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Abstract. An analysis of the toroidal modes of a rotating fluid, by means of the differential equations of motion,
is not readily tractable. A matrix representation of the equations on a suitable basis, however, simplifies the
problem considerably and reveals many of its intricacies. Let Ω be the angular velocity of the star and (`, m)
be the two integers that specify a spherical harmonic function. One readily finds the followings: 1) Because of
the axial symmetry of equations of motion, all modes, including the toroidal ones, are designated by a definite
azimuthal number m. 2) The analysis of equations of motion in the lowest order of Ω shows that Coriolis forces
turn the neutral toroidal motions of (`, m) designation of the non-rotating fluid into a sequence of oscillatory
modes with frequencies 2mΩ/`(` + 1). This much is common knowledge. One can say more, however. a) Under
the Coriolis forces, the eigendisplacement vectors remain purely toroidal and carry the identification (`, m). They
remain decoupled from other toroidal or poloidal motions belonging to different `’s. b) The eigenfrequencies quoted
above are still degenerate, as they carry no reference to a radial wave number. As a result the eigendisplacement
vectors, as far as their radial dependencies go, remain indeterminate. 3) The analysis of the equation of motion in
the next higher order of Ω reveals that the forces arising from asphericity of the fluid and the square of the Coriolis
terms (in some sense) remove the radial degeneracy. The eigenfrequencies now carry three identifications (s, `,m),
say, of which s is a radial eigennumber. The eigendisplacement vectors become well determined. They still remain
zero order and purely toroidal motions with a single (`,m) designation. 4) Two toroidal modes belonging to ` and
`±2 get coupled only at the Ω2 order. 5) A toroidal and a poloidal mode belonging to ` and `±1, respectively, get
coupled but again at the Ω2 order. Mass and mass-current multipole moments of the modes that are responsible
for the gravitational radiation, and bulk and shear viscosities that tend to damp the modes, are worked out in
much detail.
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1. Introduction

Recent years have seen a surge of interest in the small
oscillations of rotating fluid masses. The reason for the
excitement is the advocation by relativists that in rapidly
rotating neutron stars, the gravitational radiation drives
the r-modes to become unstable, and while spinning down
the star, may itself be amenable to detection (see the re-
cent review by Andersson & Kokkotas 2000). Nevertheless,
the oscillations of rotating objects is an old problem. In
the past few decades it has been studied by many investi-
gators and from various points of view. Complexity of the
problem arises from the fact that a fluid can support three
distinct types of motions, derived from, say, a scalar poten-
tial, from a toroidal vector potential and from a poloidal
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vector potential. These are the motions associated pre-
dominantly with the familiar p-, g- and toroidal- oscil-
lations of the fluid. Each of these motions, in turn, can
be given an expansion in terms of vector spherical har-
monics. The modes of an actual star are a mixture of the
three types mentioned above and of the different spherical
harmonic components. Sorting out this mixture and clas-
sifying the modes into well-defined sequences has not been
an easy task. Moreover, and more often than not, it has
not been realized that g-modes of spherically asymmetric
configurations are not apt for perturbation analysis as the
low frequency tail of their spectrum is a fragile structure.
It is driven by minute buoyancy forces and can be com-
pletely wiped out by almost any perturbing agent, such as
Coriolis, asphericity and magnetic forces.

Here we show that a matrix representation of the equa-
tions of motions provides a set of algebraic equations
that are much easier to cope with than their differential
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counterparts. In Sect. 2 we write down the equilibrium
structure and the linearized equations of motion of a ro-
tating star. In Sect. 3 we introduce the matrix represen-
tation of these equations. In Sects. 4 and 5 we sort out
the toroidal-poloidal components and spherical harmonic
constituents of the matrices. In Sects. 6 and 7 we give
an ordering of the various components in powers of Ω2

and sort out the equations of motion in various orders
of magnitude. References and bibliographical notes relat-
ing to mode calculations in rotating stars are collected
in Sect. 7.4. In Sect. 8 we discuss the numerical results.
A rotating neutron star can be slowed down by gravita-
tional radiation through the mass and mass-current mul-
tipole moments of the modes. The modes, in turn, can
be damped out by bulk and shear viscosities present in
the star. The time scales of relevant damping mechanisms
are analyzed in Sect. 9. Calculations of matrix elements
and presentation of appropriate basis sets are given in the
appendices.

