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Abstract

Two dynamical systems with same symmetry should have features in common, and as far as their shared
symmetry is concerned, one may represent the other. The three light quark constituent of the hadrons,
(a) have an approximate flavor SU(3)symmetry, (b) have an exact color SU(3), symmetry, and (c) as spin
% particles, have a Lorentz SO(3, 1) symmetry. So does a 3D harmonic oscillator. (a) Its Hamiltonian has

the SU(3) symmetry, breakable if the 3 oscillators are not identical. (b) The 3 directions of oscillation have
the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for
each oscillator, and mimic the color of the elementary particles. (c) The Lagrangian of the 3D oscillator
has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper
we propose a one-to-one correspondence (a) between the eigen modes of the Poisson bracket operator of
the 3D oscillator and the flavor multiplets of the particles, and (b) between the permuted modes of the
oscillator and the color and anticolor multiplets of the particles. The bi-colored gluons are represented by
the generators of the color SU(3). symmetry of the oscillator. Harmonic oscillators are common place
objects and, wherever encountered, are analytically solvable. Elementary particles, on the other hand, are
abstract entities far from one’s reach. Understanding of one may help a better appreciation of the other.

1. Introduction

Jordan, 1935, is the initiator of the map from matrices to quantum harmonic oscillators to expedite computation
with Lie algebra representations [ 1]. Schwinger, 1952, evidently unaware of Jordan’s work, represents the SU(2)
algebra of the angular momentum by two uncoupled quantum oscillators [2]. Since then an extensive literature
is created on the subject. The technique often bears the name of ‘Jordan-Schwinger map’. In the majority of the
existing literature, the oscillator is a quantum one. In their stellar system studies, however, Sobouti et al [3] and
[4] associate the symmetries of their system of interest with those of the classical oscillators. They use Poisson
brackets instead of the quantum commutation brackets, and work with complex functions in the phase space of
the oscillator. Man’ko et al do the same, and give a realization of the Lie product in terms of Poisson brackets [5].

In this paper we follow the classic oscillator approach and explore the two-way association of SU(n) <= nD
oscillators. The case n = 2, of course, gives the oscillator representation of the angular momentum, albeitin a
different space and different notation than that of Schwinger. The cases n = 3, 4, ..., should be of relevance to
particle physics. The flavor and color triplets of the three light quarks, (u, d, s), and their higher multiplets have
the SU(3) symmetry. They can be given a 3D oscillator representation. By inviting in the heavier quarks there
might also be room for higher SU(n) and higher nD oscillators.

In his seminal paper Schwinger writes: ‘.. harmonic oscillator ... provides a powerful method for constructing
and developing the properties of angular momentum eigen vectors. ... many known theorems are derived in this way,
and some new results obtained.” Schwinger can only be right in saying so, for wherever encountered, harmonic
oscillators are exactly and easily solvable. It is in this spirit that we hope a harmonic representation of elementary
particles might offer a simpler and easier understanding of at least the rudiments of the particle physics, if not
lead to a different insight. Classical harmonic oscillators are common place objects and can be set up on table
tops. Elementary particles, on the other hand, are highly abstract notions and far from one’s intuition.

© 2018 The Author(s). Published by IOP Publishing Ltd
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2. nD harmonic oscillators in phase space

Let(g;psi = 1,2, ..., n) be the canonically conjugate pairs of coordinates and momenta of an n dimensional
(nD) harmonic oscillator, or equivalently of n uncoupled oscillators. The Hamiltonian and the Lagrangian are

1 1
H:— 2 2’ L:— 2—2)
2(p + g% 2(p q°)

where p? = p,p,, .... The time evolution of an attribute of the oscillator, a function f (p;(t), q;(t), £); i =1, ..., n
say, on the phase space trajectory of the oscillator is governed by Liouville’s equation,

1% - _i[f) H]poisson = _1(17,% - qiaip-]f: Lf (21)
1 1

The last equality is the definition of the Poisson bracket operator, £. Hereafter, it will be referred to as Liouville’s
operator. The reason for multiplication by iis to render £ hermitian and talk ofits eigen solutions. As we will see
shortly, the eigen solutions are in general complex and £ operate on functions of complex revariables p; & ig;. It
should also be noted that £ is the sum of n linear first order differential operators £ = £; + ...+ L,. Theyare
independent. Each £; depends only on the canonical coordinate-momentum pair, (p;, q;), with no interaction
with the other pairs.

