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Abstract
Twodynamical systemswith same symmetry should have features in common, and as far as their shared
symmetry is concerned, onemay represent the other. The three light quark constituent of thehadrons,
(a)have an approximateflavor SU(3)f symmetry, (b)have an exact color SU(3)c symmetry, and (c) as spin
1

2
particles, have a Lorentz SO(3, 1) symmetry. So does a 3Dharmonic oscillator. (a) ItsHamiltonianhas

the SU(3) symmetry, breakable if the 3 oscillators are not identical. (b)The 3directions of oscillationhave
the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for
each oscillator, andmimic the color of the elementary particles. (c)TheLagrangian of the 3Doscillator
has the SO(3,1) symmetry. This canbe employed to accommodate the spin of the particles. In this paper
wepropose a one-to-one correspondence (a)between the eigenmodes of thePoissonbracket operator of
the 3Doscillator and theflavormultiplets of the particles, and (b)between thepermutedmodes of the
oscillator and the color and anticolormultiplets of the particles. Thebi-colored gluons are represented by
the generators of the color SU(3)c symmetry of the oscillator.Harmonic oscillators are commonplace
objects and,wherever encountered, are analytically solvable. Elementary particles, on the other hand, are
abstract entities far fromone’s reach.Understandingof onemayhelp a better appreciationof theother.

1. Introduction

Jordan, 1935, is the initiator of themap frommatrices to quantumharmonic oscillators to expedite computation
with Lie algebra representations [1]. Schwinger, 1952, evidently unaware of Jordan’s work, represents the SU(2)
algebra of the angularmomentumby twouncoupled quantumoscillators [2]. Since then an extensive literature
is created on the subject. The technique often bears the name of ‘Jordan-Schwingermap’. In themajority of the
existing literature, the oscillator is a quantumone. In their stellar system studies, however, Sobouti et al [3] and
[4] associate the symmetries of their systemof interest with those of the classical oscillators. They use Poisson
brackets instead of the quantumcommutation brackets, andworkwith complex functions in the phase space of
the oscillator.Man’ko et al do the same, and give a realization of the Lie product in terms of Poisson brackets [5].

In this paperwe follow the classic oscillator approach and explore the two-way association of SU(n)ÆnD
oscillators. The case n=2, of course, gives the oscillator representation of the angularmomentum, albeit in a
different space and different notation than that of Schwinger. The cases n=3, 4, ..., should be of relevance to
particle physics. Theflavor and color triplets of the three light quarks, (u, d, s), and their highermultiplets have
the SU(3) symmetry. They can be given a 3Doscillator representation. By inviting in the heavier quarks there
might also be room for higher SU(n) and higher nDoscillators.

In his seminal paper Schwinger writes: ‘... harmonic oscillator ... provides a powerfulmethod for constructing
and developing the properties of angularmomentum eigen vectors. ... many known theorems are derived in this way,
and some new results obtained.’ Schwinger can only be right in saying so, for wherever encountered, harmonic
oscillators are exactly and easily solvable. It is in this spirit that we hope a harmonic representation of elementary
particlesmight offer a simpler and easier understanding of at least the rudiments of the particle physics, if not
lead to a different insight. Classical harmonic oscillators are commonplace objects and can be set up on table
tops. Elementary particles, on the other hand, are highly abstract notions and far fromone’s intuition.
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2.nDharmonic oscillators in phase space

Let (qi, pi; i=1, 2, ..., n) be the canonically conjugate pairs of coordinates andmomenta of an n dimensional
(nD) harmonic oscillator, or equivalently of n uncoupled oscillators. TheHamiltonian and the Lagrangian are

H p q L p q
1

2
,

1

2
,2 2 2 2= + = -( ) ( )

where p p p , ...i i
2 = . The time evolutionof an attribute of the oscillator, a function f p t q t t i n, , ; 1, ,i i = ¼( ( ) ( ) )

say, on thephase space trajectoryof the oscillator is governedbyLiouville’s equation,

i
f

t
i f H i p

q
q

p
f f, . 2.1poisson i

i
i

i


¶
¶

= - = -
¶
¶

-
¶
¶

⎛
⎝⎜

⎞
⎠⎟[ ] ≕ ( )

The last equality is the definition of the Poisson bracket operator, . Hereafter, it will be referred to as Liouville’s
operator. The reason formultiplication by i is to render  hermitian and talk of its eigen solutions. Aswewill see
shortly, the eigen solutions are in general complex and  operate on functions of complex revariables pi±iqi. It
should also be noted that  is the sumof n linear first order differential operators ... n1  = + + . They are
independent. Each i depends only on the canonical coordinate-momentumpair, (pi, qi), with no interaction
with the other pairs.