2. Review of rotating fluids

2.1. Equilibrium configuration

Let ρ(r, θ), p(r, θ) and U(r, θ) be the density, the pressure
and the gravitational potential of a star rotating with the
constant angular frequency Ω about the z-axis. The equi-
librium condition is

∇∇∇p+ ρ∇∇∇
[
U − 1

2
Ω2r2 cos2 θ

]
= 0. (1)

For slow rotations, one obtains

ρ = ρ0(r) + Ω2[ρ20(r) + ρ22(r)P2(cos θ)], (2a)

where P2(cos θ) is a Legendre polynomial. Similar expan-
sions exists for p and U . For a barotropic structure, p(ρ),
one will have

p0(ρ0), and p2i =
dp0

dρ0
ρ2i; i = 0, 2. (2b)

Furthermore, Poisson’s equation will give

∇2(U0, U20, U22) = 4πG(ρ0, ρ20, ρ22). (2c)

A thorough study of the structure of rotating poly-
tropes was given as early as 1933 by Chandrasekhar.
Further numerical values of ρ20 and ρ22 may be found
in Chandrasekhar & Lebovitz (1962).

2.2. Linear perturbations

Let a mass element of the rotating fluid at position x be
displaced by an amount ξξξs(x) exp(iωst), where, for the
moment, s is the collection of all indices that specify the
displacement in question. This may include its spherical
harmonic specifications, its radial node number, and/or
its poloidal and toroidal nature. The Eulerian change in ρ,
and U resulting from this displacement, will be

δsρ = −∇∇∇ · (ρξξξs), (3a)

δsU(x) = −G
∫
δsρ(x′) | x− x′ |−1 d3x′. (3b)

On the assumption that the displacement takes place
adiabatically and the Lagrangian change in pressure is
−(∂p/∂ρ)adρ∇∇∇ · ξξξ, one obtains

δsp = −(∂p/∂ρ)adρ∇∇∇ · ξξξs −∇∇∇p · ξξξs

= (dp/dρ) δsρ+ [dp/dρ− (∂p/∂ρ)ad]ρ∇∇∇ · ξξξs, (3c)

where dp/dρ is the barotropic derivative of the equilib-
rium structure. The linearized Euler equation governing
the evolution of ξξξs now becomes

Wξξξs + 2iωsρΩΩΩ × ξξξs − ωs2ρξξξs = 0, (4)

where the linear operator W is given by

Wξξξs = ∇∇∇δsp− 1
ρ
∇∇∇pδsρ+ ρ∇∇∇δsU. (4a)

3. Matrix form of equations of motion

Equation (4) in its integro-differential form is highly com-
plicated. We convert it into a set of linear algebraic equa-
tions by expanding ξξξs in terms of a complete set of known
basis vectors, {ζζζr(x)}. Thus

ξξξs = ζζζrZrs, (5)

where Zrs are the expansion coefficients and, as yet, are
unknown. Associated with this, we define the following
matrices

Srs =
∫
ρ ζζζr∗ · ζζζsd3x , (6a)

Crs = +i/Ω
∫
ρ ζζζr∗ · (ΩΩΩ × ζζζs)d3x

= −iΩΩΩ/Ω ·
∫
ρ ζζζr∗ × ζζζsd3x, (6b)