Digression: Although a classical statistical mechanical concept, introduced primarily to deal with the
probability density of non interacting ensemble points in phase space, Liouville’s equation is encountered in one
important quantum mechanical (QM) case. Wigner, 1932 [6], introduced quantum mechanical phase space
distribution functions in order to calculate the QM expectation values in the same way as one does in classical
statistical mechanics. Since Wigner, a host of alternative distributions, including one developed by the author
and his collaborators , are proposed and a rich body of literature is developed. It can be shown that all those
alternatives are transformable one to another through appropriate canonical transformations. Each alternative
has its own Wigner-type evolution equation which, if Taylor-expanded in powers of the Planck constant, its
zeroth order term is the classical Liouville equation. More striking is the fact that for the nD simple harmonic
oscillators, Wigner’s evolution equation is exactly equation (2.1) and is the phase space transformation of
Schroedinger equation for quadratic potentials [7].

2.1. Symmetries of £, H,and L
The most general infinitesimal coordinate transformation that leaves £ invariant is the following,

qa; = q; + €(azq; + bip),
pl=p+ ¢ (=byq; + azp,), e infinitesimal, (2.2)

The transformation is linear, and a = [a;]and b = [b;]] are twon x nmatrices. The proof for n = 3is givenin [3]
and [4]. Its generalization to higher dimensions is a matter of letting the subscripts i and j in equations (2.1) and
(2.2) span the range 1 to 1. There are 2n° ways to choose the a- and b- matrices, showing that the symmetry group
of £ and thereof that of equation (2.1) is GL(1, ¢), the group of general n X n complex matrices. This statement is
based on the fact that, as we will see shortly, £ is defined on the complex plains (p; + iqzi = 1,2,...,n)

At this stage let us introduce H as the function space of all complex valued and square integrable functions,
f(p» g;), in which the inner product is defined as

(g h = fg*f exp(—2E)d"pd"q < oo, f,g€H,

where E = %( p? + q%) is the energy scalar of the Hamiltonian operator of the oscillator. Associated with the
transformation of equation (2.2), are the following generators on the function space ‘H,

o o) (o o
=ailp— +g—|—-iby| p— — g—|, 2.3
* “’k(pf op, 8qk) 1 Jk(pf oge " apk] -

(insertion of —iin front of by is for later convenience). Again there are 2n* generators. All x’s commute with £
but not necessarily among themselves.
Two notable subgroups of GL(#, c) are generated by
(1) ajjantisymmetric, b;; antisymmetric,

(2) ajjantisymmetric, b,-j symmetric,




10P Publishing

J. Phys. Commun. 2 (2018) 085006 Y Sobouti

Case 1 is the symmetry group of the Lagrangian. Itis of Lorentz type, and in the 3D case reduces to SO(3, 1),
the symmetry group of Minkowsky’s spacetime and of Dirac’s equation for spin % particles. We will come back
to it briefly in the conclusion of this paper.