Digression: Although a classical statisticalmechanical concept, introduced primarily to deal with the
probability density of non interacting ensemble points in phase space, Liouville’s equation is encountered in one
important quantummechanical (QM) case.Wigner, 1932 [6], introduced quantummechanical phase space
distribution functions in order to calculate theQMexpectation values in the sameway as one does in classical
statisticalmechanics. SinceWigner, a host of alternative distributions, including one developed by the author
and his collaborators , are proposed and a rich body of literature is developed. It can be shown that all those
alternatives are transformable one to another through appropriate canonical transformations. Each alternative
has its ownWigner-type evolution equationwhich, if Taylor-expanded in powers of the Planck constant, its
zeroth order term is the classical Liouville equation.More striking is the fact that for the nD simple harmonic
oscillators,Wigner’s evolution equation is exactly equation (2.1) and is the phase space transformation of
Schroedinger equation for quadratic potentials [7].

2.1. Symmetries of ,H, andL
Themost general infinitesimal coordinate transformation that leaves  invariant is the following,

q q a q b p

p p b q a p

,

, infinitesimal, 2.2

i i ij j ij j

i i ij j ij j



 

¢ = + +

¢ = + - +

( )

( ) ( )

The transformation is linear, and a=[aij] and b=[bij] are twon×nmatrices. The proof forn=3 is given in [3]
and [4]. Its generalization to higher dimensions is amatter of letting the subscripts i and j in equations (2.1) and
(2.2) span the range 1 ton. There are 2n2ways to choose the a- and b-matrices, showing that the symmetry group
of  and thereof that of equation (2.1) isGL(n, c), the groupof generaln×n complexmatrices. This statement is
basedon the fact that, aswewill see shortly,  is definedon the complex plains (pi+iqi; i=1, 2, ...,n)

At this stage let us introduce as the function space of all complex valued and square integrable functions,
f (pi, qi), inwhich the inner product is defined as

g h g f E d pd q f g, exp 2 , , ,n n* ò= - < ¥ Î( ) ( )

where E p q1

2
2 2= +( ) is the energy scalar of theHamiltonian operator of the oscillator. Associatedwith the

transformation of equation (2.2), are the following generators on the function space,
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(insertion of−i in front of bjk is for later convenience). Again there are 2n
2 generators. Allχʼs commutewith 

but not necessarily among themselves.
Twonotable subgroups ofGL(n, c) are generated by

(1) aij antisymmetric, bij antisymmetric,

(2) aij antisymmetric, bij symmetric,
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Case 1 is the symmetry group of the Lagrangian. It is of Lorentz type, and in the 3D case reduces to SO(3, 1),
the symmetry group ofMinkowsky’s spacetime and ofDirac’s equation for spin 1

2
particles.Wewill come back

to it briefly in the conclusion of this paper.
Case 2, antisymmetric aij and symmetric bij, is the symmetry of theHamiltonian, the SU(n) group. Before

proceeding further, however, let us give the proof of the last two statements. Under the infinitesimal
transformation of equation (2.2) one has

L a p p q q b p q q p

H a p p q q b p q q p

,

.

ij i j i j ij i j i j

ij i j i j ij i j i j





d

d

= - - +

= + - -

[ ( ) ( )]
[ ( ) ( )]

There follows

L a a b b

H a a b b QED

0if , and ,

0if , and .

