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ABSTRACT

It is suggested 10 formulate 2 nonequilibrium ensemble theory by maximizing a time—
integrated entropy constrained by Licuville’s equation. This leads to distribution functions of the
form f = Z~'exp(—g/kT), where g(p,q,1) is a solution of Liouville’s cquation. A further
requirement that the enttopy should be an addwve functional of the integrals of Liouville’s equation,
limits the choice of g to linear superpositions of the nonlincarly independent integrals of mation.
Time~dependent and time—independent integrals may participate in this superposition.
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L. INTRODUCTION

It is a first principle of the statistical mechanics that the ensemble distribution functions
satisly Liouville’s equation, df /d¢ = 0. This 15 a purcly dynamical requirement and is a statement
of the fact that the system points in an ersemble do not interact. Liouville's equation, however, 1s
a first order differential equation in time and the phase space coorcinates, (p,q) If f{p,q,1) is
a solunton of the equation, so is any arbirary but once differentiable F( f). Considering the fact
that imitial preparations of ensembles can at most specify the values of few macroscopic vanables,
how does nature choose from such an enormous forage of arbitrariness? Equilibrium statistcal
mechanics resolves the dilemma by introducing a second postulate, the principle of equal proba-
bihry for ali microstates of isolated systems. This is a statistical assumption and falls outside the
realm of mechanics. On the other hand, the nonequilibrium statistical mechamics has not come out
with an explicit and wholesome statistical assumption of 1ts own; and perhaps that is why 1t has not
grown much beyond its infancy. The limited success of the nonequilibrinm statistical mechanics
explaining linear transport phenomena, hydrodynamic approximations, eic., should, in most cases,
be credited to the assumptions of local thermodynamic equilibrinm and quasistatic processes, and
therefore, to the equlibrium statistical mechanics.

Balescu V highlights the point as follows: “We may say that equilibrium statisucal me-
chanics is mainly statistical, whereas the nonequilibrium staustical mechanics 15 mamly mechan-
ical”. This need not be so. It is possible to denve nonequilibrium distribution functions from an
entropy principle and Liouville's equation as a constraint. Zubarev =% has actually pioneered
in this direction. In implementing dynamics, however, he has used the three conservation laws of
mass, momentum and energy, rather than the full Liouville equation.

In Section 2 we review a variational derivation of the equilibrium disthbution functions
as & reminder. In Scction 3 we summarize some features of Liouville's equation and the ergen-
valuc problem associated with it for later references. In Section 4 we propose an action integral for
nonequilibrium ensembles, and derive and solve the Euler-Lagrange equation for the distnbunon
functions. The action is the time integral of a Gibbs entropy constrained by Liouville’s equanon and
the normalization integral for the distribution functions. In Section 5 we study the thermodynam-
ics emerging from these considerations. In Section 6 we treat an example from simple harmomc
potentials as an illustration and in Section 7 we give concluding remarks.

2. A BACKGRUOUND REVIEW
Equihibrium ensemble theories are, traditionally, developed from the Gibbs—Totman prin-

ciple of equal probability for the microstates of isolated systems. k is known 7, however, that the
same tesults can be obtained by maximizing a Gibbs entropy,

S=—kff£nfdl‘, I = dpdq, (1

2



subject to the constraints imposed on the ensemble.

Example 1: Microcanonical distributions: One maximizes § subject to the normal-
ization comstraint

[rar-1 @

It a variational procedure one considers [ = JhAU R(f) = —kf bn f+ af, where a 15 2
Lagrange multipher. One varies £ by 5§f(p,q) < £, calculates the first order vanations, §f =
J(dh/df)6f dT". One requires &7 10 vanish for all 57 and obtains