Case 2, antisymmetric a;;and symmetric bj;, is the symmetry of the Hamiltonian, the SU(r) group. Before
proceeding further, however, let us give the proof of the last two statements. Under the infinitesimal
transformation of equation (2.2) one has

0L = €[aj (P,'Pj - qiq]') — bjj (Piq]‘ + qipj)] >
6H = elai(pip; + 4;9) — bi(p;a; — q;p)]-
There follows
6L = 0if a,‘j = —aﬁ, and b,’j = —bj,‘,
6H = 0if ai]‘ = —aﬁ, and b:] = bj,‘.QED
Coming back, an SU() is spanned by n* — 1 linearly independent basis matrices. A convenient and commonly

used basis for SU(n) is the generalized Gell-Mann’s A matrices. See e.g. [8] for their construction and see table 1
for arefresher. The generalized A matrices consist of %n (n — 1)antisymmetric and imaginary matrices plus

%n(n + 1) — 1symmetric, real, and traceless ones. Their commutation brackets are:
Aa )\h] A
L2 =9, ==, a,bc = 1,2,.,n*—1, (2.4)
[ P > f;bc P

where f,,;, are the structure constants. All are real and completely antisymmetricin a, b, c. To extract the
corresponding x generators from those of equation (2.3), we choose

1 1 . .
a= E)xam,-sym, = 5()\2, X, N, ...), imaginary

b— % g = %(x, 2, X, 6, 8, . )real

This choice produces a set of (n* — 1) linear differential operators, that are the oscillator representations of the
SU(n) algebrain H. The first 8 of them are as follows:

SRS | P I P
X1 5 1aq2 q op, 123 o4, q, ap, d

Y (AU B )
2 2 : op, o 0q, ? op, & 0q,

= %(51 %))

X4 = _i{ b ‘hi) + (Pai - %i)
2 0q, op, 0q, op,

X5 = _l{ Pli ‘hi] - (Psi %i) >
2 op, 04, op, 0q,

X6 = _L{ 172i - %i) + (1)3i q; 0 ]}>
2 04, op; 0q, op,

X7 = _i{ Pzi ‘121) - (P3 0 + %i]}’
2 Op, 0q, op, 0q,

=5+ £ 2L, 25)




I0OP Publishing J. Phys. Commun. 2 (2018) 085006 Y Sobouti

Table 1. Gell-Mann Matrices.

010 0 —i 0 1 00
/\1:100, /\2210(), )\3:0—10)
0 0 0 00 0 0 0 0
001 00 —i 000
A=|00 0} A=[0 0 0] Ae=|[0 0 1}
100 i 0 0 010
[0 0 0 \ 1[100]
=100 —if § = 01 0|
[0 i 0 ﬁoofz

All x’s are hermitian. Their commutation brackets are the same as those of \’s,

[Xa’ Xb] = iabcxc‘

2.2.Solutions of equation (2.1)
The followings can be easily verified

‘C(pl + iqi)n = in(I)l + iqi)n’
LE=0, Lexp(—E)=0, E= %(pz + . (2.6)

Let us use the shorthand notation z; = p; + ig;and E = z;z;* /2. Considering the fact that equation (2.1) is a
linear differential equation, and £ = £; + £, + ...isthe sum of n independent operators, one immediately
writes down the (unnormalized) eigen states of equation (2.1) as:

f::ln:” =z z MLz M exp[—it(n — m)],

L= (= mf, 7

wheren = Zi n;, m =y, m;. The modes reported in equation (2.7) are members of the function space H. As
defined in equation (2.8), the explicit form of their inner product is

My

My ...y

— f Zlnl+ml/ Zn”+m’ézl*nl/+ml Z*né"’mn]

e Zy 2

x exp(—2E)d"pd"q

OC O+ ({1 +++ Ot ) i ) (2.8)
The eigenvalue (n — m) of equation (2.7) is degenerate. Different combinations of n;and m; can give the same
n — m. Degenerate sets of modes are not in general orthogonal ones. However, for each multiplet of given n and m it
is always possible to construct an orthonormal set through suitable linear combinations of the multiplet members.

So much for generalities. In section 3 we examine the 2D oscillator representation of SU(2) and reproduce

Schwinger’s model, albeit in a different notation. Next, we treat the 3D case and suggest a scheme, that we think,
represents the flavor and color symmetries of the light quarks and higher particle multiplets.

