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Abstract

The influence of longitudinal structuring on the fast kink modes of coro-
nal loops is investigated. Analytical dispersion relations and mode profiles are
derived for the second-order ordinary differential equation governing the z- com-
ponent of the perturbation in the magnetic field, 0B,. All other components
are given in terms of §B,. Deviations from the frequencies and mode profiles
of homogenous loops are given as functions of the density scale height. The
effects of the fixed and variable column masses, negative scale heights, and
density contrasts inside and outside of the loops are studied. The frequency
ratios, mode profiles, and the antinode shifts from those of the sine profiles of
the homogenous loops, are tools to estimate solar photospheric parameters. To
this end, we have expanded the relevant factors up to the second order in the
stratification parameter. In particular, we verify that the first overtone antinode
shifts are in the Mm range and are within the reach of the resolutions of the
present day observations.
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1. Introduction

The first spatial oscillations of coronal loops were discovered in extreme ultravi-
olet (171 A) by Aschwanden et al. (1999a). Using a MHD wave theory developed
by Edwin & Roberts (1983), Aschwanden et al. (1999b) and Nakariakov et al.
(1999) interpreted them as the fundamental fast (kink) mode of coronal loops.
Subsequently, Wang et al. (2003) observed frequency spectrum of the standing
slow modes of the loops.

Since then theoreticians have been supplementing the observed data, oscil-
lation periods, loop lengths, etc., with plausible auxiliary parameters, such as
plasma density, magnetic field strength and configuration, etc., with the aim of
obtaining reasonably realistic models for the structure of the loops (Bennett et
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al., 1998; Verwichte et al., 2004; Diaz et al., 2002, 2004; Van Doorsselaere et al.,
2004; Andries et al., 2005a, b, Arregui et al., 2005; Dymova & Ruderman, 2005;
Erdélyi & Fedun, 2006; Diaz & Roberts, 2006; McEwan et al., 2006; Donnelly
et al., 2006; Erdélyi & Verth 2007; Dymova & Ruderman, 2005; Dymova &
Ruderman, 2006; Verth et al., 2007 Doorsselaere et al., 2007; Erdélyi & Verth,
2007; Safari et al., 2007; Karami & Asvar 2007).

In their recent work, Dymova & Ruderman (2005) and Safari et al. (2007)
reduce the MHD wave equations to a single Sturm-Liouville equation for the z-
component of the perturbation in the magnetic field. Here, we use the formalism
of Safari et al. and show that, for an exponential plasma density stratification
along the loop axis, the problem has a closed analytical solution. The loop model,
equations of motion, and boundary conditions are presented in Sec. 2. The closed
solutions, including the dispersion relation, are treated in Sec 3. Concluding
remarks are given in Sec. 4.

2. Description of the model and equations of motion

A coronal loop is approximated by a cylinder of length L and radius R. Loop ends
are fixed at the photosphere. Loop curvature is neglected, on account of R << L.
No initial flow is assumed inside the loop. A uniform magnetic field along the
axis pervades the loop, B = BZ. Gas pressure, gravity and all dissipative and
viscous forces are neglected. The density is discontinuous on the lateral surface
of the cylinder and varies exponentially along the axis. Thus,

p(r,z,e) = pi(e)exp(—ez/L), 0<z < L/2, inside tube,
= pe(e)exp(—ez/L), outside tube, (1)

where ¢ is the density scale height parameter, and p;, p. are the interior and
exterior footpoint densities, respectively. The assumption of exponential density
is in accord with the findings of Aschwanden et al. (1999). They conclude this
from their stereoscopic analysis of 30 loop oscillations in EUV. Restriction of z
to the interval [0 — L/2] is permissible on account of the symmetry of the loop
configuration about its midpoint

The linearized ideal MHD equations are

% + V.(pdv) =0, Continuity Equation, (2)
9ov = L(V x 0B) x B, Momentum Equation, (3)
ot 4d7p

82—23 =V x (v x B), Induction Equation (4)

V.éB =0, Solenoidal Constraint, (5)

where dv and 0B are the Eulerian perturbations in the velocity and magnetic
fields, respectively. An exponential ¢ and ¢ dependence, is assumed, exp[—i(mp—
wt)]. By straightforward calculations one can express all components of v and
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0B in terms of dB,. The latter, in turn, is obtained from the following second
order PDE (See Safari et al. 2007),

oz ror 022 2 Vi

9?2 10 9?2 m?  w?\ IB,
( ) 2o, ©)

where va(z) = B/\/4mp(2), local Alfvén speed, has different values inside and
outside of the loop. Equation (6), admits of a separable solution dB,/By =
R(r)Z(z), where R(r) satisfies Bessel’s equation and will not be further referred
to here, and Z satisfies the following

d*Z(x)
dz?
02 =

+ Q% Z(2) =0, 0<x=2/L<1/2, (7)

L0? pile) + jele)
’Uz24i =0 2 ,

where Q and p;. = pie(€)/pie(0) are dimensionless frequency and footpoint
densities, respectively.