ij ji ij ji

ij ji ij ji

d
d

= = - = -
= = - =

Coming back, an SU(n) is spanned by n2−1 linearly independent basismatrices. A convenient and commonly
used basis for SU(n) is the generalizedGell-Mann’sλmatrices. See e.g. [8] for their construction and see table 1
for a refresher. The generalizedλmatrices consist of n n 11

2
-( ) antisymmetric and imaginarymatrices plus

n n 1 11

2
+ -( ) symmetric, real, and traceless ones. Their commutation brackets are:

if a b c n
2

,
2 2

, , , 1, 2,..., 1, 2.4a b
abc

c 2l l l
= = -

⎡
⎣⎢

⎤
⎦⎥ ( )

where fabc are the structure constants. All are real and completely antisymmetric in a, b, c. To extract the
correspondingχ generators from those of equation (2.3), we choose
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b

1

2

1

2
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2
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.
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This choice produces a set of (n2−1) linear differential operators, that are the oscillator representations of the
SU(n) algebra in. Thefirst 8 of them are as follows:

i
p

q
q

p
p

q
q

p

i
p

p
q

q
p

p
q

q

i
p

q
q

p
p

q
q

p

i
p

q
q

p
p

q
q

p

i
p

p
q

q
p

p
q

q

i
p

q
q

p
p

q
q

p

i
p

p
q

q
p

p
q

q

i
p

q
q

p
p

q
q

p

i
p

q
q

p

2
,

2
,

2

1

2
.

2
,

2
,

2
,

2
,

2 3

3

1

2 3
2 . 2.5

1 1
2

1
2

2
1

2
1

2 1
2

1
2

2
1

2
1

3 1
1

1
1

2
2

2
2

1 2

4 1
3

1
3

3
1

3
1

5 1
3

1
3

3
1

3
1

6 2
3

2
3

3
2

3
2

7 2
3

2
3

3
2

3
2

8 1
1

1
1

2
2

2
2

3
3

3
3

1 2 3

 

  

c

c

c

c

c

c

c

c

=-
¶
¶

-
¶
¶

+
¶
¶

-
¶
¶

= -
¶
¶

+
¶
¶

-
¶
¶

+
¶
¶

= -
¶
¶

-
¶
¶

-
¶
¶

-
¶
¶

= -

=-
¶
¶

-
¶
¶

+
¶
¶

-
¶
¶

= -
¶
¶

+
¶
¶

-
¶
¶

+
¶
¶

= -
¶
¶

-
¶
¶

+
¶
¶

-
¶
¶

= -
¶
¶

+
¶
¶

-
¶
¶

+
¶
¶

= -
¶
¶

-
¶
¶

+
¶
¶

-
¶
¶

+
¶
¶

-
¶
¶

= + -

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( )

( ) ( )

3

J. Phys. Commun. 2 (2018) 085006 Y Sobouti



Allχʼs are hermitian. Their commutation brackets are the same as those ofλʼs,

if, .a b abc cc c c=[ ]

2.2. Solutions of equation (2.1)
The followings can be easily verified

p iq n p iq
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,
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2
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Let us use the shorthand notation z p iqi i i= + and E z z 2i i*= . Considering the fact that equation (2.1) is a
linear differential equation, and ...1 2  = + + is the sumof n independent operators, one immediately
writes down the (unnormalized) eigen states of equation (2.1) as:
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where n n m m,
i i i iå= = å . Themodes reported in equation (2.7) aremembers of the function space. As

defined in equation (2.8), the explicit formof their inner product is
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The eigenvalue (n−m)of equation (2.7) is degenerate.Different combinations ofni andmi can give the same
n−m. Degenerate sets ofmodes are not in general orthogonal ones.However, for eachmultiplet of givenn andm it
is always possible to construct an orthonormal set through suitable linear combinations of themultipletmembers.

Somuch for generalities. In section 3we examine the 2Doscillator representation of SU(2) and reproduce
Schwinger’smodel, albeit in a different notation.Next, we treat the 3D case and suggest a scheme, that we think,
represents the flavor and color symmetries of the light quarks and higher particlemultiplets.

