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Flat or almost flat rotation curves of spiral galaxies can be explained by logarithmic gravitational
potentials. The field equations of GR admit of spacetime metrics with such behaviors. The scenario
can be interpreted either as an alternative theory of gravitation or, equivalently, as a dark matter
paradigm. In the latter interpretation, one is led to assign a dark companion to the baryonic matter
who’s size and distribution is determined by the mass of the baryons. The formalism also opens
up a way to support Milgrom’s idea that the acceleration of a test object in a gravitational field
is not simply the newtonian gravitational force gN , but rather an involved function of (gN/a0), a0

MOND’s universal acceleration.
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I. INTRODUCTION

The goal of the paper is to understand the idiosyncrasy
of the rotation curves of spiral galaxies. The newtonian
or the GR gravitation of the observable matter is not
sufficient to explain the large asymptotic speeds of test
objects in orbits around the galaxies, nor their slow de-
cline with increasing distances. In search of the missing
gravity, alternative theories of gravitation and/or of dark
matter are proposed. In a recent work [1] we pointed
out that no one has reported a case where there is no
baryonic matter, but there is a dynamical issue to be
settled. We argued that if the dark matter reveals itself
only in the presence of the baryonic one, it is logical to
assume that the two are twin companions. On the other
hand, both dark matter scenarists and (at least some)
alternative theorists explain the rotation curves of spi-
rals equally satisfactorily. We argue, if two people give
correct answers to the same question, they ought to be
saying the same thing, albeit in different languages. And
since in an alternative theory one gives a definite rule for
the gravity field, there must be rules to govern the mutual
companionship of the dark and baryonic matters.

We begin with a GR formalism and show that space-
time metrics with logarithmic behaviors are accommo-
dated by Einstein’s field equations and can adequately
explain the anomalous features of the dynamics of the
spirals. Conclusions are interpretable either in terms of
an alternative theory of gravitation, or as a dark mat-
ter paradigm. With an advantage, however: the ques-
tions, how much dark matter accompanies a given bary-
onic mass, how it is distributed, and what is its equation
of state, are also answered.
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II. MODEL AND FORMALISM

We are concerned with the outer reaches of spiral
galaxies (a baryonic vacuum), where the rotation curves
display non classical features. Their asymptotic speeds
do not have a Keplerian decline[4] and follow the Tully-
Fisher relation[5]. We approximate the galaxy by a
spherically symmetric distribution of baryonic matter.
The spacetime around it will accordingly be spherically
symmetric and static:

ds2 = −B(r)dt2 + A(r)dr2 + r2
(

dθ2 + sin2 θdϕ2
)

. (1)

We adopt a dark matter language and assume that the
galaxy possesses a static dark perfect gas companion of
density ρd(r), of pressure pd(r) << ρd(r), and of covari-
ant 4-velocities Ut = −B1/2, Ui = 0, i = r, θ, ϕ. Ein-
stein’s field equations become.

Rµν −
1

2
gµνR = −Tµν = −[pdgµν + (pd + ρd)UµUν ], (2)

where we have let 8πG = c2 = 1. To respect the Bianchi
identities and the conservation laws of the baryonic mat-
ter, one must have T µν

µν = 0. The latter, in turn, leads
to the hydrostatic equilibrium for the dark fluid, that is,
if one wishes to attribute such notions to a hypothetical
entity.

From Eq. (2) the two combinations Rtt/B + Rrr/A +
2Rθθ/r2 and Rtt/B + Rrr/A give

1

r2

[

d

dr

( r

A

)

− 1

]

= −ρd, (3)

1

rA

(

B′

B
+

A′

A

)

= ρd + pd, (4)

respectively. Neglecting pd in comparison with ρd and
eliminating ρd between the two equations gives

B′

B
=

1

r
(A − 1). (5)
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We now assume that A(r) − 1 is a well behaved and dif-
ferentiable function of r and has a series expansion in
negative powers of r,

A − 1 =
∑

n=0

sn

rn
, sn constant. (6)

Substituting this expansion in Eq. (5) and integrating
the resulting expression gives

B =

(

r

r0

)s0

exp

(

−
∑

n=1

sn

nrn

)

≈

[

1 + s0 ln

(

r

r0

)

−
s1

r
− · · ·

]

.(7)

We note that s0 is dimensionless and sn, n ≥ 1, has the
dimension (length)

n
. The right hand side expression is

the weak field approximation and holds for sn/rn <<
1, ∀ n.

