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ABSTRACT 

Let the linearized Liouville-Poiseon equation be iJJ f jat = A/, f = 

f(g, p), p = momentum coordinate. A on f's is not a Hermitian operator. 

However, an eigenvalue equation, A/w = w fw, with real w's and non orthog-

onal eigenfunctions can be set up. For spherically symmetric potentials A 

and R have 0(3) symmetry. There exists an angular momentum operator, 

J0, which commute! with A. This clae:sifies the eigenfunction! into classes 

specified by a pair of eigennumbers (f, m) belonging to { J 2 , J .. }. This in turn 

enables one to separate the dependence of the eigenfunctions on the direction 

angles of (g,p} and reduce the six dimensional phase space p!'Oblem into a 

two dimensional one in tenns of the magnitudes (q,p). 
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1. INTRODUCTION 

In Paper I of this series (Sobouti. 1988) the symmetries of the six 

dimensional Liouville equation pertaining to a time constant potential were 

studied. The eigenfunctions were found to be square integrable functions of 

phase coordinates in a complex Hilbert space. They were orthonormal and 

complete. For an even potential the real and imaginary parts of the eigen­

functions possessed definite symmetries in configuration and in momentum 

coordinates. For a spherically symmetric potential Liouville's equation had 

0(3) symmetry and the eigenfunctions could be chosed as simultaneous with 

those of an angular momentum operator. The latter was in turn the sum of 

two angular momenta in configuration and momentum spaces. These sym­

metries allowed a classification of the eigenfunctions, A reduction of the six 

dimeMional phase space problem to a two dimensional one became possi­

ble and a tractable computational algorithm was found. Paper II {Sobouti, 

1989) dealt with simple harmonic potentials in one, two and three dimen­

sioM. Exact and complete eigensolutions were obtained by means of raising 

and lowering ladders for the Liouville operator. This communication is a 

continuation of Papers I and II. Here we show that the linearized Liouville­

Poisson equation has most of the symmetries, including the 0(3) symmetry, 

of the Liouville equation based on a time constant potentiaL We construct 

the simultaneous eigenfunctions of the linearised operator- and the "angular 

momentum• operator developed in Paper I. 

In applications to self gravitating stellar systems the combined Pois-
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son and Liouville equation is nonlinear. The linearized version, however, is 

reasonably tractable. Antonov's (1960) attempt is of this nature. Lynden­

Bell (1967, 1969), Lynden-Bell and Sanitt (1966), lpsor and Thorne (1968) 

have elaborated on Antonov's approach. The focus of most of these efforts 

is the stability of a given distribution, a function of the energy integral in 

most cases. Doremus et aL (1970, 1971), Doremus and Feix (1973), Gillon et 

al. (1976), Kandru.p and Sygnet (1985) investigate stabilities of anisotropic 

distribution!. More on the stability of the linearized equation may be found 

in Sobouti (1984) and Barnes et aL (1986). 

Some investigators have . :~empted actual solutions of the lineazUed 

equations. Shu ( 1970) puts forward the notion of spiral density waves as per­

missible modes of oscillations of a stellar disk. In this theory a central role 

is attributed to the gravitational potential induced by the density variations. 

On the other hand there are spherically symmetric systems with dimensions 

smaller than Jeans' wavelength (to avoid Jeans' instabilities) where variations 

in the gravitaional potential play a lesser role. Doremus and Feix (1972), and 

Doremus and Baumann (1974) consider such systems and attempt to obtain 

eigensolutions for a one dimensional system consisting of two phase space 

regions of constant phase density. Along with extensive numerical study of 

dynamical instabilities, Barnes et ai (1986) analyze the linearized Liouville­

Poisson equation for "thin-shelled"' spherical systems. A noteworthy aspect 

of their analysis is their emphasis on the symmetries and commutations of 

the operators involved. Sobouti (!984, 1985, 1986) attempts eigensolution of 

Antonov'!i equation applicable to spherical systems with no Jeans' instabili-
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ties. His approach is to assume a variational ansatl and go through elaborate 

analytical and computational analysis of the variational integrals. 

Sec. 2 introduces the lieariJ:ed equation and points out some ana-

lytical features of the eigenvalue problem pertaining to it. Sec. 3 discusses 

the 0(3) symmetry. See. 4 deals with classification of modes and elaborates 

on the simplest due. Sec. 5 is devoted to concluding remarks. 
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2. LINEARIZED LIOUVILLE-POISSON EQUATION 

In a collisionless stellar system one maintains that the distribution 

function, F(g, E• t) satisfies Liouville's equation, 

. aF _ l.F, •at-

. _ a au~). 
£ = -'(P, aq,. - aq,. ap,. 

where the mean potential U(g, t) is the solution of Poisson's equation 

U(g,t) ~ -G I F(g',p',t)ig- g'l-'d,', 

(!.•) 

(!.b) 

(2) 

where dT' = dg'dp'. Let F- F(E)+8F(g.p, t), where F(E) a function of the 

energy integral ie an equilibrium distribution, and OF< F(E) for all (g,p, t) 

is a perturbation on F(E). Actually this perturbation condition may break 

down at the boundary of the phase space volume available to the system. 