3.2D oscillator and SU(2) - angular momentum

There are two complex planes to deal with, z; = p; + ig, andz, = p, + ig,. The first three operators of
equations (2.5) are the ones to work with, and have the SU(2) algebra,

[x;> Xj] =iegpXe Lk = 1,2,3. (3.1
Therefore, one may construct the following familiar angular momentum operators and commutators
Ji= X, Je =L £ i) (3.2)
P=R+L+E=]]+J - (3.3)
U Jil =0, U, J+] = £/ (3.4)

The common eigen-states of (J2, J;) (in ket notation) should be of the form

J2j, m>=j(j + Dlj, m >,
Blj, m>=m|j,m>, —j<m<j.
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Table 2. Table of x; zjand X,'Z;k-

\ Z1 2 23 z zf 23*
X2 7% - %zl 0 %zz* - %zl* 0
X Y4 —3%2 0 -5 22 0
X4 l23 0 %zl %z;* 0 — %zl*
X5 lZ; 0 %Zl %Z?’* 0 _ %Zl*
X6 0 %zs %zz 0 - %ZS* - %zz*
X7 0 523 - %zz 0 %23* - %zz*
1 1 1 1 * 1 * 1 %
X 254 ENERE ek 254 B e

In table 2 we have collected the outcome of the operation of x;on z; = p; + ig;. One may readily verify that

9 -
2)2 1> 2) 5 2>

1, 1) = zh |1, 0)=2z2, |1,-1)= z}.

The general rule is

ljp m) = 2"

In particular,

i i) = 27 15, 0) = z/zd, |j—j)= 27

One may, of course, begin with any | j, #) and reach the other (2j + 1) members of the j-multiplet by operating
on | j, m)with the raising and lowering ladders J ...

There is an unclassical feature to the eigenstates presented here; j can be integer or halfinteger, in sharp
contrast to the classical angular momentum eigenvalues which have to be integers (see e.g. [9]). Quantum
mechanics provides half integer eigenvalues by enlarging the angular momentum states via multiplication of the
orbital angular states by an abstract spin one-half state. In our case, provision for half integer j comes from
embedding of the angular momenta states in two complex spaces (py, q;) and (p,, 42)-

4.3D oscillator and Quark Flavor

There are three complex planes to deal with,
a2 =p +iq, z=p, +iq) andz; = p, + ig,.
The eight generators of equation (2.5) are the relevant ones. Two of them, x; and x5, commute together and

commutewith £ = £; + £, + L. From them (using the particle physics nomenclature) we compose the
following linear combinations,

L=x;= %(51 — L), isospin,
2 1
Y= sz = g(ﬁl + £, — 2L5), hypercharge,

B= %(ﬁl + Ly + L3), baryon number,
Q=L+ %Y: %(Zﬁl — L, — L35), charge,

S=Y—-B=-L;, strangeness, (4.1)

Only three of these five operators are linearly independent. Their eigenvalues and eigen-states can be read from
equations (2.7),
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K° K" s=+]
0 +
mr T s=0
T n'
s\= -1
K K°

q=-1 g=0 q=+1

Figure 1. Pseudoscalar meson nonet of spin 0. 7’ is the singlet; remaining ones constitute the octet. Note the axes of equal strangeness,
s, and of equal charge,q. Their 3D oscillator identification is in table 4.

1
Lfm = 5[(”1 —my) — (my — m)]f "

mymym: 1
yfmm 3:g[(ﬂl*ml)Jr(ﬂz*mz)

mmnyn3

— 2(n3 — m3]f::,';n,f3m3

nynynsz

mymym; 1
Bf " ‘Zg[(nl—ml)-l-(nz—mz)

+ (n3 — M3]f,r;:1;3m3

1
Qfm1m2m3 _ g[2(1/11 —my) — (np, — my)

mnyns
— (n3 — m3]fmems

nynynz
mymyms __ _ my iy ms
an1n2n3 = (ﬂ3 m3)fn1nzn3 (42)

The collection of all eigen-states belonging to a given n = n, + n, + nzandm = m; + m, + ms will be called a
multiplet and will be denoted by D(n, m). For instance, D(1.0) will be the triplet of fl%%o =z, 00108) = 2z, fooool0 = z.
Below we examine some of these multiplets, compare their eigen characteristics with those of the known particle
multiplets, and point out the one-to-one correspondence between the two.