With A and B known, the density ρd can be calculated
from either of Eqs. (3) or (4). Here, however, we adopt
a weak field point of view, B(r) = 1 + 2φgrav/c2, and
calculate ρd from Poisson’s equation. Thus,

4πGρd =
1

2
c2
∇

2(B − 1) =
c2

2r2

[

s0 −
∑

n=2

(n − 1)
sn

rn

]

.(8)

Hereafter, we restore the physical dimensions 8πG and
c2 for clarity. The pressure of the companion fluid is
obtained from T µν

;ν = 0,

p′d
pd + ρd

≈
p′d
ρd

= −
1

2r
(A − 1). (9)

Integration is straight forward. The first two terms in
the series are

pd =
c2s0

16πGr2

[

1

2
s0 +

s1

3r

]

. (10)

Upon elimination of r between Eqs. (8) and (10) one
obtains the equation of state, pd(ρd). It is barotropic.
We conclude this section by writing down the dynamical
acceleration of a test object circling the galaxy with the
speed v

adyn =
v2

r
=

1

2
c2B′ =

1

2
c2
[s0

r
+

s1

r2
+ · · · +

sn

rn+1
+ · · ·

]

.(11)

III. WHAT ARE sn
′s

The s1 term in Eqs. (6)-(11) represents the classic
gravitation of the baryonic matter with a force range
of r−2. Magnitude-wise, s1, should be identified with
the Schwarzschild radius of the spherical galaxy, s1 =
2GM/c2. The s0-term is not a classical term. It has a
force range r−1 and dominates all other terms at large
distances. It is responsible for the large asymptotic
speeds and their non Keplerian decline at far reaches of
the spirals. In [2] and [1] we resorted to the Tully-Fisher

relation (the proportionally of the asymptotic speed ,
v∞ = c(s0/2)1/2, to the fourth root of the mass of the
host galaxy) and arrived at

s0 = α

(

M

M⊙

)1/2

, α constant. (12)

In weak accelerations (less than certain ‘universal accel-
eration’ a0), Milgrom’s MOND [3] anticipates a force
field (a0gN )1/2, instead of the newtonian gravitation,
gN = GM/r2. The far distance limit of Eq. (11) with
α given by Eq. (12) is of Milgrom’s form. Comparing the
two formalisms, one finds α = 2(a0GM⊙)1/2c−2. Either

from this expression, with a0 ≈ 1.2×10−8cm/sec
2

[4], or
from a direct statistical analysis of the asymptotic speeds
of spirals [2] one finds

α ≈ 2.8 × 10−12, dimensionless ‘universal constant’.(13)

The remaining sn-terms, n ≥ 2, in Eqs. (6)-(11) are also
nonclassical. The range of their force is r−(n+1) (not to be
confused with the multipole fields of extended objects).
There is no compelling observational evidence for their
existence in regions external to a spherical distribution
of matter. Nevertheless, we retain them for a possible
formal support they may give to Milgrom’s MOND, to
be elaborated below.