As an approximation we will dismiss such eventualities. Accordingly, the 

potential splits into a large and a email term, U(q) + 8U(g,t). Substituting 

these in Eqs. (1) and (2) and retaining only the first order small terms givee 

i aoF ~t.F+i aF aou 
at aPi aq, ' (3) 

6U ~ -G I 6F(g'.p', t)ig- g'l-'d,', (4) 

where £ is now constructed with the time independent potential U(g). The 

second term on the right of Eq. (3) may be written as 

dF aou 'I ('')I,,, i dEPt 8q;"=GFEL. 6Fg,p,t g-gr dT. 
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We shall confine the analysis to cases where FE = dF /dE is either positive or 

negative for all permissible values of E. Let us introduce the transformation 

SF = [FE[112 f(p,g,t). This is a provision of Antonov (1962) except for 

the square root on FE which is due to Sobouti (1984). Noting that f.F = 

£(FE)= 0, for they are functions of E and are integrals of motion, Eqs. (3) 

and (4) can be combined into 

where A is defined as 

. of~ At 
• at 

A!~ l! + G sign (FE)IFEI'i' £ j IF~i' 1' f'lg- gT'd,', 

(6.a) 

(6.!) 

where primed quantities are to be evaluated at the phase space point (1, p'). 

A simplifying feature of A which will be used repeatedly is that (a) the 

integral vanishes if its integrand is odd in p. (b) the term containing the 

integral is odd in p, for f. is odd in p and the integral is independent from p. 

These imply that 

Au~ £• for u(q,p) ~ -u(g, -p), (6.,) 

Av ~ £{v + G sign (FE)IFEI'i' J IF~ I'/' v'lg- g'l-'dr') 

for v(g, p) ~ v(g, -p). (6.d) 

2.1 Integrals of the Linearized Equation 

For a time constant and spherically !fmmetric potential the energy, 

E = ~p2 + U, and the angular momentum, h.; = E;jl.q,p~o, are constants of 
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Liouville's equation in the sense that l.E = £h.,. = 0. For the linearized 

equation the energy is not a constant of motion for the obvious reason that 

the potential energy acquires a time dependent term, SU(g, t). The angular 

momentum, however, remains constant. One may readily verify that 

J.h,. = 0, h.; = ~iik9;Pic· (7) 

Implicatioll! of Eq.(7) are interesting. {a) coll!ervation of angular momen~ 

tum requires spherical symmetry of the total potential, U(q) + SU(q, t). One 

concludes that there are solutions of Eq.(6.a) which lead to spherically sym-

metric density variatioll! and ta<fial macroscopic motions. One must, how~ 

ever, be careful not to generalize this statement to all solutions. We shall 

see such solutions in Sec. 4.2. (b) conservation of angular momentum also 

means isotropy of space and invariance of A tlllder rotations of the phase 

coordinates. This 0(3) symmetry of A is discussed in St>(;. 3. 

2.2 Antonov's Equation 

Let f = u(g,E) + iv(g,E), where u and v are odd and even in p, 

respectively. This is not a deeomposition into real and imaginary components 

at this stage. It will, however, turn out to be so as a characteristics of Eqs. 

(6}. The factor i is included in anticipation of this feature. Substituting 

in Eqs. (6), and decomposing the resulting equation into odd and even 

components gives 

au =Av 
at 

av =Au= t.u -at 

8 
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Differentiation of (8.a) with respect to time and 11ubstitution from (8.b) yields 

a'u 
- iJfl = .~f.lu (9) 

writing out A2 explicitly by means of Eq11. (6.c and d) gives 

A2 u = l 2 u + G sign (Fs)!FsJ 112 l I IFsl1/
2 l'u'Jg- g'l- 1

dT
1 (9.bi,) 

Equations (9) are Antonov's equation. u and v, calculated from Eqs. (9) and 

(8.b), give a solution of the linearized Liouville-Poisson Eqs. (6). 

An alternative formulation equivalent to that of Antonov is possible. 

Upon differentiation of (8.b) with respect tot and using (8.a) one obtains an 

equation for v. We shall, however, use Eqs. (9) and (8.b) for their relative 

simplicity. 