Table 3 displays the two triplets D(1, 0) and D(0, 1). The first of which consists of (z;, z,, z3) and the second of
(zl*, 22* , 23* ). Their baryon, isospin, hypercharge, charge, and strangeness numbers, are read from equations (4.2).
They are the same as those of the quark and antiquark triplets. The members of the multiplet are orthogonal to one
another in the sense of equation (2.8). The last column in this and the other tables below displays the Casimir
numbers, 412 + 3Y?2, an index to identify submultiplets within a multiplet.

Table 4 and its geometrical representation, figure 1 display D(1, 1). It has nine members, (z; z;k 5 4,j=1,2,3,
or their linear combinations). D(1, 1) is identified as the pseudoscalar meson nonet. There are two submultiplets to
it, characterized by the two Casimir numbers 4 and 0. Again the 9 members of the multiplet constitute a complete
orthogonal set in the subspace of the pseudoscalar mesons.

Table 5 and its geometrical representation, figure 2, is D(3, 0). It is identified with the Baryon decuplet of spin
3/2.Ithas ten members, z/z{z%; i, j, k = 0, 1, 2, 3, constrained to i 4 j + k = 3. There are two
submultiplet to the baryon decuplet, characterized by the two Casimir numbers 4 and 12. The ten members
constitute a complete orthogonal set. The antibaryon decuplet is D(0, 3). It can be read from table 5 by simply
interchanging the subscripts and superscripts in the first column of the table and changing the signs of the
eigenvalues accordingly. This also means interchanging z; = z;|< in table 5.

5. Color and color multiplets

By mid 1960 particle physicists had felt the need for an extra quantum number for quarks in order to comply
with Pauli’s exclusion principle and to justify coexistence of the like spin —% quark flavors in baryons. The
notion of color and color charge was introduced, [10-12], and [13]. The consensus of opinion nowadays is that
each quark flavor comes in three colors, red, green and blue; and antiquarks in three anticolors, antired, antigreen
and antiblue. Strong interactions are mediated by 8 bi-colored gluons, each carrying one color charge and one
anticolor charge. Color is believed to be conserved in the course of strong interactions.

6
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Figure 2. Baryon decuplet of spin % Note the axes of equal strangeness, s, and of equal charge, q. Their 3D oscillator identification is in
table 5

Does the 3D harmonic oscillator has an attribute analogous to the color of the quarks, is that attribute
conserved, and if so, what is the symmetry responsible for its conservation? What are the counterparts of gluons
in the 3D oscillator? In section 2.1 we talked about the continuous symmetries of the Hamiltonian, the
Lagrangian and of the relevant Liouville equation, and came up with a one-to-one correspondence between the
fundamental eigen modes of the oscillator and the quantum numbers of the quark flavors. There are discrete
symmetries to consider:

A. Liouville’s operator is antisymmetric under complex conjugation, a discrete transformation. This leads to

(Lz; = z)* — Lz} = —z (5.1)

1

The fact that z;and z;* are the eigen states of £ with eigenvalues +1 is due to the antisymmetry of £ under
the transformation of equation (5.1). In particle physics language, this is akin to the statement that ifa
particle is a reality, so is its antiparticle.

