)

Equations (9) are Antonov’s equation. v and v, calculated from Eqs. (9} and

{8.b}, give a solution of the linearized Liouville-Poisson Eqs. (8).

An alternative formulation equivalent to that of Artonov is possible.
Upor differentiation of (8.b) with respect to t and using (8.2) one obtains an
equation for v. We shall, however, use Eqs. (9) and (8.b) for their relative

simplicity.
2.3 Symmetries of the Linearized Equations

Let H be the Hilbert space of all complex functions

g{g,p) = ={g, p) +iy(g,p), zand y real, {10.a}

that are (a) square integrable over the available volume of phase space and

(b} vanish at the boundary of this volume. Let the inner product in H be

{a.4') = f g"g'dr = finite, g,g' € H {10.6)
1t is evident that A defined on H is a linear operator. Its Hermitian adjoint
can be fourd by integrations by parts on (g, Af) and converting it to (AI, f).
One obtains

Af=Lf+Csign (Fg)ngl""f [FEM? L'l — | tar {11.4)
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In the special cases of odd u and even v one finds
At = Lu+ G sign {Fg)|Fe? j' [Fglt/? L'ullg - ¢ e {11.5}
Aty =ro (11.¢)
Evidently £ is not Hermitian, for 4 # A*.
Let us consider the two subspaces of ¥, ¥ (odd) with members u
odd in p, and H {even) with members v even in p. Neither subspace is ¢losed
under A for Au i even if t is odd and vice versa. However, both subspaces

are closed under A%. Furthermore, 42 on H (odd) is Hermitian. The proof

is eimple

{w, A%u) =(Lu, Lu) + G sign (Fi)

x[|FE!1""'£ulF'}5|!/2£'u'i3—g'l‘ldr'dr= real (12)

In deriving Eq. {12) we have used Hermitian character of £. A% is not
Hermitian on H (even). This singles out H {odd) and allows to set up
an eigenvalue problem in connection with Eq. (9). Thus, assuming a time

dependence, exp(—iwt), Eqs. (9} and (8.b} become
Alu, = wiuy,, w? = real, (ty, 4] = G {13.0)

Lu, = Hiwy, (13.5)

The real valuedness of w? and othoganality of u,’s is a consequence of the
Hermitian character of A% in H (odd). The orthogonality of the correspond-
ing v,'s in H (even), however, cannot be proved, for they are not the eigen-
solutions of 2 Hermitian operator. In fact we find
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(v ) = (L, L) (1)

G
= B = ——sign (Fg)f |FeP 21 FL M2 0, L, g —¢'[drar’

where we have written (L, Lu,e} = {£%u,, u.+) and have substituted for
L%y from Eqs. (9.bis) and (13.a). The physical meaning of the second term
in Eq. (14) is clear. We note that the mase density induced by f = u+ivis
fp = —(i/w}ffFE!”’.CudP. The second term in Eq. (14) is then propor-
tioralto —G [ #p,{g)p./ (¢'}lg~¢'| ' dgdy’ which is the mutual gravitational
energy of the two modes w and w'. We also note from Eq. (13.b) that for a
real w, v, is real. This shows that f = u + v, besides being a decomposition
into odd and even parts, is alsc a decomposition into real and imaginary

parts.

Returning to the original equation of motion we observe that fu=

%, +1v, is a solution of Eq. {8.a),
ﬂfw = wfw {15.0)

where u, and v, in turn satisfy Eqs. {13). The proof i= a matter of substitu-
tion of Eqs. (13) in (15.a). Thus we have found the eigensolutions of the non

Hermitian operator A. However, there are peculiarities to these solutions:

1) The eigenvalues are either real or purely imaginary depending on

whether w? is positive or negative, respectively, but never complex.

L.a) For a real tw the eigensolutions come in pairs (w, f) and
{—w, f*). This is seen by taking the complex conjugate of Eq. {15.2) and
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noting that A is purely imaginary. For most cases of astrophysical interest
all w’s are real. For a proof see Sobouti (1984) for the case of dF /dE > 0,

and the references in Sec. I for dF /dE < 0.

Lb) For an imaginary @ = +ia, a real, the eigenfunctions are rea)

and come in pairs (Lo, fi), with f3 = (14 ‘{-fw)u We note that L /¢ is real.