2.S Symmetries of the Linearized Equations 

Let H be the Hilbert space of all complex functions 

g(q,p) ~ z(g,p) +iy(g,p), nnd y roal, (!O.a) 

that are (a) square integrable over the available volume of phase space and 

(b) vanish at the boundary of this volnme. Let th~ inner product in H be 

(g, g') = J g~ g' dT = finite, g, g1 E H (IO.b) 

It is evid~nt that A defined on His a linear operator. Its Hermitian adjoint 

can be found by int~gratioru by parts on (g, AI) and converting it to (AJ, f). 

One obtains 

Aj f ~ [f + G eign (F,JIFE!'1' / !F'.J'1' £' f'lg- g'l-'d,' (!La) 
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In the special cases of odd u and even v one finds 

Atu = ,C.u + G sign (FE)IFE]112 f IF~J 1 12 ,C.'u'lg- g'l- 1
dT' (!l.b) 

Alv ~ [v (II.') 

Evidently A is not Hermitian, for A =1: A+. 

Let us consider the two subspaces of)(, )( (odd) with members u 

odd in r. and H (even) with members v even in p. Neither subspace is closed 

under A for Au is even if u is odd and vice versa. However, both I!Ubspaces 

are closed under A2 • Furthermore, A2 on H (odd) is Hermitian. The proof 

is !!imple 

(u,A2 u) ~(!u, [uj + G eign (F,j 

x f 1Fsl1
/
2 .CuiF'5 11/

2 l'u'lg- g'l- 1
dT

1
dT = real (12) 

In deriving Eq. (12) we have ~ed Hermitian character of l. J.l is not 

Hermitian on H (even). This l!lingles out H (odd) and allows to set up 

an eigenvalue problem in connection with Eq. (9). Thul!l, assuming a time 

dependence, exp(-iwt), Eqs. (9) and (S.b) become 

A2 u,., =w 2 u,.,, w 2 = rt:al,(u,.,,u..,•) =c ....... (!3.a) 

Lu,., = ±iwv ... (!3.b) 

The real valuedness of w2 and othoganality of u,., 's is a consequence of the 

Hermitian character of A2 in H (odd). The orthogonality of the correspond-

ing v ... 'sin H (even), however, cannot be proved, for they are not the eigen-

solutions of a Hermitian operator. In fact we find 
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1 
(v., "•') ~ w•w• (£....,, £....,,) (14) 

= 0,.....,•- w~w'sign (FE) J IFEf112 fF1f 112 .Cu.,..£'u~.jg- g'f- 1 drdr' 

where we have written (.Cu...,.CUw•) = {.L! 2 u,.,, Uw•) and have substituted for 

£2 u from Eqs. (9.bis) and (13.a). The physical meaning of the second term 

in Eq. (14} is clear. We note that the mass density induced by f = u+iv is 

6p ~ -(ifw)fiF•I112 £udp. The second term in Eq. (14) is then propo•­

tional to-G I Op,..(q)6p...,• (q')lg-g'f- 1 dgdg' which is the mutual gravitational 

energy of the two modes wand w1
• We also note from Eq. (13.b) that for a 

real w, v.., is real This shows that f = u + iv, besides being a decomposition 

into odd and even parts, is also a decomposition into real and imaginary 

parts. 

Returning to the original equation of motion we observe that f.., = 

u,., + iv,.. i! a solution of Eq. (6.a), 

Afw =wf.., (15.a) 

where u,., and v..., in turn satisfy Eqs. (13). The proof is a matter of substitu-

tion of Eqs. (13) in (15.a). Thus we hav~ found the eigensolutions of the non 

Hermitian operator A. However, there are peculiarities to these solutions: 

1) The eigenvalues are either real or purely imaginary depending on 

whether w2 is positive or negative, respectively, but never complex. 

!.a) For a real ±w the eigeneolutions come in pairs (w, f) and 

(-w, r). This is seen by taking the complex conjugate of Eq. (15.a} and 
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noting that A i! purely imaginary. For most cases of astrophysical interest 

all w's are reaL For a proof see Sobouti {1984) for the case of dF/dE ~ 0, 

and the references in Sec. I for dF/dE-5: 0. 

Lb) For an imaginary w = ±ia, o: real, the eigenfunctions are real 

and come in pairs (±o:, f± ), with f± = (1 ± ~~ )u. We note that f./i is real 

2) For neither cases (La) and (l.b) above orthogonality of eigen-

functions is realised. For, by Eqs. (13) and (14) 

(!,,!,•) ~ (....,,....,.) +(•.,•-·) 1 ·--· (15.6) 

This lack of orthogonality brings ·- complications. For, completeness of the 

eigenfunctions comes under question and requires a thorough scrutiny. The 

problem is non-trivial for neither A or f. are invertible. They have zero 

eigenvalues corresponding to integrals of motion. 