A conjecture: There is a surprise in Eq. (11). Upon
elimination of r in favor of gN = GM/r2, one may write
it as

adyn

a0
=

(

gN

a0

)1/2

+

(

gN

a0

)

+ · · · + αn

(

gN

a0

)(n+1)/2

+ · · · .(14)

where αn’s can be expressed in terms of sn’s through a
term-by-term comparison of Eqs. (11) and (14). One
obtains

αn =
c2sn

2a0

( a0

GM

)(n+1)/2

, n = 2, 3, · · · , (15)

or

sn =
2a0

c2
αn

(

GM

a0

)−(n+1)/2

. (16)

All αn’s are dimensionless. Apparently, Eq. (14) is
an expansion of the dynamical acceleration in a power
series of (gN/a0)

1/2. The coefficient of the first term
is the ‘universal constant’ 1 because of the ‘universal’
Tully-Fisher relation. The coefficient of the second term
is 1 because of the universal law of newtonian gravitation
in the weak field regime. Now the conjecture: If there
is any significance attached to the series expansion of
Eq. (14) beyond the first two terms, is it possible that
in the remaining terms

“All αn’s are universal constants (not necessarily 1),
and independent from the mass of the host baryonic
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matter centered at the origin”?

The proof or disproof of the conjecture should come
from observations. We recall, however, Milgrom’s stand
that the dynamical acceleration of a test body is not
simply proportional to gN , but it is a involved function
of gN/a0, and vice versa, gN is a function of adyn/a0.
His suggestion for this function is through an, almost
arbitrary, interpolating function. If the conjecture above
holds, Eq. (14) can be considered as a series expansion
of one such function, and a support for Milgrom’s idea.

IV. CONCLUDING REMARKS

That logarithmic potentials are natural solutions of
Einstein’s field equations is the highlight of the paper.
They enable one to arrive at a law of gravitation alter-
native to that of Newton and/or to those known to GR.
Equivalently, one may choose to attribute dark compan-
ions to baryonic matters. In the case of a spherically
symmetric baryonic mass, the size and distribution of
the density and pressure of the companion, outside the
baryonic mass, are given by Eqs. (8) and (10).

The spacetime is a baryonic vacuum but not a dark
matter one. The consequences are noteworthy. For ex-
ample:
The spacetime is not flat. Contraction of Eq. (2) gives

R = −(3pd + ρd) ≈ −
s0

r2
+ O

(

r−4
)

.

The 3-space is not flat. Direct calculation with g
(3)
ij , i, j =

r, θ, ϕ, yields

R(3) = −
2

r2

d

dr
(rρd) ≈ −2

s0

r2
+ O

(

r−4
)

.

There is an excess lensing [7]. Contribution from the s0

term alone is

δβ =
1

2
πs0.

Due to the smallness of both s0 and Sun’s mass, effects in
the scale of the solar system are immeasurably small[1].

That the dynamical acceleration of a test object in the
external gravitational field of a spherical mass could have
a series expansion in (gN/a0), in accord with Milgrom’s
idea, is an intriguing idea. The support for it should
come from observations.

A word of caution: The paper relies heavily on obser-
vations pertaining to spiral galaxies. Its conclusions may
be scale dependent, not applicable to systems with scales
larger than galactic scales. In a recent paper Bernal et
al [6] analyze weak lensing data from clusters of galaxies
on the basis of the metric field of [2] (similar to those of
Eqs. 6 and 9 ). They conclude, in the notation of this pa-
per, s0 ∝ M1/4, instead of M1/2 of Eq. (12). This finding
while raises an alarm against extrapolation to larger sys-
tems, clusters of galaxies and beyond, at the same time
opens the question that deviations from the newtonian
or GR gravitations may have a hierarchical structure de-
pending on the size of the system under study.

Shortcomings of the paper and the open questions
it leaves behind should also be mentioned. The theory
developed here is for a spherical distribution of mass.
Extension to extended objects and to many body
systems is not a trivial task. It may require further
assumptions not contemplated so far. The difficulty lies
in the facts that a) the added s0- and sn- terms, n ≥ 2,
are not linear in the mass of the baryonic matter. The
nonlinearity is much more complicated than that of GR.
b) In the parlance of a dark matter paradigm, the dark
companion of a localized baryonic matter is not localized
and extends to infinity. As a way out of the dilemma,
we are planning to expand an extended object into its
localized monopole and higher multipole moments, and
see if it is possible to find a dark multipole moment for
each baryonic one, more or less in the way done for the
monopole moment.
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