2) For neither cases {1.a) and {1.b) above orthogonality of eigen-

functions is realised. For, by Eqs. (13) and (14)
(fw:fw‘)= (uw:uw')+(vwguw') # by (156)

This lack of orthogonality brings .. complications. For, completeness of the
eigenfunctions comes under question and requires a thorough ecrutiny. The
problem is non—trivial for neither 4 or L are invertible. They have sero

eigenvalues corresponding to integrals of motion.

3) Eigenfunctions belonging to w # 0 integrate to zero.
Proof: [ f.dr = w" [ Af.dr = 0, for from Eqs. {8.c and d} the integrand

is a perfect differential and leads to a nonvanishing surface integral.

4) Eigenfunctions belonging to w = 0 can be chosen real. For if
Afo = 0 then by complex conjugation Afy = 0 and A(fo + f§) = 0. The

angular momentum integrals of Eq. (7) are of this nature.
2.4 Comparison between A and [

It is worth pointing out the similarity and differences between the
perturbed and the unperturbed operators. [ is Hermitian on the entire
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Hilbert space. The eigenvalue problem Lf, = wf,, or its real and imaginary
decompositions, £%u, = w?u,, Lu, = wu,, have real eigenvalues and com-
plete orthogonal eigenfunctions. In addition (a) for U{g) even in ¢, [ is odd
in g. And (b) [ is a first order differential operator subject to Leibnitz’s rule

L(gf) = (Lg)f + ¢(Lf). Implicationa are

(1) w. and v, have definite q—parities in addition to their definite
p-parities;

{2) Both g-, p-parities of the u, are opposite to those of v,

(3} H (w1, f1) and (w2, f2) are two eigenzolutions then

{w; + wy, f1f2) is another solution.
In particular,

(4) 1= f. is a constant of motion, that is, L{f" f} = 0, and further-

more {nw, f) and ({n — m)w, f™ f7) are eigensolutions

Details and Proofs of statements (1) to (4) are given in Sec. 2 of

Paper L

2.5 Variational form of Egs. (13)

The eigenvalue problem for A2 is best handled in its variational
form. For brevity we suppress the subscript in ty and remind that u(g,p) in
Eqs. (13) and the subsequent ones is an odd function of p. We left multiply
Eq. (13.a} by u* = u and integrate over the phase space volume available
to the system. After rome integration by parts, or equivalently using the

13

hermiticity of £, we obtain

w? = [W, + sign (Fg)W3|/5, (18)

where
W, =(Lu, Lu) = f([:u)‘ﬁudr >0, {17.a)
W, = G[IFEI"’(ﬁu)‘IF?sI”’(ﬂu)'l(g—g‘l"‘drdf' 20, (17.6)
5={uu) = fu'udr >0. (17.c)

That § is positive definite is evident. Similarly, W, is positive and could
be zero if v = 0. The positive nature of W, iz proved by Sobouti (1984).
It could be gero if fu = 0. Thus, a sufficient condition for positive w? is
dF|dE > 0. However this is far from being necessary. For we ntow know that
most isotropic distributions with dF/dE < 0 also possess positive eigenval-

ttes.

Eqs. (16} and (17) together with {13.b) for v will be used for vari-
ational calculations. This will be done after discussing the 0(3) symmetry of
A, expanding the dependencies of the integrands on the direction angles of q

and p, and integrating over the angles.
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3. 0{3) SYMMETRY OF £

Let I be spherically symmetric. Motivated by the conservation of
angular momentnm, Eq. (7), we look for the invariance of 4 under rotation
of both ¢ and p coordinates. In the spirit of Paper I, Sec. 3, we argue that
rotations of ¢ coordinates, about the ith axis, are generated by an angular

momentum operator in g space:

. é
L.‘ = —te.-,;.,q,-a—% (18.0)

One must note that I; rotates the ¢ coordinates with no effect on p axes,
for ¢, p are independent in phase space problems. Similarly rotations of p

coordinates about the itk axis are generated by a similar operator in p space:
K = —iesupy— (18.5)
i = Wiy y apk -
The g and p coordinates together are rotated by
g =L+ K; (18.:)

Before proceeding further we note that L, K;, and J; are all Hermitian
in their respective spaces and have the angular momentum algebra. For

instance,

Wiy J5] = ~ieiinde (19.a)
A well-known corollary to Eq. (19.a) is
(P L]=0 (19.5)
It is shown in Paper I, Sec. 4 that