3) Eigenfunctions belonging to w #:- 0 integrate to zero. 

Proof: I fwdr = w- 1 J Af..,dr = 0, for from Eqs. (6.c and d) the integrand 

is a perfect differential and leads to a nonvanishing surfac~ integral. 

4) Eigenfunctions belonging to w = 0 can be chosen real. For if 

A!o = 0 then by complex conjugation A/0 = 0 and A(/o + /0) = 0. The 

angular momentum integrals of Eq. (7) are of this nature. 

2.4 Comparison between A and f. 

It is worth pointing out the similarity and differences between the 

perturbed and the unperturbed operators. f. is Hermitian on the entire 
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Hilbert space. The eigenvalue problem lfw = wfw, or its real and imaginary 

decompositions, l 2 Uw = w2 u,.,, .Cu..., = iwv..., have real eigenvalues and com-

plete orthogonal eigenfunctions. In addition (a) for U(g) evening, f. is odd 

in g. And (b) .Cis a first order differential operator subject to Leibnitz's rule 

l(gf) ~ (lg)f + g(!f). lmplioationo "'' 

{1) Uw and tlw have definite q-parities in addition to their definite 

p-parities; 

(2) Both q-, p-parities of the u.., are opposite to those of Vw. 

(3) H (w1 , !I) and (w2 , h) are two eigensolutions then 

( w1 + Wz, fd2 ) i8 another solution. 

In particular, 

(4) f;fw is a constant of motion, that is, l(r f)= 0, and further­

more (nw, J:.:) and ((n- m)w, !;'"' !;:.) are eigensolutions 

Details and Proofs of statements (1) to (4) are given in Sec. 2 of 

Paper I. 

2.5 Variational form of Eqs. (13) 

The eig~nvalue problem for JP i! best handled in its variational 

form. For brevity we !uppress the subscript in u.., and remind that u(J,p) in 

Eqs. (13) and the subsequent ones is an odd function of p. We left multiply 

Eq. (13.a) by u'" = u and integrate over the phase space volume available 

to the system. After some integration by parts, or equivalently using the 
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henniticity of l, we obtain 

w' ~ [W, +sign (Fs)W,[/S, 

where 

W, ~ (!u, !u) ~ J (!u)• !ud' > 0, 

W, ~ G J \Fsl'''(!uJ"IJ1:1'''(!uJ'I(g- g'[-'d'd'' :0: 0, 

S={u,u)= I u·udr>O. 

(16) 

(17.a) 

(17.!) 

(17.,) 

That S is positive definite is evident. Similarly, W1 is positive and could 

be zero if .Cu = 0. The positive nature of W2 is proved by Sobouti (1984). 

It could be zero if .Cu = 0. Thu!, a sufficient condition for positive w2 is 

dFidE > 0. However this is far from being necessary. For we now know that 

mD!t isotropic distributions with dFfdE < 0 also possess positive eigenval-

ues. 

Eqs. (16) and (17) together with (13.b) for v will be used for vari­

ational calculations. This will be done after dll!cussing the 0(3) symmetry of 

A, Hpanding the dependencies of the integrands on the direction angles of g 

and P• and integrating over the angle!. 

14 



3. 0(3) SYMMETRY OF A 

Let U be spherically l!ymmetric. Motivated by the conservation of 

angular momentum, Eq. (7), we look for the invariance of .A under rotation 

of both g and p coordinates. In the spirit of Paper I, Sec. 3, we argue that 

rotations of q coordinates, about the ith axis, are generated by an angular 

momentum operator in q space: 

a 
Lo = -ie,,.,.q; 8qk (18.a) 

One must note that Lo rotates the q coordinates with no effect on p axes, 

for !!• p are independent in phase space problems. Similarly rotations of p 

coordinates about the ith axis are generated by a similar operator in p space: 

8 
Ko = -it!>i~<Pi ap,. 

The q and p coordinates together are rotated by 

Jo=Lo+K; 

(18.b) 

(18.c) 

Before proceeding further we note that L;, K 0, and Jo are all Hermitian 

in their respective spaces and have the angular momentum algebra. For 

instance, 

[J;, Jil = -if!OikJie (19.•) 

A well-known corollary to Eq. ( 19.a) is 

JJ', J.J ~ 0 (19.6) 

It is shown in Paper I, Sec. 4 that 

[L, J,J ~ o (20.a) 

15 

Here we extend the same to J. 