Equation (7) is an eigenvalue problem weighted by exp (—ez). Changing the
variable z to Q exp(—ex/2) reduces Eq.(7) to a Bessel equation with the following
solutions

where ¢; and ¢y are constants, and J and Y are Bessel functions of first and
second kind, respectively. The boundary conditions are

Z(0) =0,

for oddmodes{ 7/(1/2) = 0, 9)

Z(0) =0,
for even modes{ 2(1/2) = 0. (10)
Imposing the boundary condition at z = 0 on Eq. (8) gives
Q 2Q)
€ = 3/0(2g)7 Cy = —Jo(?) (11)

Substituting these coefficients in Eq. (8) and imposing the boundary conditions
at © = 1/2 gives the dispersion relations

—1/()(2%)J1(2§e*5/4) + J0(2%)Y1(2§e’5/4) =0, odd modes,

(12)
—%(2%)Jg(2%6_8/4) + JO(28)Y0(286_6/4) =0, even modes.

(13)
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Figure 1. Fundamental and overtone frequencies versus €. Solid lines for fixed column mass

but variable footpoint densities, dashed lines for variable column masses but fixed footpoint
density. All frequencies are in units of Tva, (e = 0)/L.

(@)
0 :
—e=0
- N - =-=-g=2
=, -0.5 . €=10
N N
~
~
~ ~
>
-1 " s RN
0 0.1 0.2 0.3 0.4 0.5
z/IL
(c)
1
P
-
05 )
%0
N
-0.5
S -
_1 L n
0 0.1 0.4 0.5

2,@)

-05F =

(b)

0.4 0.5

0 0.1

0.2

z/L

0.3

0.4 0.5

Figure 2. Mode profiles, Z,(z), a ,b , ¢, d, corresponding to n = 1,2, 3, 4, respectively. Solid,

dashed, and doted lines are for € = 0, 2, and 10, respectively.

Equations (12) and (13) are similar to those of Diaz & Roberts (2006) with W —
0 in their analysis. In the remainder of this section they are solved analytically
for weakly stratified loops and numerically for arbitrary stratifications.
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2.0.1. Weak stratification

Bessel functions can be expanded as

J,(2) = \/%{Py(z)coszl —Qu(2)sinz'}, 2/ =2z — (u + %) g
Y, (z) = \/g {P,(2)sin2' +Q,(z)cos 2’} (14)

where

(4v? —1)(4v% - 9) 1 (4% — 1) 1
12822 +O(z4)’ @v(z) 8z +O(z3)'
We insert Eq. (14) into Egs. (12) and (13) and reduce them for ¢ < 1 and
find

P,(z)~1-—

(2n—1) (1 +e(z + @)+ W)) , odd,
Wp = W1
2n (1—}—52%4—52(2% - m), even,
(15)
where n = 1,2,--+, and w; = Z2 [27(p;(0) + pe(O))]f% is the fundamental kink
frequency of homogenous loops. Expectedly, w,, — nw; as € — 0. The following
ratios are noteworthy:

:1—8101 +€2(2525+ 3535)

2w1 1672 6474 204872
wano1 4 _ _ 25 (2n—1)>—1 2125 [/ 5 7\ (2n—1)%2-1
Gnelor = L = €5z (anonz T € 30,2 (72 + %) (2n—_1)2 (16)
wan ] g2 1 n’—1
nws - 1672 n?

The frequencies and the ratio of any two odd numbered frequencies begin de-
creasing linearly with . The ratio of two even modes, however, begins decreasing
quadratically with . These features are also seen on the diagrams of Fig 3b.
Observational verification of these points, however, has to await the availability
of more extended and higher resolutions data. Presently only two frequencies in
three loops are available ( Verwitche et al. 2004, Van Doorsselaere 2007).

2.0.2. Arbitrary stratification - Numerical approach

We use Newton-Raphson’s numerical method to solve Egs. (12) and (13) for the
eigenfrequencies. In the range, 0 < ¢ = L/H < 20, the fundamental and three
higher kink frequencies, w,,, n = 2, 3, and 4, and the ratios, w,, /w1, are computed.
The data are plotted in Fig. 3 for two density contrasts, p.(g)/pi(¢) = 0.1 and
0.5. As the density contrast increases the frequencies shift down. Their ratios,
however, remain unchanged. The ratio w, /w1 begins with n and decreases with
increasing ¢, in compliance with Egs. (16).
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Andries et al. (2005b) maintain that the frequency ratios could be used as
a seismological tool to estimate the coronal density scale heights. From the
TRACE data, Verwichte et al. (2004) find the ratio ws/wq to be 1.64 and 1.81
for loops designated by D and C' in their records, respectively. Van Doorsselaere,
Nakariakov, & Verwichte (2007) revisited the same ratios from the observational
data to be 1.58 and 1.82 for the same loops, respectively, and 1.795 for another
loop in their current analysis. With the help of Fig. 1, we find the corresponding
€ to be 4.98 and 1.9, respectively. Assuming typical loop lengths, L = 100 — 400
M, the density scale heights fall in the range of H = e 'L ~ 20—82 and 53—210
Mm, respectively. These scale heights are slightly different from the findings of
Andries et al. (2005a,b) and Safari et al. (2007) for a sinusoidal density profile.

