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Abstract. Wayve transmission in low 8 magnetic flux tubes has, mathe-
matically, the same structure as the propagation of electromagnetic waves
in optical fibers. In both cases the problem is reducible to a single wave
equation for the longitudinal component of the perturbed field along the
fiber /tube axis. We derive this equation, solve the dispersion relation
associated with it, and assign three wave numbers to each mode. In
cylindrical coordinates (r, ¢, z), for a given p-wave number, the plane of
the r- and z- wave numbers is divided into one “mode zone” in which each
grid point is a possible mode of the system and one “forbidden zone” in
which no mode may dwell. The cutoff line, the boundary of the two zones,
is given both analytically and numerically. Next we introduce weak re-
sistive and viscous dissipation to the system, solve for the decay time of
each mode and for the densities of heat generation rates by each dissipa-
tive process. The two densities have identical spatial dependencies, but
different magnitudes. The resistive heat rate is inversely proportional to
the Lundquist number, S, and the viscous one to the Reynolds number,
R. The time decay exponent is proportional to the sum (S~!+ R™1).

1. Introduction

The astronomical literature on waves in magnetic flux tubes has a back log of a
quarter of a century. Ionson (1978), Wentzel (1979 a,b), Wilson (1979), Roberts
(1981 a,b), Edwin and Roberts (1983), Hollweg (1984), Steinolfson et al. (1986),
Davila (1987), Steinolfson and Davila (1993), and Ofman et al. (1994, 1995)
have all addressed various aspects of the problem. The analysis of TRACE data
by Nakariakov et al. (1999), however, has given a new impetus to such studies.
Convincing evidence has emerged that the coronal loops can and do oscillate in
matters of few hundreds of seconds and do heat up in the course of damping
of the wave motions. Here, we are primarily interested in the mathematical
and analytical properties of modes in magnetic flux tubes and of their decay by
resistive and viscous processes.
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2. Exposition of the Problem

Let the flux tube be a cylinder of radius » = 1, of length nL, and lie along
the z-axis of a cylindrical coordinate system (r, ¢, z). Under coronal conditions
assume i) the plasma pressure is negligible in comparison with the magnetic one.
ii) The scale height is much larger than the height of the flux tube, so that the
density stratification can be neglected. iii) The space is pervaded by a constant
magnetic field along the z-axis. iv) The plasma density, p, has the constant
values p; and p. inside and outside of the cylinder, but varies discontinuously
at » = 1. Let the system undergo a small perturbation about its equilibrium
state. The perturbation induced velocity and magnetic fields, dv(r,¢,z) and
0B(r, @, z), respectively, are governed by the following equations.

dov 1 06B
T 47rp(V x dB) x B, 5 = V x (6v x B). (1)

The first of Eq. (1) has no z-component. We write out the z- and transverse com-
ponents of the second one and eliminate the transverse components of év and 6B
in favor of § B,. For an exponential z-, ¢- and time dependence, e?(iz/Ltme—wt) p
and m integers, one obtains the followmg Bessel’s equation for 6B,:

2 1d , m? 9 w\? 2
<—+——+k S =0 B=(2) -hm ©

where v} = [B? /47r,0]2 is the Alfven speed. Both v4 and k are different inside
and outside of the flux tube; for pis. For k? = (w/va;)? — (¢/L)? >0inr <1
and k2 = (¢/L)? — (w/vae)2 >0inr > 1, solutions of Eq. (3) are

OB.(r) = Jm(kir), r<1
= AKp(ker), m>1, (3)

where K, is the modified Bessel function and A is a constant to be determined.
In terms of § B, the transverse components, 6B | and év, are

14 !
5BJ_ = —EB(SVJ_ = —Z-EEV_L((SBZ), (4)

where V| is the gradient operator in the (r, ¢) plane.

3. Boundary Conditions and Dispersion Relation

To avoid shock waves at r = 1, the Lagrangian change, or equivalently in this
case of constant B, the Eulerian change in pressure, ép x BdB,, must be con-
tinuous. ii) From V.dB = 0, 6 B, must be continuous at » = 1. Applying these
conditions to solutions of Egs. (3) and (4), with a change in notation, k; = z
and k. =y, gives

1Jn(@)  1kp(y) 2 2 Pe 2 2 < Pe) (€>2
= _— C =Pz 2o (1P (2) . 5
2Im(@)  YEaly) T : pi ©)
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Figure 1.  The plots of left and right sides of Eq. (5), solid and dotted
curves, respectively, as functions of z for m = 0, 1 and 2. Auxiliary parameters
are | = 100, C%,, = 8.9, radius = 10> km, height = 10°% km, and p./p; = 0.1.
Intersections of solid and dotted curves, x,m:, are the eigenvalues.
This is the dispersion relation. Its solution for z = k; = [(w/vas)? — (¢/L)?]2
will give the eigen-frequencies, w. In Fig. 1, the solid multi-branched curves are
the left hand side of Eq. (5). They intersect the z-axis at zeros of J/,(z) and go
to infinity at zeros of J,,(z). The dotted curve is the right hand side of Eq. (5).
It tends to infinity at y = 0. Intersections of the dotted curve with the multi -
branched solid curves are the desired eigenvalues, Z,m,;. They sit between the
nth zeros of J/ () and Jp,(z), Vs and Ynm, respectively. Thus

1
Tl = 5(’7mn~1 + ’Y;nn) +am/2/7 (2n+m — 24 ap)T/2 < Trmax, (6)

where —% <oy < % is to be evaluated numerically, and Z . = %(;’—; — 1) is the

abscissa of the dotted asymptote in Fig. 1, where y(max) = 0. The inequality
in Eq. (6) utilizes the asymptotic values of the roots of J,, and J},.

Cutoffs: From the inequality of Eq. (6) one obtains

20 [p; ap m
0< 1+ —/— =14 —=—-—. 7
n < +7rL o +2 2 (7)

For a given m and £ there is an upper cutoff to n. Vice versa, for a given n
and m there is a lower cutoff for /. Thus, for a given m, the wave number
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plane (n, £) divides into two regions, a “mode zone” in which the possible modes
of the flux tube reside, and a “forbidden zone” in which no mode can dwell.
We recapitulate the findings of this sections. The eigenvalue problem for wave
propagation in zero-§ flux tube reduces to solving a Bessel’s equation for the
z-components of the perturbed magnetic field. To each mode of oscillation there
corresponds a trio of wave numbers (n,m, £) associated with the three directions
(r, ¢, z). For a given m, there is a lower cutoff for £ and an upper cutoff for n.

4. Dissipation

In the presence of viscous and resistive dissipations, the terms (1/p)V26v and
(c?/4m0)V26B should be added to the right hand sides of Egs. (1), where 7
and ¢ are the bulk viscosity and conductivity of the plasma, and c is the speed
of light. The field components, undergo an exponential time decay. For weak
dissipations the decay time 7,,,¢ of a mode (nml) is given by

1wy (1 1 5 2
Tame 4T (5 + E) (x”me 7 (8)
where wa = vgy; is the Alfven frequency, S = (%—“})/(%) and R = (%)/(%),

Lundquist’s and Reynolds’ numbers, respectively, are the ratios of resistive and
viscous time scales to the Alfven time required to cross the circumference of the
tube of radius one. The density of heat generation rates by either process have
identical r-dependence. They, however, differ magnitude wise. For the resistive
process the heat rate is proportional to S and for the viscous one is proportional
to R. More details are given in Karami, Nasiri and Sobouti (2002).
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