Theorem: 

(A,J,J ~o (20.6) 

The proof of the theorem i8 given in Appendix A. The essence of 

Eqs. (20) is the invariance of the Liouville and the linearized Liouville equa.-

tiona under rotations of both q, p coordinates about the same axis and by the 

same angle. This obviously leaves the (g, p) angle unchanged and one may 

SU!pKt A and l to depend on the relative orientations of the !!• p vecton 

rather than their ab!!olute orientations. Indeed, this is shown to be the case 

for .C. See Paper I, Sec. 5, for an expression of .C in terms of cos(g, p). Foc 

A we leave it as a conjecture. 

A corollary to the Theorem (20.b) and Eq. (19.b) is the mutual 

commutation of the following Mt of operators 

JA',J',J.J~o (21) 

The implication of Eq. (21) is obvious. The eigenfunctions of A2, Eq. {13), 

can simultaneously be the eigenfunction of J 2 and J •. In other words, the 

eigenfunctions of A3 get classified into classes specified by the appropriate 

eigennumbef'!! i, m of the J 2 and J •. Sec. 4. deah with this classification. 

3.1 Relations to IDteg:rals of Motion 

For future reference and also for familiarization with the angular 

momentum operators we investigate their effeds on the energy, and the an-
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gular momentum integrals, E = !tr + U(q) and h.;.= ~;;~oQ;Piu respectively. •• CLASSIFICATION OF EIGENFUNCTIONS 

One may easily verify that 
From a formal point of view, J; is the sum of two angular momentum 

L;E= K,E = J,E = 0 (22) vector operators analogous to L-5 or J -J couplings that one encounters in 

The same holds for any F(E). The interpretation is that E depends on the 
many quantum mechanical applicatiollll. The followings are extracted from 

Paper I, Sec. ·4. 

magnitudes of q and p alone. Rotations of q or p or both coordinates leave 

these magnitudes and therefore the energy invariant. For h one finds Simultaneous eigenfunctions can be found for {J2,J,., L2 , K 2}, for 

they mutually commute. 

L;h; = i(g·p- q.p;) (23.o) 
In the conventional notation ~t lfml.k > be their eigenfunction 

K0h,- = -i(g · p- q;p.) (23.b) with eigenvalues :f(i + 1), m,l(l+ 1) and k(k +I) for P, J,.,L2 and K 2 , 

Joh; = -i~a;~oh~t (24.o) respectively. Restrictions are :f, k, l = non-negative integers, jl- kj :5. i :5. 

J,h.; = O, no summation on i (24.b) 
l + k, and -i :5. m::;: :f. The set l:fmlk > may in turn be expressed as 

Proof is straightforward. We observe that b = J x p depends on the individ-
!:fmlk >=I: Yt't(6,rp)Ykmt(cr,,8) < lmtkm~:j:fml.k >, 

m, 

ual orientations of g and p vectors. Thus independent rotations of q and p mt=m-m~o: (25) 

coordinates by Lo and Ko in general will not leave b- invariant. This is the 
where (6, rp) and (a, ,8) are the polar angles of J and p, respectively, and 

essence of Eqs. (23) and (24.a). H, however, both coordinates are rotated by 
< ... j .•• > is a Clebsch-Gordan coefficient. The producte of spherical har-

the same angle and about an axis perpendicular to (g, p) then b will remain 
monies are the simultaneous eigenfunctions of {L2 , L,., K 2 , K,.} with there-

invariant. Thi! is the meaning of Eq. (24..b). 
spective eigenvalues l(l+ 1), mt, k(k + 1), and m~~:. The parity of a spherical 

harmonic Yr under coordinate reft.ection i! (-l)t. From Eq. (25) it is now 

clear that the q and p parities of ~·mlk > are ( -1)l and (-1)"', respectively. 

4..1 Eigenmodes of{Jf2,J2,J,.} 

An eigell!lolution of Eqs. (13}, or equivalently of Eqs. (15), will be 
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specified by a pair of definite values of i and m, the eigenvalues of {J2, J., }, 

and its odd p-parity. The essence of this assertion is that u(9, p) satisfying 

Eq. (13.a) should have an expansion in terms of l.fmlk > with the expansion 

coefficients depending only on the magnitudes of q and p. Thus, 

u(g.p) ~ L"••(g,p) ~ Z::limlk> u,.(q,p) 

'·' '·' 
.f=0,1,2, ... , -j~m~j 

k = 1,3,5, ... 