B. The total Hamiltonian and the total £ = £; + £, + L5 are symmetric under the permutation of the three
dimension subscripts (1, 2, 3). To elucidate the point let us, for the moment, instead of talking of 3D
oscillators, talk of three uncoupled oscillators (1, 2, 3) and the 3 coordinate directions in the (g, p) spaces. Let
us the three directions as red(r), green(g), and blue(b). (The language we adopt is in the anticipation of
finding a correspondence between the permutation symmetry of the 3D oscillator and the color symmetry
of the quark triplets). One has the option to place any of the oscillators (1, 2, 3) in any of the colored
directions, r, g, or b. The choices are:

r(1), £(2), b(3)
r(3), g(1), b(2)
r(2), £(3), b(1)

There are three copies of the oscillator 1: r(1), g(1), and b(1), and similarly of the oscillators 2 and 3. Each oscillator
can be in a triplet color state. Defined as such, the color symmetry is exact and unbreakable. This is in contrast to
the flavor symmetry in which one assumes the 3 oscillators are identical, while it may be broken by allowing the
masses and spring constants of the oscillators to be different.

As noted earlier the transformation of equation (5.1), amounts to going from the complex (p, ) plane to its
complex conjugate, (p, )%, plane. One may now commute the coordinates in this complex conjugated space and
design an anticolor scheme, antired (¥), antigreen (g ), and antiblue (b), say. Thus,

(1,582,500
7(3),5(1), b2
7(2),8(3), b))
Again there are 3 copies of each oscillator in the (g, p)* space, our analogue of the antiparticle domain.

6. Gluons

With the definition of the preceding section the color is now a direction in the (p, q) phase space. Each oscillator,
while sharing the approximate flavor SU(3); symmetry with the others, has its own exact fundamental triplet
color SU(3),. symmetry. The adjoint color representation of SU(3), is the same as the x octet of equations (2.5) in

7
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which the subscripts 1, 2,and 3 of p’s and q’s are now painted as , g, and b, respectively. Thus,

i, e o) (e, 2
Xl 2 T aqg qr 8Pg gaqr qg apr >
i, o) (o, 2
XZ 2 T apg qr aqg g 8pr qg 8qr >
i, o) (o, 0
X3 2 T aqr qr 8pr g 8qg qg 8pg

1
:5(£r_£g)

LD | PSRN D PR
X4 ) T aqb qr apb b 6qr qb apr 4
T R R B T RS
s 2 |\"" op, Qraqb bapr qba% ,
o i, 2 qi]ﬂ,i_qi
° 2|\"*9q, *0p, baqg bapg ’
NS (PR qi]_ p D O
’ 2 |\*¥ op, ¢ 0q, ban baqg ’

=——=(L, + Ly — 2Ly). (6.1)

A typical differential operator,

pi— i oc=r4gb
caqc/ qcapc/ » 6 > & b,

in equations (6.1), upon operation on a typical color state z» = p, + iq,, annihilates the ¢’ color and create the ¢
color. As examples, let us use table 2 and see the action of x; and x, on the colored oscillator states z, and z:

1 1
X12r = Ezga X14g = Ezn

Xy2r = ;;zg, Xo2Zg = —;;z,,
from which we obtain
O+ X))z =0, (g + iXy)zg = 2o, (6.2)
O — iX)zr = zg (X; — iXp)2g = 0. (6.3)

From equation(6.2) we learn that (y; + ix;) annihilates a green state and creates a red one. Shall we denote it by
RG and call it a gluon bi-colored antigreen and red? Similarly, (x; — i x») can be denoted by GR and called a
green and antired gluon. Both RG and GR are differential operators. Note that terms such as GRz, and RGz,
yield zero; for there is no red in green or green in red to be extracted and turned into another color state. Also
note that terms such as RG and GR are not defined and there is no need to do that.
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Table 3. D(1, 0) and D(0, 1), Quark and Antiquark Triplets.

Somns @ q B I Y Q S (4I% + 3Y?)
]%%0 =2z u % +% +§ +§ 0 4/3

[3] 00 — 2, d 2 - +1 -1 0 4/3
R
100 = 2 7 -1 -1 - -2 0 4/3

3] 00— F a - +5 - +5 0 4/3
0l g 5 -1 0 +2 +3 1 4/3

We are now in a position to draw up a gluon table in terms of x’s by generalizing the examples above.