3. 2Doscillator and SU(2) - angularmomentum

There are two complex planes to deal with, z1=p1+iq1 and z2=p2+iq2. Thefirst three operators of
equations (2.5) are the ones toworkwith, and have the SU(2) algebra,

i i j k, ; , , 1, 2, 3. 3.1i j ijk kc c c= =[ ] ( )

Therefore, onemay construct the following familiar angularmomentumoperators and commutators
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Table 1.Gell-MannMatrices.
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In table 2we have collected the outcome of the operation ofχi on zj=pj+iqj. Onemay readily verify that

z z

z z z z

1

2
,

1

2
,

1

2
,

1

2
,

1, 1 , 1, 0 , 1, 1 .

1 2

1
2

1 2 2
2

= - =

ñ = ñ= - ñ =∣ ∣ ∣

The general rule is

j m z z, .j m j m
1 2ñ = + -∣

In particular,

j j z j z z j j z, , , 0 , , .j j j j
1
2

1 2 2
2ñ = ñ = - ñ =∣ ∣ ∣

Onemay, of course, beginwith any j m, ñ∣ and reach the other j2 1+( ) members of the j-multiplet by operating
on j m, ñ∣ with the raising and lowering ladders J±.

There is an unclassical feature to the eigenstates presented here; j can be integer or half integer, in sharp
contrast to the classical angularmomentum eigenvalues which have to be integers (see e.g. [9]). Quantum
mechanics provides half integer eigenvalues by enlarging the angularmomentum states viamultiplication of the
orbital angular states by an abstract spin one-half state. In our case, provision for half integer j comes from
embedding of the angularmomenta states in two complex spaces (p1, q1) and (p2, q2).

4. 3Doscillator andQuark Flavor

There are three complex planes to deal with,

z p iq z p iq z p iq, , and .1 1 1 2 2 2 3 2 3= + = + = +

The eight generators of equation (2.5) are the relevant ones. Two of them,χ3 andχ8, commute together and
commutewith .1 2 3   = + + From them (using the particle physics nomenclature)we compose the
following linear combinations,

I

Y
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S Y B
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2
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3
2 , hypercharge,

1

3
, baryon number,
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3
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3 3 1 2

8 1 2 3
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3 1 2 3

3
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Only three of thesefive operators are linearly independent. Their eigenvalues and eigen-states can be read from
equations (2.7),

Table 2.Table ofχi zj and zi j*c .

⧹ z1 z2 z3 z1* z2* z3*

χ1 z1

2 2 z1

2 1 0 z1

2 2*- z1

2 1*- 0

χ2 z1

2 2 z1

2 1- 0 z1

2 2* z1

2 1*- 0

χ3 z1

2 1 z1

2 2- 0 z1

2 1*- z1

2 2* 0

χ4 z1

2 3 0 z1

2 1 z1

2 3*- 0 z1

2 1*-

χ5 z1

2 3 0 z1

2 1- z1

2 3* 0 z1

2 1*-

χ6 0 z1

2 3 z1

2 2 0 z1

2 3*- z1

2 2*-

χ7 0 z1

2 3 z1

2 2- 0 z1

2 3* z1

2 2*-

χ8 z1

2 3 1 z1

2 3 2 z1

3 1- z1

2 3 1*- z1

2 3 2*- z1

3 3*
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I f n m n m f

Yf n m n m

n m f

Bf n m n m

n m f

Qf n m n m

n m f

Sf n m f

1

2
1

3
2

1

3

1

3
2

4.2

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

n n n
m m m

3 1 1 2 2

1 1 2 2

3 3

1 1 2 2

3 3

1 1 2 2

3 3

3 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

= - - -

= - + -

- -

= - + -

+ -

= - - -

- -

=- -

[( ) ( )]

[( ) ( )

( ]

[( ) ( )

( ]

[ ( ) ( )

( ]

( ) ( )

The collectionof all eigen-states belonging to a givenn=n1+n2+n3 andm=m1+m2+m3will be called a
multiplet andwill be denotedbyD(n,m). For instance,D(1.0)will be the triplet of f z f z f z, ,

100
000

1 010
000

2 001
000

3= = = .
Belowwe examine someof thesemultiplets, compare their eigen characteristicswith those of theknownparticle
multiplets, andpoint out the one-to-one correspondencebetween the two.