I~ [k- j[,[k- j[ + 1, ... , k + j (26) 

For specified values of eigennumbers j, m, the values of k runs over 

odd integers to ensure the odd p-parity of u, and l is restricted a.s prescribed 

by the triangle rule for non-vanishing of the Clebsch-Gordon coefficients. In 

generall can be even or odd for u(g,p) may not have a definite q-parity 

For variational purposes, there remains to substitute Eq. (26) in 

Eqs. (16) and (17), carry out integrations over the direction angles of 9 and p 

and reduce the problem to a two dimensional one in terms of the magnitudes 

q, p. The two dimensional problem may then be analyzed variationally. The 

general case of arbitrary g and m is very lengthy. Here we present the case 

of i = m = 0 as the simplest example. 

4.2 Modes Belonging to (i, m) ~ (0, 0) 

From Eq. {26), l = k = 1, 3, 5 ... In this special case, since lis also 

odd u will ha.ve odd parities both in p and 9· By Eq. {13b) the corresponding 
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v(9, p) will then have even parities in both. Eq. (26) reduces to 

1 
u(g,p) ~ 4~ L (2k+ 1)'i'p,(,oe9)u,(q,p) 

k=GO<Ld 

(27) 

where one subscript in U: i.s suppressed for brevity. 

In order to exploit the spherical symmetry of the potential we have 

written .C in spherical polar coordinates of 9 and p operated on Eq. {27), 

and have obtained (Paper I, Sec. 5) 

lu(q,p) ~ _.':._ " (2k + W'i'{!I•.- kAU.J(k + l)PH,(<os e) 
- - 4:11" L., 

k=<>dd 

+[Iu, + (k +!)Au, ·,p,_,(<o,e)}, (28) 

l\"here 

I~ -i(p-'!. _ dU ..'!_) 
aq dq ap • 

(29.a) 

A~ -i(~ _ ! dU) 
q p dq . (29.6) 

We remind that all barred quantities depend only on the mangitudes of q 

and p. Substituting Eqs. {27) and {28). in Eq. (17.a) and integrating over 

the angles gives 

w, ~" t( k , [(2k
2 + 2k- t)(I "•· I ;z,) L- (2k 1 2 + 3 • 

+ 2k(k + t)(I "•· A "•) + 2k
2
(k + t)'('A "•· AU.)[ 

+ L: k(k-1) 
I;- ft<H .. • •\l<\f-

-[(I ;z._,, I ••l + (k + t)(I ;z._,, A ••l 
3) 

- (k- 2)(A u:,_,, I u:,)- (k- 2)(k + t)(A u,_,, Au,)[ (30) 

Orthogonality of the Legendre polynomials elinina.tes all terms in the double 

summation appearing in W1 except (k, k) and (k, k ± 2) terms. 
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Reduction of W2, Eq. (17.b), leads to a !Urpmingly simple result. 

It is given in Appendix B. Thus, 

W, ~ 16<2 G /,R ~"(q)p(q)q2 dq, 

p(q) ~~I IF•I'''u,p'dp. 

(3!.•) 

(3Lb) 

Unlike W1. W2 depends only on "il", which i.6 a consequence of i = 0. The 

fact is that i = 0 mode induces spherically symmetric dnesity variations and 

radial macroscopic motioM. In this resect Jl(q) of Eq. (31.b) is actually the 

deMity times the macroscopic radial velocity. See Eq. (34) in the subsequent 

section. 

The expression for S is simple. 

s ~ L (U., u,) (32) 
II:= odd 

Let us point out that the inner products involving barred quantities in Eqs. 

(30)-(32) do not contain angular integrations, i.e. 

(to,w') =I W"Utq2 dqp2 dp. (33) 

4.3 Macroscopic quantities and dynamics or eigenmodes 

Eigensolution.! of Eqs. (15) are exact solutions of the linearized 

Liouville equation. They 11hould satisfy macroscopic evolution equations such 

as the equations of continuity, of hydrodynamics, etc. Here we study the 

eigenmodes of (.i,m) = (0,0) from this point of view, and point out some of 

their characteristics. 
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a) The macroscopic velocity field associated with a mode I= u+iv 

is pV; =I IFEI112 up,:dp, The integral over vp.: vanishes because of its odd p 

parity. Substituting Eq. (27) for u and expressing p,: in terms of Yt" (o:,,B) ,, 
we ~ee that only the k = 1 term in the expansion of u(g, p) survives. Thus, 

p~ = ~I IFE l112i.ilps dp(sin e cos rpi +sin ti'sin rpj" +cos ek), 

Cartesian coord. 

- 1 1 1/2- s - v'3 IF E I U1P dpf polar coord. (34) 

The motion is radial, a consequence of i = 0, and could be written as the 

gradient of a scalar potential. 

b) The macroscopic dentiy variation is 6p = I I dp = i I vdp. 