RG = X1+ ixo

GR = x; — Xy

RR — GG = 2y,

RB = x, + ixs

BR = x, — iXs»

GB = x¢ + ixy

BG = x4 — iXo

RR 4 GG — 2BB = 2/3 x,. (6.4)

The inverse relations are
1~ — 1 - —
X; = E(RG + GR), x,= E(RG — GR),

1

Xs = ~(RR - GG),
2
1 = — 1 —
Xy = E(RB + BR), x5= ;(RB — BR),
1

1 — 1 — —
Xo=(GB + BG), x;=_(GB - BG),
1

1 _
= ——(RR + GG — 2BB), 6.5
Xs 2\/g( ) (6.5)

L=L +L,+ L£3=RR + GG + BB. 6.6)

In equations (6.4) and (6.5), 3 and xg are colorless and members of a color octet. In equations (6.6), L is
colorless and a singlet.

6.1. Multiplication table of gluons
We begin with examples

1. RG (GBz) = RGzy = z,. Thus, RGGB = RB.
2. RG (BGz,) = RGz, = 0.Thus, RGBG = 0.

Guided by these examples we draw up the gluon multiplication table 6.

To summarize, defined as such, gluons described here are operators in the phase space of 3D oscillators.
Whether this interpretation throws any light on what one conceives from reading particle physics literature that,
gluons are abstract bosonic exchange particles, is left to the reader’s fancy.

7.Spin % character of oscillators

It was shown before that the Lagrangian of a 3D oscillator has SO(3, 1) symmetry. One also knows that quark
colors are spin % Dirac particles also with SO(3, 1) symmetry. There should be a one-to-one correspondence
between the two. In fact it was shown in section 3 that the first three operators of equations (2.5), or for that
matter the first three of equations (6.1), have the angular momentum algebra. In particular, we learned that z,(1)
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Table 4. D(1, 1), Pseudoscalar Meson Nonet. 1)’ is the singlet; remaining ones constitute the octet. Geometrical
representation is in figure 1.

f;:ill;n%ma Meson B I8 Y Q S (412 + 3Y?)
0 = 72 ud, n* 0 1 0 1 0 4
o =zz* dit, 7~ 0 -1 0 -1 0 4
= 7z us, K+ 0 3 1 1 1 4
W= zy2f ds, K° 0o -3 1 0 1 4
0 = 232, sit, K- 0 - -l -1 -1 4
" = 232} ds, K° 0 3 -1 0 -1 4
=y = o) 5 (it — dd), 7° 0 0 0 0 0 0
=y + I = 2D “Fuii +dd = 2%),m 0 0 0 0 0 0
H Uy o+ o) Hwi+dd+ ),y 0 0 0 0 0 0

Table 5. D(3, 0), Baryon Decuplet of spin % Geometrical construction is in figure 2.

Soa Baryon B I I Y Q S (412 + 3Y?)
00 = 72 udd, N 1 > =3 1 0 0 4
X0 = 22z, uud, A 1 3 3 1 1 0 4
o0 = z}zs dds, ¥*- 1 1 -1 0 -1 -1 4
o =1zlz uus, YFT 1 1 1 0 1 -1 4
0 = 21252 uds, L*0 1 1 0 0 0 -1 4
(?1020 = 2,2} dss, =¥~ 1 % 7% -1 -1 -2 4
1%020 =7z} uss, =*0 1 % % -1 0 -2 4
00 = 2} wu, AT 1 2 2 1 2 0 12
00 =z} ddd, X 1 : =2 1 -1 12
oy =z sss, Q7 1 0 0 -2 -1 -3 12

Table 6. Gluon Multiplication Table.