Table 3 displays the two tripletsD(1, 0) andD(0, 1). Thefirst ofwhich consists of (z1, z2, z3) and the secondof
z z z, , .1 2 3* * *( ) Their baryon, isospin, hypercharge, charge, and strangeness numbers, are read fromequations (4.2).
They are the sameas those of thequark andantiquark triplets. Themembers of themultiplet are orthogonal to one
another in the sense of equation (2.8). The last column in this and the other tables belowdisplays theCasimir
numbers, I Y4 32 2+ , an index to identify submultipletswithin amultiplet.

Table 4 and its geometrical representation,figure 1 displayD(1, 1). It has ninemembers, (z z i j; , 1, 2, 3i j* = ,
or their linear combinations). D(1, 1) is identified as thepseudoscalarmesonnonet. There are two submultiplets to
it, characterized by the twoCasimir numbers 4 and0.Again the 9members of themultiplet constitute a complete
orthogonal set in the subspace of the pseudoscalarmesons.

Table 5 and its geometrical representation, figure 2, is D(3, 0). It is identifiedwith the Baryon decuplet of spin
3/2. It has tenmembers, z z z i j k; , , 0, 1, 2, 3i j k

1 2 3 = , constrained to i j k 3.+ + = There are two
submultiplet to the baryon decuplet, characterized by the twoCasimir numbers 4 and 12. The tenmembers
constitute a complete orthogonal set. The antibaryon decuplet is D(0, 3). It can be read from table 5 by simply
interchanging the subscripts and superscripts in the first columnof the table and changing the signs of the
eigenvalues accordingly. This alsomeans interchanging z zj j* in table 5.

5. Color and colormultiplets

Bymid 1960 particle physicists had felt the need for an extra quantumnumber for quarks in order to comply
with Pauli’s exclusion principle and to justify coexistence of the like spin 1

2
- quarkflavors in baryons. The

notion of color and color chargewas introduced, [10–12], and [13]. The consensus of opinion nowadays is that
each quarkflavor comes in three colors, red, green and blue; and antiquarks in three anticolors, antired, antigreen
and antiblue. Strong interactions aremediated by 8 bi-colored gluons, each carrying one color charge and one
anticolor charge. Color is believed to be conserved in the course of strong interactions.

Figure 1.Pseudoscalarmeson nonet of spin 0. h¢ is the singlet; remaining ones constitute the octet. Note the axes of equal strangeness,
s, and of equal charge,q. Their 3Doscillator identification is in table 4.
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Does the 3Dharmonic oscillator has an attribute analogous to the color of the quarks, is that attribute
conserved, and if so, what is the symmetry responsible for its conservation?What are the counterparts of gluons
in the 3Doscillator? In section 2.1we talked about the continuous symmetries of theHamiltonian, the
Lagrangian and of the relevant Liouville equation, and came upwith a one-to-one correspondence between the
fundamental eigenmodes of the oscillator and the quantumnumbers of the quarkflavors. There are discrete
symmetries to consider:

A. Liouville’s operator is antisymmetric under complex conjugation, a discrete transformation. This leads to

z z z z . 5.1i i i i* * * =  = -( ) ( )

The fact that zi and zi* are the eigen states of with eigenvalues±1 is due to the antisymmetry of  under
the transformation of equation (5.1). In particle physics language, this is akin to the statement that if a
particle is a reality, so is its antiparticle.

B. The total Hamiltonian and the total 1 2 3   = + + are symmetric under the permutation of the three
dimension subscripts (1, 2, 3). To elucidate the point let us, for themoment, instead of talking of 3D
oscillators, talk of three uncoupled oscillators (1, 2, 3) and the 3 coordinate directions in the (q, p) spaces. Let
us the three directions as red(r), green(g), and blue(b). (The languagewe adopt is in the anticipation of
finding a correspondence between the permutation symmetry of the 3Doscillator and the color symmetry
of the quark triplets). One has the option to place any of the oscillators (1, 2, 3) in any of the colored
directions, r, g, or b. The choices are:

r g b

r g b

r g b

1 , 2 , 3

3 , 1 , 2

2 , 3 , 1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

There are three copies of the oscillator 1: r(1), g(1), and b(1), and similarly of the oscillators 2 and 3. Each oscillator
can be in a triplet color state. Defined as such, the color symmetry is exact and unbreakable. This is in contrast to
theflavor symmetry inwhich one assumes the 3 oscillators are identical, while itmay be broken by allowing the
masses and spring constants of the oscillators to be different.
As noted earlier the transformation of equation (5.1), amounts to going from the complex (p, q) plane to its
complex conjugate, (p, q)*, plane. Onemay now commute the coordinates in this complex conjugated space and
design an anticolor scheme, antired r( ), antigreen g( ), and antiblue b( ), say. Thus,

r g b

r g b

r g b

1 , 2 , 3

3 , 1 , 2

2 , 3 , 1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

Again there are 3 copies of each oscillator in the (q, p)* space, our analogue of the antiparticle domain.

6.Gluons

With the definition of the preceding section the color is now a direction in the (p, q)phase space. Each oscillator,
while sharing the approximate flavor SU(3)fsymmetrywith the others, has its own exact fundamental triplet
color SU(3)csymmetry. The adjoint color representation of SU(3)cis the same as theχ octet of equations (2.5) in

Figure 2.Baryon decuplet of spin
3

2
. Note the axes of equal strangeness, s, and of equal charge, q. Their 3Doscillator identification is in

table 5
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which the subscripts 1, 2, and 3 of pʼs and qʼs are nowpainted as r, g, and b, respectively. Thus,
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A typical differential operator,

p
q

q
p

c c r g b, , , , ,c
c

c
c

¶
¶

-
¶
¶

¢ =
¢ ¢

⎛
⎝⎜

⎞
⎠⎟

in equations (6.1), upon operation on a typical color state z p iqc c c= +¢ ¢ ¢ annihilates the c¢ color and create the c
color. As examples, let us use table 2 and see the action ofχ1 andχ2 on the colored oscillator states zr and zg:

z z z z

z
i

z z
i

z

1

2
,

1

2
,

2
,

2
,

r g g r

r g g r

1 1

2 2

c c

c c

= =

= = -

fromwhichwe obtain

i z i z z0, , 6.2r g r1 2 1 2c c c c+ = + =( ) ( ) ( )

i z z i z, 0. 6.3r g g1 2 1 2c c c c- = - =( ) ( ) ( )

From equation(6.2)we learn that (χ1+iχ2) annihilates a green state and creates a red one. Shall we denote it by
RG and call it a gluon bi-colored antigreen and red? Similarly, (χ1−iχ2) can be denoted by GR and called a
green and antired gluon. Both RG and GR are differential operators. Note that terms such as GRzg and RGzr

yield zero; for there is no red in green or green in red to be extracted and turned into another color state. Also
note that terms such as RG¯ and GR¯ are not defined and there is no need to do that.
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Weare now in a position to draw up a gluon table in terms ofχʼs by generalizing the examples above.

RG i

GR i

RR GG

RB i

BR i

GB i

BG i

RR GG BB

,

,

2

,

,

,

,

2 2 3 . 6.4

1 2

1 2

3

4 5

4 5

6 7

6 7

8

c c
c c

c
c c
c c
c c
c c

c

= +
= -

- =
= +
= -
= +

= -

+ - = ( )

The inverse relations are

RG GR
i

RG GR

RR GG

RB BR
i

RB BR

GB BG
i

GB BG

RR GG BB

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2 3
2 , 6.5

1 2

3

4 5

6 7

8

c c

c

c c

c c

c

= + = -

= -

= + = -

= + = -

= + -

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

RR GG BB . 6.61 2 3   = + + = + + ( )

In equations (6.4) and (6.5),χ3 andχ8 are colorless andmembers of a color octet. In equations (6.6),  is
colorless and a singlet.

6.1.Multiplication table of gluons
Webeginwith examples

RG GB z RGz z RGGB RB

RG BGz RGz RGBG

1. . Thus, .