[£,5]=0 {20.a)

15

Here we extend the same to £

Theorem:

4,4 =0 (204)

The proof of the theorem is given in Appendix A. The e¢ssence of
Eqs. (20) is the invariance of the Liouville and the linearized Licuville equa-
tions under rotations of both ¢, p coordinates about the same axis and by the
same angle. This obviously leaves the (g,p) angle unchanged and one may
suspect A and L to depend on the relative orientations of the ¢, p vectors
rather than their absolute orientations. Indeed, this is shown to be the case
for L. See Paper I, Sec. 5, for an expression of £ in terms of cos(g, p). For

A we leave it as a conjecture.

A corollary to the Theorem (20.b) and Eq. (19.b} is the mautual

commutation of the following set of operatora
142,02 L) =0 (21

The implication of Eq. {21) is obvious. The eigenfunctions of A%, Eq. (13),
can simultaneously be the eigenfunction of J? and J,. In other words, the
eigenfunctions of A% get classified into classes specified by the appropriate

eigennumbers j, m of the J2 and J,. Sec. 4 deals with this classification.
3.1 Relations to Integrals of Motion

For future reference and also for familiarisation with the angular
momentum operators we investigate their effects on the energy, and the an-
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gular momentum integrals, & = 2p* + U(g) and h; = e,;1.9;ps, respectively.

One may easily verify that
LE=KE=JE=0 (22)

The same holds for any F(E). The interpretation is that E depends on the
magnitudes of ¢ and p alone. Rotations of ¢ or p or both coordinates leave

these magritudes and therefore the energy invariant. For k one finds

Lk =ig-p— apy) {23.q)
Kihy = ~i{g-p— aipi) {23.5)
J"h_.,' = *‘it;,‘khk (24.6)

Jih; = 0, no summation on i {24.5)

Proof is straightforward. We observe that j = gxXp depends on the individ-
ual orientations of g and p vectors. Thus independent rotations of ¢ and p
coordinates by L; and K; in general will not leave p invariant. This is the
essence of Eqs. (23) and (24.a). If, however, both coordinates are rotated by
the same angle and about an axis perpendicular to (g, P) then f will remain

invariant. This is the meaning of Eq. (24.b}.
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4. CLASSIFICATION OF EIGENFUNCTIONS

From a formal point of view, J; is the sum of two angular momentum
vector operators analogous to I—S or J—J couplings that one encounters in
many quantum mechanical applications, The followings are extracted from

Paper L, Sec. 4.

Sirnultanecus eigenfunctions can be found for {J2,J;, L%, K?}, for

they mutually commute.

In the conventional motation let |jmfk > be their eigenfunction
with eigenvalues j{j + 1), m, &(£+ 1) and k{k + 1) for J%, J,,L? and K2,
respectively. Restrictions are j, k,¢ = non-negative integers, -kl <j<
£+ k, and —7 < m < j. The set |jm&k > may in twn be expressed as

lFmtk >= z Y7 (8,0) Y o, B) < tmekmglimtk >,
my

me = m— Mg (25}

where (f,1) and {a, §) are the polar angles of g and p, respectively, and
<...|...> is a Clebsch-Gordan coefficient. The products of spherical har-
monics are the simultaneous eigenfunctions of {L?, L,, K7, K,} with the re-
spective eigenvalues £{£+ 1), my, k(k + 1), and my. The parity of a spherical
harmonic ¥,™ under coordinate reflection is {~1)‘. From Eq. (25) it is now

clear that the g and p parities of |jmék > are {—1)¢ and (—1)*, respectively.
4.1 Eigenmodes of {42, J%,J,}

An eigensolution of Eqa. (13), or equivalently of Eqs. (15}, will be

18



specified by a pair of definite values of j and m, the eigenvalues of {JZ, J,},
and its odd p—parity. The essence of this assertion is that u(g, ?) satisfying
Eq. (18.a) should have an expansion in terms of |jmfk > with the expansion

coefficients depending only on the magnitudes of ¢ and p. Thus,

wgip) =3 unelgp) = 3 limtk > T (g, p)
k k¢

F=0,1,2,..., —-f<m<j
k=135, ..