Here the integral over the u terms vanishes because of its odd p-

parity. Substituting for v from Eq. (13.b}, and for .Cu from Eq. (28), and 

carrying out the integratioll5 over angles, gives 

6p(q) ~ ~w I IF•I'''(lu1 + 2Au,)p'dp (35.•) 

Substituting for 7 and A from Eqs. (29) and after simple manipulations, one 

gets 

i 1 d 2 i 
op(q) ~ ----(• pV,) ~ --v (pV) 

wq2 dq w--
(35.b) 

Considering that for an e-lwt time dependence -!1 = -iw, Eq. (35.b) is the 

equation of continuity. The remarkable feature of Eqs. (34) and (35) and 

the regulting equation of continuity i.s their dependence on only u 1 (g, p) tx 

U1 Pz{cos9). 
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c) A similar pattern will show up in higher order moments. The 

second moment, ffi; = J !P.P;dp, and the third one, Qi;k = J f"-P;P~cdp will 

depend on U1 and Us only. The former will be expressible in terms of the 

harmonics Y:r(9,f) and Y0°, and will give the hydrodynamics equation. The 

latter will be in terms of Y3m(9, tP), and will give the energy B.ow equation. 

The two equations will lead to the same relation between tit and 'U:J. This 

consistency condition will be met every time one adds a pair of odd and even 

moment! to ones list of macroscopic quantities. 

4.4 A Scheme for Variational Calculations 

Numerical solutions for (0,0) mod~ of polytropes is in progress and 

will be presented elsewhere. Here we outline the eteps toward such compu­

tations. In a Rayleigh-Ritz variational scheme, a complete set { ~.-;(p, q)} is 

assumed. Power sets {q'J)"; i,i =integers} usually is an effective one. The 

U,. of Eq. (26) i.s expanded in terms of this basis, and the coefficients of expan­

sion are treated as variational parameters, and w2 of Eq. {16} is minimiz:ed. 

A matrix equation emerges in the proc~s and the problem reduces to simul­

taneom; diagona!U:ation of the matrices corresponding to W1 +sign (FE)W2 

into the matrices of eigenvalues w 2 and the matrix of S to the unit rna~ 

trix. Computation can be carried out in various orders of truncation of the 

matrices and the convergence of the results watched in different orders of 

approximations. 
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5. CONCLUDING REMARKS 

An eigenvalue problem for the linearized Liouville-Poisson equation 

exists. The eigenfunctions are in general complex functions of the phase 

space coordinates. The eigenvalues can all be real, or purely imaginary or a 

combination of both, but never complex. The linearized operator, A, is not 

Hermitian. However, A2 on functions odd in p is Hermitian. 

The linearized equation does not coMerve energy. However, it con­

serves angular momentum and therefore has 0(3) symmetry. An angular 

momentum opertor in phase sp:; ' J. exists which commutes with A Th.i! 

classifies the eigensolutions into classes designated by a pair of eigennumben 

(j, m) belonging to (J2, J""). Furthermore the class designation enables one 

to write the dependence of the eigenfunction on the direction angles of g and 

pas eigenfunctions of (P, J,.). A subsequent integration over the angles then 

reduces the six dimensional phase space problem to a two dimensional one in 

tenns of the magnitudes of q and p. Variational computations then become 

tracktable. 

The (0,0) modes lead to spherically symmetric macroscopic densities 

and macroscopic radial motions. Equation of continuity, of hydrodynamics, 

and the higher order equations are satisfied by the various p-moments of the 

eigensolutions. In stability problems, many authors have spoken of radial 

perturbations. See, for example, Antonov (1962), Lynden-Bell and Sanitt 

(1969), Doremus and Feix (1973), and Gillon et aL (1976). This paper pro­

vides a proof of the existance of such modes for isotropic distributions. It 
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is a cotu~equence of the 0(3) !flllmetry of the linear~ed equations for F(E). 

Likewise axially symmetric modes exist. They are (f =1= 0, m = 0) modes. 

Whether spherically and axially symmetric modes exist for ani.sotripic dis­

tributiom is still an open issue. 