2. 0.Thus, 0.

b g r

g r

= = =

= = =

( )
( )

Guided by these examples we draw up the gluonmultiplication table 6.
To summarize, defined as such, gluons described here are operators in the phase space of 3D oscillators.

Whether this interpretation throws any light onwhat one conceives from reading particle physics literature that,
gluons are abstract bosonic exchange particles, is left to the reader’s fancy.

7. Spin 1

2
character of oscillators

It was shownbefore that the Lagrangian of a 3Doscillator has SO(3, 1) symmetry. One also knows that quark
colors are spin 1

2
Dirac particles alsowith SO(3, 1) symmetry. There should be a one-to-one correspondence

between the two. In fact it was shown in section 3 that the first three operators of equations (2.5), or for that
matter the first three of equations (6.1), have the angularmomentum algebra. In particular, we learned that zr(1)

Table 3.D(1, 0) andD(0, 1), Quark andAntiquark Triplets.

fn n n
m m m
1 2 3

1 2 3
q q, B I3 Y Q S I Y4 32 2+( )

f z100
000

1= u 1

3

1

2
+ 1

3
+ 2

3
+ 0 4/3

[3] f z010
000

2= d 1

3

1

2
- 1

3
+ 1

3
- 0 4/3

f z001
000

3= s 1

3
0 2

3
- 1

3
- −1 4/3

f z000
100

1*= u 1

3
- 1

2
- 1

3
- 2

3
- 0 4/3

3[ ] f z000
010

2*= d 1

3
- 1

2
+ 1

3
- 1

3
+ 0 4/3

f z000
001

3*= s 1

3
- 0 2

3
+ 1

3
+ 1 4/3
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and zg(1), that are associatedwith red and green u quarks, are
1

2
 angularmomentum states of the first three

operators of equations (6.1). The same is true for any colored oscillator pair

z i z i c c r g b i, ; , , , ; 1, 2, 3,c c ¢ = =¢[ ( ) ( )]

and associated colored quark pairs.
This is not, however, thewhole story. To do justice one should look for the full Lorentz type SO(3, 1)

symmetry of both oscillators and quark colors.We hope to present this line of thought in a forthcoming
communication.

8. Concluding remarks

Among the symmetries of an nDoscillator is the symmetry group of itsHamiltonian, SU(n), a subgroup of the
symmetries of its Poisson bracket, GL(n, c). This feature can be employed to represent any systemwith SU(n)

Table 4.D(1, 1), PseudoscalarMesonNonet. h¢ is the singlet; remaining ones constitute the octet. Geometrical
representation is infigure 1.

fn n n
m m m
1 2 3

1 2 3 Meson B I3 Y Q S I Y4 32 2+( )

f z z100
010

1 2*= ud̄ ,π+ 0 1 0 1 0 4

f z z010
100

2 1*= dū ,π− 0 −1 0 −1 0 4

f z z100
001

1 3*= us K, +¯ 0
1

2
1 1 1 4

f z z010
001

2 3*= ds K, 0¯ 0
1

2
- 1 0 1 4

f z z001
100

3 1*= su K, -¯ 0
1

2
- −1 −1 −1 4

f z z001
010

3 2*= ds K, 0¯ ¯ 0
1

2
−1 0 −1 4

f f1

2 100
100

010
010-( )  uu dd ,1

2
0p-( ¯ ¯) 0 0 0 0 0 0

f f f21

6 100
100

010
010

001
001+ -( )  uu dd ss21

6
+ -( ¯ ¯ ¯), η 0 0 0 0 0 0

f f f1

3 100
100

010
010

001
001+ +( )  uu dd ss1

3
+ +( ¯ ¯ ¯),h¢ 0 0 0 0 0 0

Table 5.D(3, 0), BaryonDecuplet of spin 3

2
. Geometrical construction is infigure 2.