E=lk—gi[k~75+1 ..., k+] (26)

For specified values of eigennumbere 3, m, the values of k runs over
odd integers to ensure the odd p—parity of u, and £ is restricted as prescribed
by the triangle rule for non-vanishing of the Clebsch-Gordon coefficients. In

general £ can be even or odd for u(g,p} may not have a definite q—parity

For variational purposes, there remains to substitute Eq. (26} in
Eqs. (16) and {17), carry out integrations over the direction angles of gand p
and reduce the problem to a two dimensional one in terms of the magnitudes
¢,p- The two dimensional problem may then be analyzed variationally. The
general case of arbitrary g and m is very lengthy. Here we present the case

of 7 = m = 0 as the simplest example.
4.2 Modes Belonging to (5, m) = (0,0)

From Eq. (28), £ = k= 1,3,5... In this special case, since ¢ is also

odd u will have odd parities both in 4 and g. By Eq. {(13b} the corresponding

19

v(q,p) will then have even parities in both. Eq. (26} reduces to
i —
w(g.p) = = 2 (2k+1)"/*P(cos O)i(0.p) (27)
- 4ix it

where one subscript in @ is suppressed for brevity.

In order to exploit the spherical symmetry of the potential we have
written [ in spherical polar coordinates of g and p operated on Eq. (27),

and have obtained {Paper I, Sec. 5)

Lu{g.p) = 4% S (2k + 1)7Y{ET, — KAG(k + 1) P (c02 ©)

k=odd
+[Z8 + (k + 1)AG, :Pe_;(cos B)}, {28)
where
I= —i(p% - %%), (29.a)
A= —.‘(:—’ - %% . (29.8)

We remind that all barred quantities depend only on the mangitudes of ¢
and p. Substituting Eqs. {27) and (28) in Eq. {17.a) and integrating over

the angles gives
1 - =
Wl. = zk: W[(zk‘a + 2k — 1)(2 u;,,f uk)
+2k(k + 1) (L T, A B} + 262 (k + 1)2(A T, A T}

+ E —""jﬁ:—l—)——‘—[(f Ekw::,f EJ,) + (k + 1)(2 ﬁ_z,ZEk)
&

V(ZE + 1)(2k— 3)

— (k- 24 T2, L W) — (k— 2)(k + 1){A U2, A Us}] (30)

Orthogonality of the Legendre polynomials elininates all terms in the double
summation appearing in Wy except (k, k) and (k, & £ 2) terms.
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Reduction of Wy, Eq. {17.b), leads to a surprisingly simple result.

It is given in Appendix B. Thus,

R
Wy = 162G j; #°(a)u(e}e’da, {3L.a)
ulg) = %'[ |Fg (55" dp. (315)

Unlike W, W, depends only on %, which it a consequence of 7 = 0. The
fact is that 7 == 0 mode induces spherically symmetric dnesity variations and
radial macroscopic motions. In this resect u(g) of Eq. {31.b) i actually the
denaity times the macroscopic radial velocity. See Eq. {34) in the subsequent

section.

The expression for S is simpie.

S= 3% (@) (32)
k=odd

Let us point out that the inner products involving barred quantities in Egs.

{30)-(32) do not contain angular integrations, ie.
{(wv) = f T w'q? dgp® dp. {33)
4.3 Macroscopic quantities and dynamics of eigenmodes

Eigensolutions of Eqs. (15) are exact solutions of the linearized
Liouville equation. They should satisfy macroscopic evolution equations such
as the equations of continuity, of hydrodynamics, etc. Here we study the
eigenmodes of (f,m) = {0,0) from this point of view, and point out some of
their characteristics.

21

a) The macroscopic velocity field associated with a mode f = u+iv
s pV.=f |F5|1/’up;d£, The integral over vp,; vanishes because of its odd p
parity. Substituting E}q (27) for u and expressing p; in terms of Y™ (o, 8)

we see that only the & = 1 term in the expansion of u(g, p) survives. Thue,

oV = \%f |Fg V35, p>dp(sin § cos i + sin # sin @7 + cos 6k),
Cartesian coord.

= \%fﬁgﬁnﬁlpadp? polar coord. (34}

The motion is radial, a consequence of y = 0, and could be written as the
gradient of a ecalar potential.
b) The macroacopic dentiy variation is §p = ffdf = if vdp.