We wish to avail this opportunity to point out a confusion in the 

literature regarding the stability of isotropic distributions F(E). For real­

istic situations dF/dE > 0 is a rarity and it is a common sense to assume 

dF/dE < 0. Many pioneer investigaton have done so. In later works, how­

ever, this: common ~n~ assumption is misinterpreted as a condition under 

which condU!!!ions of the earlier papers bold. Including among these mis­

condusions is the necessity of dF/dE < 0 for stability. The fact is that 

instability is sU!!!pected only when dF/dE < 0. Otherwise dF/dE ~ 0 is 

a sufficient condition for the stability of any F(E). Such monotomkally 

increasing distributions have of course to be truncated at some maximum 

energy, the boundary of the phaee s:pace. Exactly this drop to zero could 

be the cause of instability. Sobouti (1984), and Kandrup and Sygnet (1985) 

have addressed this edge effect. Sobouti gives the criterion FIFel-l/Z = 0 at 

the boundary as the condition to neglect the edge effect. The fact that thi! 

is in opposition to analogous plasma problems lies in the attractive nature 

of the gravitational interaction. We argue that if the interparticle gravita­

tional forces are responsible for iutabilities then distributions providing with 

favourable situations for effective interaction! should also favour instabilitie!, 

and vice versa. Gravitational interactions are effective if two particles can 

enjoy each others company from closer distance! and for longer times. A 
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closer fly by means smaller gravitational potentiW, and longer flight times 

requires smaller relative velocities. The two together result in smaller total 

energies. Thus more particles with smaller energies, that is, dF /dE < 0, 

favours more effective interparticle interactions and therefore a favourable 

environment for instabilities. Vice versa. 
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APPENDIX A - Proof of lA, J;J = 0 

The commutation holds for spherically symmetric potentials. For 

brevity let g =sign (Fe)G = ±G and u(E) = JFsl'''· The defining Eq. 

(6.b) i.! now written as 

AI= l! +gulf u'fl9-11-'d•' (A. I) 

where the primed quantities are to be evaluated at the phase space point 

(y,~'). We first reduceiA,L;I term 

lA, L,Jf = ll, L;Jf +gulf u'(L:fll9-g'l-'d•' 

-guL,l f u'/'19- g'l-'d•' (A.2) 

We note that L, = LJ = -L;,l = tl, L;u(E) = 0, and lu(E) = 0. The 

s~ond and third terms of Eq. (A.2) are reduced below 

2nd term =-guf. J q'f~l!-9'f- 1 dr', 

· •j '!' ' I 'I-'d' = ·~iile9r1 J.. tr q;q~og- J f' ' (A.3) 

where we have sube:tituted L0 = -i.tiileq;O/Oq,., carried out the necessary 

differentiations and used ~,,.,.q;q~ = 0. 

3rd term = ll,L,Igu J u'f'lg- g'l-'d•' 

-gulL; J u' flq- q'l- 1dr' (AA) 

Again taking Lo under the integral sign and differentiating 19' -g'l- 1 gives 

3rd term = ll,L;I gu J u'/'lg- tl-'d•' 

- ieo;cgt:T! J cr'fq~-q,.jg-g'l-'dr' (A.S) 
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Combining Eqs. (A.2), (A.3) and (A.5) gi ... 

lA, L;lf = ll, L,](f + gu J u'/'19- g'l-'d•') (A.6) 

Next we reduce JA, K;J, K0 = -i.e,,.,.p;8/8Pie· Again we note that K = xt 

and Ku(E) = 0 

IA,K,I! = ll, K,lf +gulf u'fK;"I9-J'I-'d•' 

- guK,l J u'fl9- g'l-'d•' 

= ll, K,l(f + gu J u'f'l9- g'l-'d•') 

+gul J u'f'K:"Ig-g"r'u 

-gulK, J u'f'lg-g'l-'d•' (A.7) 

However, both the second and third terms on the right side of Eq. (A.7) 

vanish forK operating on functions of J alone gives zero. Adding Eqs. (A.6) 

and (A. 7) gives 

IA,J,Jf=ll,J,]{f+gu f u'flg-g'r'd•') (A. B) 

But from Paper I, Sec. 4, [!, J.-] = 0, therefore 

lA, J,l = 0, QED. (A.9) 
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APPENDIX B - Reduction of W2 , Eq. (17 .b) 

From Eq. (13.b), IFE 1112 .l!u = iwiFE l112 v. This, integrated over E• 

ill iw6p = ~ · (p~) by the ~uation of continuity, Eq. (35). Eq. (17.b) then 

becomes: 

W - G • I 6p"(q)6p(q) dqd ' 
'- w w I ~I q g-'! --

I ' ' I ' =G ~ (pi::J"~ ·(PI;:) lg-g'ldgdg (B.!) 

By partial integrations on both.£ operators one obtains V 2 lg- g'l- 1 

4d(g- g') from which one immediately gets 

w, = 4<G I (PI;:)" . (PI;:)dg (B.2) 

The flux density i! given in Eq. (34) and is radial. With minor change in 

notation and integrations over the angles one obtains 

W, = !6<1G /,R p"(qMq)q'dq (B.3) 

where R i! the physical radius of the system, and 

p(q) = pV, = ~I 1Fsl1''iixp'dp (B.<) 
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