fn n n
m m m
1 2 3

1 2 3 Baryon B I I3 Y Q S I Y4 32 2+( )

f z z120
000

1 2
2= udd, 0D 1

1

2

1

2
- 1 0 0 4

f z z210
000

1
2

2= uud, D+ 1
1

2

1

2
1 1 0 4

f z z021
000

2
2

3= dds, *S - 1 1 −1 0 −1 −1 4

f z z201
000

1
2

3= uus, *S + 1 1 1 0 1 −1 4

f z z z111
000

1 2 3= uds, 0*S 1 1 0 0 0 −1 4

f z z012
000

2 3
2= dss, *X - 1

1

2

1

2
- −1 −1 −2 4

f z z102
000

1 3
2= uss, 0*X 1

1

2

1

2
−1 0 −2 4

f z300
000

1
3= uuu, D++ 1

3

2

3

2
1 2 0 12

f z030
000

2
3= ddd, D- 1

3

2

3

2
- 1 −1 0 12

f z003
000

3
3= sss, W- 1 0 0 −2 −1 −3 12

Table 6.GluonMultiplication Table.

⧹ RR RG RB GR GG GB BR BG BB

RR RR RG RB 0 0 0 0 0 0

RG 0 0 0 RR RG RB 0 0 0

RB 0 0 0 0 0 0 RR RG RB

GR GR GG GB 0 0 0 0 0 0

GG 0 0 0 GR GG GB 0 0 0

GB 0 0 0 0 0 0 GR GG GB

BR BR BG BB 0 0 0 0 0 0

BG 0 0 0 BR BG BB 0 0 0

BB 0 0 0 0 0 0 BR BG BB
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symmetry by an nDoscillator. Schwinger’s representation of the angularmomentumby two uncoupled
oscillators and our version in section 2.1 are examples of such representations.

In section 4we propose a 3Doscillator representation of the flavor of the elementary particles. As examples
from a forage of possibilities, we give a 3Doscillator representation of the quark and antiquark triplets, the
pseudoscalarmeson nonet, and the baryon decuplet. These follow from the continuous symmetries of
Liouville’s operator under simultaneous rotations of the (p, q) - axes; see the roles of aij and bij in equations (2.2).

In section 5we deal with color symmetry. The Poisson bracket of the 3Doscillator is also symmetric under
permutation of the 3 directions in the (p, q) spaces; and antisymmetric under complex conjugation. These
discrete symmetries combinedwith the continuous ones of the permuted systems gives rise to a color-like SU(3)c
symmetry, the adjoint representation of SU(3)c in the function space,, is a set of gluon-like operators,
responsible for permuting the ‘color’ of the oscillators (i.e. the color of the quarks).

Among the subgroups ofGL(3, c) is the SO(3, 1) symmetry of the Lagrangian. In section 7we have suggested,
as far as the spin is concerned, a one-to-one correspondence between the 2Doscillators pairs and the quark color
pairs.We have, however, postponed the full analysis of the problem till a future communication. In fact GL(3, c)
⨂ Sym(3), the latter being the permutation group of 3 objects, is by far amuch larger group than both SU(3) and
SO(3, 1). It is quite possible to assign further eigen labels to the 3Doscillationmodes and look for their
counterparts in particle domain. This also is in the agenda of our futureworks.

It was pointed out in section 2.1 that the classical nDoscillators can display quantum features, if interpreted
in terms ofWigner’s phase space distributions functions. Yet classical oscillators can be constructed on table
tops.Onewonders whether it is possible to demonstrate, at least the rudiments, of the elementary particles by
some oscillator-based devices? For example, to show that a 3Doscillator with a finite energy cannot escape to
infinity, a way to convey the quark confinment. Or the oscillator is confined to afinite volume of the phase space
in the vicinity of the (p, q) origin; the closer it stays to the origin the freer it is, a way tomimic the asymptotic
freedom.Orwhether the characteristics of the Lissajous type oscillationmodes of the oscillator has any feature in
commonwith particles, or whether the Lissajousmode can represent quarks or any of the particlemultiplet
members? It is worth of thinking.

Last but not the least; themessagewewish to convey is to draw attention to a pedagogical point.
Correspondence between oscillators and elementary particles can bring down their study to the level of
analyzing a set of complex valued functions through simple algebraicmanipulations. Particles and concepts
associatedwith them are highly abstract notions. Understanding of onemay help a better appreciation of the
other.
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