%=—kenf+a-k=o (3

This has the solution f = constant, that is, equal probability for all states (p,q) of the system.
Example 2: Canonical distributions: One maximizes § subject to the normalization
condition and a constant mean energy

fEfcﬂ‘=<E> {4

Again one multiplies the constraints (2) and (4) by the constants  and (—B). respectively, and
adds to Eq.(1) to obtain an [—integral. One varies f and lets 8 = 0. Thos 7 = fh dr,h =
kfénf+aof—pBfE, and
dhfdf = —ktnf _k+a—BE=0 (5)
Eq.{5} has the solution
f=2Z'ePE, Z= [ e 54T (6)
1t should be noted that the derivation presented above, by no means, relies on entropy increase in
actual thermodynamic processes nor implies it. In fact the question here is not how a dismbution
function evolves 1n ume, but how nature chooses an appropriate static distribution from a vast

number of such solutions. The answer is, through a mmimum principle (for minus S), a stunt that
works in most branches of physics.

3 LIOUVILLE’S EQUATION

Let f(p,q,t) be a time dependent distributron function, where (p,q) is the collection
of ali canonical momenta and coordinates of the system. f satisfies Liouville's equation

dffdt=f+(f H}=0, L&)

where H is the Hamiltonian. As noted earlicr Liouville's equation is a first order differential equa-
tion. I £ is a solution then any once differentiable F( X) isasolution, fordF/dt = (dF/dfy(df/dt) =
0. The derivative dF/df should exist at all (p,q,?) for the argument to hold
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The cigensolutions of Eq.(7) will be needed. For this purpose let H be the Hilbert space
of the square integrable complex valued funcuons of phase coordinates, {g(p,q) € H}. The
inner product in M is defined as (g, ) = Jo"f dr = finite, ¢, f € H. We also define Liouville's
operatot, £, as £ f = —i] f, H]. Itcan casily be verified by integrations by parts that £ is hermitian
in M, and an eigenvalue equation may be set up

LA(P.9) =wfi(p,q9), w =real, (f, f) =8, (8)

With each f, there is associated a time—dependence exp{—uw,t). This eigenvalue problem is dis-
cussed extensively by Prigogine ¥ and Sobouti ®1% . Here, we summarize some salient features.

That the eigenvalues, w, are real and the cigenfunctions, A\ are orthogonal in H follows
from the hermiticity of L.

Ifw, #0
1) fiiscomplex,and [ f,dl" =0

2) If (w, £.) is an eigensolution so are { —w,, £*) and ({n— m)w,, TR am=
integres

3 H(w,f.)and (wy, f;) are eigensolutions so is (w, + wy, fi f5)
4} Any f} f, 15 a constant of motion.

fw,=0
5) fo can be chosenrealand [ fodT #0.

Because of the property (1) above no ( f,,w, # 0) nor any lincar combinations of them can give an
all positive real probability distnbution. However, lincar superposiuons of fo's and £,’s and their
complex conjugaies can give accepiable distribunon functions,

Al exgenvalues, whether zero or not, are infinitely degenerate. This is evident from the
properties (2) and (5). The spectrum of w is, in general, continuous, discrete or both. An exampie
of all discrete spectrum is that corresponding to the simple harmonic potential, ¢= ;—E kgt In
this case one may also prove the completencss of the set of the cigenfunctions and arrange them
1n an orthonormal set "' Completeness and orthogonality of the eigenset will be assumed for all
potentials. This enables one to use the eigenset as a basis for H and by so doing decompose it into
the direct product of subspaces, Hy @ Hz ® ..., where H, is spanned by the eigenvector f, and is
orthogonal to other },’s. This feature will be used in discussing the addutivity of the entropy.