\ RR RG RB GR GG GB BR BG BB
RR RR RG RB 0 0 0 0 0

RG 0 0 0 RR RG RB 0 0 0

RB 0 0 0 0 0 0 RR RG RB
GR GR GG GB 0 0 0 0 0 0

GG 0 0 0 GR GG GB 0 0 0

GB 0 0 0 0 0 0 GR GG GB
BR BR BG BB 0 0 0 0 0 0

BG 0 0 0 BR BG BB 0 0 0

BB 0 0 0 0 0 0 BR BG BB

and z,(1), that are associated with red and green u quarks, are :I:% angular momentum states of the first three
operators of equations (6.1). The same is true for any colored oscillator pair

lz.(i), zz(D)]; ¢ =rgb; i = 1,2,3,
and associated colored quark pairs.
This is not, however, the whole story. To do justice one should look for the full Lorentz type SO(3, 1)

symmetry of both oscillators and quark colors. We hope to present this line of thought in a forthcoming
communication.

8. Concluding remarks

Among the symmetries of an nD oscillator is the symmetry group of its Hamiltonian, SU(n), a subgroup of the
symmetries of its Poisson bracket, GL(#, ¢). This feature can be employed to represent any system with SU(r)

10
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symmetry by an nD oscillator. Schwinger’s representation of the angular momentum by two uncoupled
oscillators and our version in section 2.1 are examples of such representations.

In section 4 we propose a 3D oscillator representation of the flavor of the elementary particles. As examples
from a forage of possibilities, we give a 3D oscillator representation of the quark and antiquark triplets, the
pseudoscalar meson nonet, and the baryon decuplet. These follow from the continuous symmetries of
Liouville’s operator under simultaneous rotations of the (p, q) - axes; see the roles of a;; and b;; in equations (2.2).

In section 5 we deal with color symmetry. The Poisson bracket of the 3D oscillator is also symmetric under
permutation of the 3 directions in the (p, q) spaces; and antisymmetric under complex conjugation. These
discrete symmetries combined with the continuous ones of the permuted systems gives rise to a color-like SU(3),
symmetry, the adjoint representation of SU(3).in the function space, H, is a set of gluon-like operators,
responsible for permuting the ‘color’ of the oscillators (i.e. the color of the quarks).

Among the subgroups of GL(3, ¢) is the SO(3, 1) symmetry of the Lagrangian. In section 7 we have suggested,
as far as the spin is concerned, a one-to-one correspondence between the 2D oscillators pairs and the quark color
pairs. We have, however, postponed the full analysis of the problem till a future communication. In fact GL(3, ¢)
&) Sym(3), the latter being the permutation group of 3 objects, is by far a much larger group than both SU(3) and
SO(3, 1). Itis quite possible to assign further eigen labels to the 3D oscillation modes and look for their
counterparts in particle domain. This also is in the agenda of our future works.

It was pointed out in section 2.1 that the classical nD oscillators can display quantum features, if interpreted
in terms of Wigner’s phase space distributions functions. Yet classical oscillators can be constructed on table
tops. One wonders whether it is possible to demonstrate, at least the rudiments, of the elementary particles by
some oscillator-based devices? For example, to show that a 3D oscillator with a finite energy cannot escape to
infinity, a way to convey the quark confinment. Or the oscillator is confined to a finite volume of the phase space
in the vicinity of the (p, q) origin; the closer it stays to the origin the freer it is, a way to mimic the asymptotic
freedom. Or whether the characteristics of the Lissajous type oscillation modes of the oscillator has any feature in
common with particles, or whether the Lissajous mode can represent quarks or any of the particle multiplet
members? It is worth of thinking.

Last but not the least; the message we wish to convey is to draw attention to a pedagogical point.
Correspondence between oscillators and elementary particles can bring down their study to the level of
analyzing a set of complex valued functions through simple algebraic manipulations. Particles and concepts
associated with them are highly abstract notions. Understanding of one may help a better appreciation of the
other.
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