A noteworthy point is the effect of column mass on frequencies. In Fig. 1
we assume a constant footpoint density contrast, p./p; = 0.1, and vary €. Con-
sequently, the total column mass of the loop changes. Compared with variable
density contrast but fixed column mass, the mode profiles and the frequency
ratios remain unchanged. The frequencies themselves, however, behave slightly
differently. For variable column mass models, the frequencies increase more
sharply with .

The mode profiles, Z(z) of Eq. (8), are shown in Fig. 2 for n = 1,2, 3, and 4.
For the unstratified case, ¢ = 0, the profiles are sinusoidal. With increasing ¢,
they depart from the sine curves. Antinodes shift toward the footpoints. Stronger
the stratification, the greater the shift is, in agreement with the findings of Safari
et al. (2007) and Verth et al. (2007). Van Doorsselaere et al. (2007) point out, the
shift of the antinodes is potentially, a coronal seismological tool to estimate the
density scale heights. In Fig. 3, we have plotted the antinode shift, 2™ — 247 of
the first overtone versus €. The shift ~ 0.02¢, grows approximately linearly with
€. Our numerical result shows that, the shift in the antinode for different density
contrasts , p./p; = 0.1 and 0.5, are the same. For typical loops, of lengths
100 — 400 Mm and density scale heights, H = 50 and 100 Mm, the antinode
shift falls in the range 2.85 < 24" — 247 < 56.64 Mm and 1.35 < zA" — 247 <
25.12 Mim, respectively. Observation wise, the resolution of current solar satellite
facilities, e.g., TRACE, SDO, SO, etc., seems adequate to detect such antinode
shifts and estimate the density scale height of solar coronae. Verth et al. (2007)
study semi circular loops of sinusoidal density profiles and find the antinode
shifts = 0.028¢.

Our numerical results show that, for a given €, the mode profiles are insensitive
to changes in density contrast, p.(g)/pi(c). The differences between the mode
profiles of the stratified and unstratified cases, AZ,, = Z,(¢,2) — Z,(e = 0, 2),
n = 1,2,3, and 4 are plotted in Fig. 4. Erdélyi & Verth (2007) maintains that
these differences in the mode profile are so small to be resolved by current EUV
instruments of TRACE mission.

Another interesting point is negative scale heights, suggested by Andries
(2005a,b) on the basis of the error bars in the observations of Verwichte et
al. (2004). Here, the density at the apex is higher than at footpoints. Unlike the
positive scale scale height case: a) wy decreases with increasing |e], see Fig. 5; b)
higher overtones, w,, n = 2,3, -, however, increase with |¢|, though at slower
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Figure 3. Antinode shift, 22" — z?:”O, (normalized to L) against e. The shift varies almost
linearly with &
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Figure 4. Differences between the eigenprofiles of the stratified and unstratified cases, AZ;,
are plotted z.

rate; ¢) the ratios w,, /wy increase with |¢| (not presented in a diagram). As |e|
increases, the mode profiles and their node and antinodes move away from the
footpoints and concentrate more and more in the inner regions of the loop.

3. Conclusions

Suggested theoretical models of 3D coronal loops are, still, far from the realities.
Many complicating factors, such as variable cross sections, variable magnetic
fields, non-zero § plasmas, etc., are to be accounted for in a realistic study of
both the equilibrium structure and the perturbed state of actual loops. Here,
we study the oscillations of loops with exponential density variations along the
loop axis.
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——p,/p=01

Figure 5. For the case of negative scale heights, the frequencies plotted versus e, for two
different density contrast, pe/p; = 0.1 (solid lines) and pe/p; = 0.5 (dotted lines).

- Analytical dispersion relations, Eqs. (12) and (13), and analytical mode pro-
files, Eq. (8) and Fig. 2, are derived.

For weak stratifications, the kink frequencies and the frequency ratios are found
up to the second order in e, Egs. (15) and (16).

Increasing the density contrast decreases the frequencies but their ratios and
shape of the profiles remain unchanged.

Models with variable total column mass, but constant footpoint densities, are
investigated. Compared with models of constant total mass, the frequencies
increase more sharply with increasing e.

- The case of negative scale heights is investigated and results are compared
with those of positive &’s.

For 1.58 < wa/wy < 1.82, and for typical loop lengths, 100-400 Mm, the density
scale heights fall in the range of 20-210 Mm, in agreement with Andries et
al. (2005a, b), Safari et al. (2007), McEwan et al. (2006), and Donnelly et
al. (2006).

Based on our simple theoretical model and typical coronal conditions, the
antinode shift of the first overtone mode profiles are in the range of 1.3—56.6
Mm. They are in the range of the detectability of the resolution of the
current observational instruments.
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