4. A VARIATIONAL FORMULATION OF NONEQUILIBRIUM PROBLEM

The concepts and procedures presented below are closely paratlel to those of the con-
ventional lagrangan formulations of mechamcs and fields In a tme interval {t1,t2) definc a
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time integrated entropy as follows. This time integration is a mathematical provision only. It will
turmn out that for conservative and isolated systems that we are dealing with, S is constant. And
§ = ({2 — ;)5 becomes the same concept and with similar implications as the conventionat

cntropy. o n
s=f Sdt=-—kj jf!nfdl"dt 9
t 1] r

Postulate 1:  Evolution of the system from ¢4 103 will take place through that distribution function
which renders § maximum, satisfies Liouville's equation, and remains normalized for al! umes

In other words, to find a stazistical and mechanical diswibution function one should max-
imize Eq.(9) subject to the constraints of Egs.(7) and (2). Equation (7) is a poimt constraint 10
hold for all (p,q,t). One muliiplies it by an undetermined Lagrange multiplier M p,q,t) and
intcgrates over the phase volume and time,

2
[ [r@angjaaa=o (10a)
f r

Equnation (2) is also a point constraint as far as the time is concerned. One multiplics it by another
Lagrange multiplier o) and integrates over time,

1y
[ fa(t)(f—l/r)d.l'd.t=0 (108
& r

One now adds Eqs.(9), (10a) and (10b) to form an I-integral analogous to the action integrals of
mechanics or of other branches of physics,

I=[‘:j;h(f,f,af/ap, af/6a,p,q,t) dT dt, (1a)

where
= —kfénf+alt)f+ A(p,q,t) df/dt €31

The remarming steps are standard. 1) One lets f undergo a change 5 f(p, q,t) which vanishes
at ty,¢; and at the boundary of the phase space. The corresponding denvatives of f change by
&(af/ot) = 3(Ef) /oL, exc. 2) One substitutes these variations in Eqs.(11) and calculates §h
and &I 1o the first order in §f In doing so one eliminates the time and space derivatives of 6 f
by integrations by parts and letting the mtegrated terms equal 1o zero by virtue of the boundary
Testrictions on 8 f, and amives at the following EulerLagrange equation

oh 8 ok 8 9k B ok . (12)
af ~ ot B(3f[3t) ~ Bq 8(df/oa) dp O(Af/op)
Substituting Eq (11b) in (12) gives
~kenf+(a—-k) - {i+[)HI}=0 (13)
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For brevity let

A+[)Hl=G(p,q,0)/T, (14a)
alt) —k=kénz(t), (14y

where T 15 a constant introduced for convenience later. Eq (13) now has the following solution
f=z1eGNT (15)
To determine z and G one applics the constraints. Substituting f in Eq.(7) gives
C+[G Hl=—kTz/z=-kTx(t), (16)

where x{t) stands for #/z and is a function of time only. Formal solutions of Eq.{16) are

t
z=Zexp([ xd), (17a)
¢
where Z 15 a constant and g is a solution of the homogencous Liouville’s equation.
dg/dt=g+1{g,H1 =0 (18)
Substituting Eq.(17) in (15) gives
f=2 e 0T (1%

The terms containing x drop out and Z emerges as a time—independent partition function,
Z= j e T = T (200)

F=—kTiZ (20b)
That Z is a constant can be double checked easily,

dz/dt = (k)" f(dg/d:)e*ﬂ“'dr =0, (20¢)

where we have used Liouville’s theorem that an element dT” of phase space volume is invariant in
time. The constancy of Z means that one may go back to Eq.(10b) and begin the argument with a
constant multipher, &, The y—term of Eqs.(16) and (17) then disappear, z gets replaced with Z and
G with g. There remains to ascertain that the Lagrange multiplier A(p, q, 1) of Eq.(142) exists;
for the varianonal derivation of Eq.(19) requires its existence. This is simple. Equation (14a) with
G = g and g a solution of Liouville’s equation has the solution

d=g(p,q, /T 21)
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The crucial question of what 10 choose for the exponent function, 9{p, q,t} is discussed below.