Here the integral over the u terms vanishes because of its odd p—
parity. Substituting for v from Eq. {13.b), and for [u from Eq. (28}, and

carTying out the integrations over angles, gives
1 — —
ple) = —= | |Fe"*(Tu; + 24w )p 4 35.0
ola) ﬁw[ls] (Lw: )pdp (35.a)

Substituting for £ and A from Eqs. (29) and after simple manipulations, one

gets
i1d,, i
= — V.)=——V-{pV 358
bole) = - o g (o) = =2V - (#Y) (35.8)
Considering that for an ¢™*“* time dependence % = —iw, Eq. (35.b) is the

equation of continuity. The remarkable feature of Eqs. (34} and (35) and
the resulting equation of continuity is their dependence on only u1(g, p}
Ty Py(cos 8).
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c) A similar pattern will show up in higher order moments. The
second moment, &y = ffp.-p,—dg, and the third one, Qi = f fp,-p,-pkdg will
depend on %; and % only. The former will be expressible in terms of the
harmonics ¥7™{#, 6} and Y, and will give the hydrodynamice equation. The
latter will be in terms of ¥J™(4, ¢), and will give the energy flow equation.
The two equations will lead to the same relation between %, and ug. This
consistency condition will be met every time one adds a pair of odd and even

moments to ones list of macroscopic quantities.
4.4 A Scheme for Variational Calculations

Numerical solutions for (0,0) modes of polytropes is in progress and
will be presented elsewhere. Here we outline the steps toward such compu-
tations. In a Rayleigh-Rits variational scheme, a complete set {@:5lp, q}} is
assumed. Power sets {¢p’; 1,7 = integers } usually is an effective one. The
Ui of Eq. {26) is expanded in terms of this basis, and the coefficients of expan-
sioh are treated a3 variational parameters, and w? of Eq. (16) is minimized.
A matrix equation emerges in the process and the problem reduces to simul-
taneous diagonalisation of the matrices corresponding to W) + sign (Fe)W,
into the matrices of eigenvalues w? and the matrix of § to the nnit ma-
trix. Computatior can be carried cut in various orders of truncation of the
matrices and the convergence of the results watched in different orders of

approximations.
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5. CONCLUDING REMARKS

An eigenvalue problem for the linearized Liouville-Poisson equation
exists. The eigenfunctions are in general complex functions of the phass
space coordinates. The eigenvalues can all be real, or purely imaginary or a
combination of both, but never complex. The linearized operatar, 4, is not

Hermitian. However, 4% on functions odd in p is Hermitian.

The linearized equation does not conserve energy. However, it con-
serves angular momentum and therefore has 0(3) symmetry. An angular
momentum opertor in phase spz . J; exists which commutes with £ This
classifies the eigensolutions into classes designated by a pair of eigennumbers
(4, m) belonging to (J?,J,). Furthermore the class designation enables one
to write the dependence of the eigenfunction on the direction angles of g and
p as eigenfunctions of {J2,J,). A subsequent integration over the angles then
reduces the six dimensional phase space problem to a two dimensiona] one in
terms of the magnitudes of ¢ and p. Variational computations then become

tracktable.

The {0,0) modes lead to spherically symmetric macroscopic dengities
and macroscopic radial motions. Equation of continuity, of hydrodynamice,
and the higher order equations are satisfied by the various p-moments of the
eigensolutions. In stability problems, many authors have spoken of radial
perturbations. See, for example, Antonov (1962), Lynden-Bell and Sanitt
(1969), Doremus and Feix {1973), and Gillon et al. (1976). This paper pro-
vides a proof of the existance of such modes for isotropic distributions, It

24



is a consequence of the 0(3) symmetry of the linearized equations for F(E).
Likewise axially symmetric modes exist. They are {7 # ¢, m = 0) modes.
Whether spherically and axially symmetric modes exist for anisotripic dis-

tributions ix still an open issue.