Additivity of entropy:  Equilibrium entropies are extensive variables. The same will be expected
from the nonequilibrium ones. The concepl, however, requires gencralizanon. For the sake of
argument let us consider the canonical ensemble for a system, consisung of two non interacting
components 1 and 2. Thus, f = Z~! exp] —( E; + E2)}/kT}. One observes the followng. (a)
The total phasc space and the total Hilbert space of the phase space functions are the direct products
of two subspaces. Thus, ['(p,q) = Ti(p,q1) @ T2(pz,q2) and H(T) = Hy (1) ® Ha(T3)
(b) H, and ¥, arc orthogonal in the sense of Eq.(8). (c) E; and E; areinH 1 and },, respectively,
and are orthogonal. In fact they are eigenfonctions of Liouville’s equation corresponding to a zero
cigenvalue. (d) Theexponent in the distribution function is a linear superposition of these integrals.
Under these circumstances the partition function gets factorized into Z = 2 Z; and the additivity
of entropy follows. In nonequilibrium problems we will retain as much of the properties (a){d) as
possible.

Postalate 2:  The entropy of a system is a real valued additive functional of the independent inte-
grals of Liouville's equation.

In systems composed of non interacting components the postulate is no more than the
additivity requirement of Gibbs. In general, however, the integrals may be constants of motion,
such as the energy and angular momentum, or time dependent such as the eigenfunctions of Eq.(8).
The number of (nonlinearly) independent integrals is 2 ¥, the dimensionality of the phase space.
They will be independent if their jacobian determinant :s non zero. The addiivity postalate severely
limits the choice of the exponent function. Thus, in terms of the cigenfunction of Eq.(8) onc has

N
9P, 4.8) = D (BS fi + aufexp(—iwit) + o £ explawt)] , (22)
wml

where 8, and o, are 2 N constants. Equations (19) and (22) contain equilibrium ensembles as
special cases. Setting g = constant or E, both legitimate eigensolutions of Liouville's equation and
special cases of Eq.(22), gives the microcanonical or canonical distributions. In Section 5 we will
Feturm to constams { B, ) and discuss a method of obtaining them. On passing, however, let us
note that a canonical ensemble employs only one constant, B, the coefficient of £*f, = E

‘The noacquilibrium distributions and their technique of derivation presented here have
similarities to and differences with those of Zubarev . He maximizes an entropy constrained by
the Founer transforms of the conservation laws of encrgy, momentum, and the particle numbers.
Since the conservation of these fendamental quoantities is a consequence of Liouville’s equation,
Zubarev’s approach does indeed take into account 2 good deal of the dynamucs of the problem, but
not all of it. Even so, the closed form of the conservation cquations is, in general, based on certain
simplifying assumptions. In Zubarev's formulanon one assames the existence of Bogoliubov's
hierarchy of relaxation times of different orders of magnitude. MacLennan’s 2 distributions
are identical to those of Zubarev. His approach, however, is to consider systems in contact with an
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external bath and assume an entropy flow nto the system characterized by a temperature field, a
mass flow, etc.

5. THERMODYNAMICS CONSIDERATIONS

51 Global invariants

Let h be a solution of Liouville’s equation, dhfdt = 0. The miegral [ h dI" is time
invariant. Proof

(d/dt)fhdl‘ =f(d.h/dt)d1‘ -0, QED (23)

where we have used Lionville's theorem that a phase space volume, 41", is constant in time. By
Eq.(23) the following are invariants of the system

Z= f T dl = g~ FIAT (29)

S=z" f T (g/T+ kenZ) dT = k 3(T In2)JOT = —OF/OT.  (25)
=2z f (P'/2m+ $)e T dI' | ¢ = potential energy (26)
G=z—‘[ge-ﬁ'ﬂ”dr=m+p (27

The invariance of § implies that the thermodynamics involved is a reversible one, Furthetmore,
with § constant Eq.(9) reduces to § = (£2 — ) S, indicaung the S and S are identical entities and
serve the same purpose. The fotal intemal encrgy, [7, cannot be reduced further without knowing
the specific form of g. The last expression for G = < g > is wteresting, Its relation to other
thermodynamic quantities is the same as that of the internal energy in equilibrium thermodynamics.
Further along this hine one may develop notions similar to the heat capacity and temperature,

C=0G/3T = T(asfoT) , {28)

T =9G/08 = (dG/8T) /(35/0T) (29)

Needless to say that for g = F, Eqs.(24)(29} are the familiar relations of the equilibrium thermo-
dynamics. For g of Eq.(22), the ensemble average of every term in g s an invariant of the system
and can be obtained in terms of the partittion function. Thus,

<fif>=2"1 ff.f:e-'/"" T = kT HénZ) /85, (302)

Stmilarly
<hE f >=—kT(8/0a,t8/8c})tnZ (308
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Equations (30) arc expressions of the various macroscopic constraints on the ensemble 1n question
A knowledge of these constraints will enable one o calculate the constants £ and o and thereby
construct the disiribution function of Eqs.(22) and (19). This point of view bypasses the convention
of solving an initial value problem for a time varying system. Instead 1t places emphasis on the
macroscopic conditions imposed on the ensemble.

52 Densities in configuration space

Among the local variables of mechanical nature are the following
p= [ f dp. mass density,
pv == [ f p dp, mass fiux density,

P= %{ffp’ dp—pvz}.mssum.
u=[fHdp=3P+} pv®+ pd,energy density, ¢: potenual energy.

These macroscopic variables are solutions of equations of continuity, of Euler’s hydrodynamics and
of energy flow in the convenuoenal hierarchial scheme. This is because £ 15 a solution of Liouville’s
equation. More interesting, however, is the entropy density, po = —k [ f Zn fdp. Substiwting for
f from Eq.(19) and after simple manipulations one obtains

po = kpl (T €n 2) [T + T8 (€n p) /8T = —p BF /3T + kT 0p/8T 3D

It is remarkable that o has retained its thermodynamic character of being a function of pand T
only. It is an implicit function of space—time through p. In general, the entropy density does not
satisfy a macroscopic equation of contimuty. Simple calculations show the following

3(pa) ot + V - (pav) =—;—,V-/(p—")yfdp (32)

The moticn of an clement is not stnctly adiabatic. At any fixed locality there are entropy flucttua-
uons not caused by flow terms. However, the time averages of Eq.(32) over cifferent periods,
T, = 2m/w,, are exnther exactly or ncarly equal to zero. Exact cancellanons will ocour if w,'s are
commensurate and the system is exactly periodic. One should, however, bear in mind that the least
common multiple of T, s (if there exists one) are of Poincare time scales. Oun the way of illustration,
a simple example is given in the next section,

6. EXAMPLE

Let the physical system be a single one dimensional harmonic osciliator (a Deby mode
in a crystal lattice, say). Liouville’s equation for the Hamiltontan H = 1(p? + w?¢?) is

F=UH fl= —pdf/dq+wqdflop (33)
9

A complete set of the ergensolutions of Eq.(33) arc given by Soboun '3

S = E™(p+ iwg)® with cigenvalues s, (34a)
Fon=E™(p~1wq)® with cigenvalues — s, (34%)

where E = 1(p? + w?q?), and m, n= non negative integers. The set 1s complete. It is orthogonal
with respect to n but not to m,

Let the imitral valoe of the exponent function be
1
9r,0,0) = E+ pop = fio + 5ol for + for}, (35)

where py 13 a constant. The second equality is an cxpansion of this initial value 1n terms of the
eigenfunctions of Eq.(34). At any later time one has

1 1 .
gi{p.q.t) = fio+ i—m(fnlc_""-!-fsle“"‘) = i(pzi-wzqz)+popcoswt+w2qoqsm wt, (36a)

flp,q,0) = 2~ T, (360
where wgo = po, and by a straightforward integration
Z=2akTw  exp(w’gd/2kT) (36¢)
The ensemble so designed reduces to a canonical one in the lumit of pp = wqg = 0.