We wish to avail this opportunity to point out a confusion in the
literature regarding the stability of isotropi¢ distributions F{E)}. For real
istic situations dF /dE > 0 is a rarity and it is a common sense to assume
dF/dE < 0. Many pioneer investigators have done so. In later works, how-
ever, this common sense assumption is misinterpreted as a condition under
which conclusions of the earlier papers hold. Including among these mis-
conclusions is the necessity of dF/dE < 0 for stability. The fact is that
instability is suspected only when dF/dE < 0. Otherwise dF/dE > 0 &
a sufficient condition for the stability of any F(E). Such monotomically
increasing distributions have of course to be truncated at some maximum
energy, the boundary of the phase space. Exactly this drop to zero could
be the cause of instability. Sobouti {1984), and Kandrup and Sygnet (1985)
have addressed this edge effect. Sobouti gives the criterion F|Fg|"'/? = 0 at
the boundary as the condition to neglect the edge effect. The fact that thie
is in opposition to analogous plasma problems lies in the attractive nature
of the gravitational interaction. We argue that if the interparticle gravita-
tional forces are responsible for instabilities then distributions providing with
favourable situations for effective interactions should also favour instabilities,
and vice versa. Gravitational interactions are effective if two particles can
enjoy sach others company from closer distances and for longer times. A
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closer fly by means emaller gravitational potentials, and longer flight times
requires smaller relative velocities. The two together result in smaller total
energies. Thus more particles with smaller energies, that is, dF/dE < 0,
favours more effective interparticle interactions and therefore a favourable

environment for instabilities. Vice versa.
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APPENDIX A - Proof of |4, 4] =0

The commetation holds for spherically symmetric potentials. For
brevity let ¢ = eign (Fg)G = £G and o(E) = |Fg|'/?. The defining Eq.
(6.b} is now written as

Af=1:f+gacfa'f'13-g'|-iaf' (A1)

where the primed quantities are to be evaluated at the phase space point

(¢, 7). We first reduce [4, L;| term
A7 = 8,57 + 9oL [ oG Yg - g
‘chiﬂfa'f'i_q—g'l"dr' (4.2)

We note that L; = L] = —L2,£ = £}, Lo(#) = 0, and Lo(E) = 0. The

second and third terms of Eq. {A.2) are reduced below
2nd term = ~gofl fa'fl.: lg-¢'["*ar',
= ie;jkgaﬂ[cr'f'q;q;,lg "-qll-sdfl, (A.3)

where we have substituted I, = —ie;,;50,3/9q:, carried out the necessary

differentiations and used e;uq)q} = 0.
3rd term = [L,L.-]gafa'f'ig—g'r’dr'
—gotls [l oI e (44)
Again taking L; under the integral sign and differentiating g — ¢|~* gives
3rd term = [£, L] ga/a"f'[g-g'r‘df'
~ieigol [ & Fanlg= o100 (45)
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Combining Eqs, (A.2), (A.3) and {A.5) gives
[4, Ll f =1L, LS + g0 [ df'la— o1 dr'} (4.6)

Next we reduce [4, K], K; = ~ic;;up;8/3ps. Again we note that K = K1
and Ke(E) =0
(A, Kl = [L, Kf + 9ol fa'f'x,f- lg— ¢/ ar"
- gch‘-.C[a'f'|g—g'|'ldr'
= (L. KNS +0o [ o'Flg- g1 ar')

+ gaﬁ'[cr’f’K:‘ lo—g'|7*ar’

—gol K, fa"f'ig—g'rldr' (A.7)
However, both the second and third terms on the right side of Eq. {A.7)

vanish for X operating on functions of ¢ alone gives zero. Adding Eqs. (A.6)

and (A.7) gives
(A Llf = [ ) f + gafﬂ'f’lg - g1 tdar'} (A.8)
But from Paper 1, Sec. 4, [£, J;] = 0, therefore

[4, %] =0,QED. (4.9)
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APPENDIX B - Reduction of Wy, Eq. (17.b)

From Eq. (13.b), |Fg|*/? L = iw}Fg['/?v. This, integrated over p,

1
is iwfp = V- (pV) by the equation of continuity, Eq. (35). Eq. (17.b) then
becomes:
W,y = Gw.wf £0”{9)énlq dodq’ 2.
lo—g1
3

=G [V (o¥) Y (o) L (8.1

1
lg- ¢

By partial integrations on both ¥V operators one obtains V“Lq - g'i" =

4
4xé(g — ¢') from which one immediately gets
Wa=4xG [(5V) - (V)i (8.2) 3
The fux density is given in Eq. (34) and is radial. With minor change in 6.
notation and integrations over the angles one obtains 7
R
W2 = 16x°G [ #(9)u{e)e*dq (B.3) 8.
1]

where R is the physical radius of the system, and

g
1
wlg) = p¥, = —= | Fg[* 5, dp (8.4
V3 10
11.
12.
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