6.1 Global thermodynamics of Eqs.(36)

"The partition function of Eq.(36c) has the dimension pg, for f 15 the probability per umt
volume of phase space. Rt is preferable to make it dimensionless by wsing {p/po, ¢/qo) instead of
(p, q). With this provision Z is replaced by

z = 2nkT(wgo) 2 exp{wqd J2kT) = e FHT (370
where the second equality is a definition for F. The total entropy and energy arc
§=3F[8T = k + k tn(2 kT /w?g3), (37h)

U= [Efdﬂ/qu =kT+ %wzqg =F+TS+wqpm (379

The following relations may also be verified

T = §U/as (37d)
C=8U/8T =T dS)aT =k (37¢)
10



The relations between 2,8, U, T, F, and € are the same as those of the conventional equilibrium
thermodynamics. In particular, T may be interpreted as the constan global temperature of the
ensemble. Similarly, F and C may be indentified with the free energy and the heat capacity, re-
spectively, The explictt values of the globat variables, of Eqs.(37) are the thermodynamic values of
the one dimensional harmonic oscillator except for the term w? g3 Even thus term has precedence
in equilibrium theory, if one treats the oscillator as a quantum mechanical one. A quantum oscilla-
tor has a zero pomt energy Aw and occupies a phase volume ApA g ~ 2mh. On replacing lulgd
m the energy Eq.(37¢) by %hw and wq? = wppqp in the entropy Eq.(37b) by 2wk, one recovers
exactly the energy and entropy of the one dimensional quantum oscillator in the mgh temperature
limit. See Morse ' for the latter values.

6.2 Local thermodynamics of Egs.(36)

‘The word local is used to indicate densities in the configuration space. In the notation of
Section 5.2 one has

D=ffdp=w(21rk1')‘” expl—w? (g + go st wt)? /2 kT (38a)
pv=ffpdp= —pwge cos wt, v = —wgg oS wt, (38b)
® =ffEdp= %p[kT-i-wz(qz + ¢2 cos wt], (380)
P=ffp’dp=pv’=kTp. (384)

Thesc local variables are exact and closed solutions of the MacToscopic conservation laws of mass,
momentum and energy. Here, the energry equation takes the following form

s+ V- [{(u+ Pv)=0. 39

Interpreting u + P as the enthalpy density, this is identical with the conventzonal flux defined on the
basis of thermodynamic considerations and without recourse to statistical mechanics. See Landau
and Lifshuz ', The entropy density is :

po = ——kp[fnp-—llu(h'rkT/w:qg) —*l-} (40)
2 2
Eq (32) reduces o
%(pa)i-v (poV) = —2kV [pvw?(q+ qo sinwt)? /2T (41
YA CONCLUDING REMARKS

It is proposed to consider the time integrated entropy as a *action” for ume varying en-
sembles The formulation of the nonequilibrium statistical mechanics then becomes a lagrangan

1

formalism, common to most branches of physics. Dynamues is accounted for by using Liouville's
€quation as a constraing 1n extremizing the acton integral. A clear distinction should be made be-
tween this maxtmization of entropy and its increase in actual irreversible processes in the course of
time. Actually, for pedogogical reasons itreversiility ts left out 1n the present paper. Ths is done
by using the time reversible Liouville's equation. Irreversibility and along with it the ime increase
of the entropy and transport phenomena could be mcorperated into the formalism in a number of
ways: By itroducing non conservative terms in Liouville's equation, by replacing 1t by alternatives
of Fokker—Planck or master equation type, by letting the system in contact with external reservours,
by coarse—graining the distributions in time or in space, cic. The quantum version of the formalism
is casily obtainable. In fact, when applied to systems with finitc number of states (an Ising model
of spin chain, say), the problem is easier to cope with than the classtcal-systcms with a continuum
of states. These aspects will be presented elsewhere.
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