W rs =
∫
ζζζr∗ · Wζζζsd3x, (6c)

where the integration is over the volume of the star.
All these matrices are Hermitian. Furthermore, let Z =
[Zrs] be the matrix of the expansion coefficients, and
ω = [ωsδrs] be the diagonal matrix of the eigenvalues.
Substituting Eq. (5) in Eq. (4), multiplying the resulting
equation from left by ζζζq∗, say, and integrating over the
volume of the star gives the (q s) element of the following
matrix equation

WZ + 2ΩCZω − SZω2 = 0. (7)

It is important to note that all factors in Eq. (7) are ma-
trices and should not be commuted with each other with-
out due care. Solutions of Eq. (7) are equivalent to those
of Eq. (4). The eigenfrequencies ω in both equations are
the same, and once the eigenmatrix Z is known, the set
of eigendisplacement vectors {ξξξs} can be constructed by
Eq. (5).
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4. Partitioning into poloidal and toroidal fields

The basis set {ζr} can be divided into two poloidal and
toroidal subsets, {ζζζr

p | ζζζr
t }. The set of the eigenmodes, [ξξξs],

of Eq. (4) in the absence of rotation also has such exact
partitioning. Its poloidal subset comprises the commonly-
known g- and p-modes of the fluid. The toroidal subset
includes those displacements of the fluid which do not per-
turb the equilibrium state of the star. For them, ω = 0.
For the sake of mathematical completeness one might say
that ω = 0 is a degenerate eigenfrequency and the set of
all toroidal motions [ξξξs

t ] are its eigendisplacement vectors.
In the presence of rotation, two things happen. a) Each

known poloidal mode of the fluid acquires a small toroidal
component. b) The neutral toroidal displacements orga-
nize themselves into a new sequence of modes and the
degeneracy of ω = 0 gets removed. Nonetheless, one may
still partition the eigensets [ξξξs] as [ξξξs

p | ξξξs
t ] remembering

that the subsets [ξξξs
p] and [ξξξs

t ], unlike the no rotation case,
are only predominantly poloidal and toroidal, respectively.
In view of these considerations, Eq. (5) partitions as

ξξξs
p = ζζζr

pZ
rs
pp + ζζζr

t Z
rs
tp , (8a)

ξξξs
t = ζζζr

pZ
rs
pt + ζζζr

t Z
rs
tt , (8b)

or in its matrix form and suppressing the superscripts one
gets

[ξξξp | ξξξt] = [ζζζp | ζζζt]
[
Zpp Zpt

Ztp Ztt

]
· (8c)

Accordingly, all matrices in Eqs. (6) partition into four
pp, pt, tp, and tt blocks. For example, an element Srs

pt in
the pt block is obtained by inserting the two vector ζζζr

p and
ζζζs
t in Eq. (6a) and carrying out the integration.

We are not interested in the poloidal modes of Eq. (8a).
They are discussed in ample detail and in a much wider
scope than that of the present work in Sobouti (1980).
Here we concentrate on the toroidal modes of Eq. (8b).
The required information comes from multiplying the
block partitioned forms of all the matrices in Eq. (7) and
extracting the tt and pt blocks of it. Thus

tt−block of Eq. (7) :
WttZtt + 2ΩCttZttωt − SttZttω

2
t

+WtpZpt + 2ΩCtpZptωt − StpZptω
2
t = 0, (9a)

pt−block of Eq. (7) :
WptZtt + 2ΩCptZttωt − SptZttω

2
t

+WppZpt + 2ΩCppZptωt − SppZptω
2
t = 0. (9b)

5. Partitioning by spherical harmonic numbers

For a toroidal basis vector we will adopt the following
spherical harmonic form

ζζζr`
t = ∇∇∇× [r̂φr`(r)Y m

` (ϑ, ϕ)]

=
φr`

r

(
0,

im

sinϑ
Y m

` ,−∂Y
m
`

∂ϑ

)
· (10a)

For a poloidal vector we will take

ζζζr`
p =

1
r

[
ψr`(r)Y m

` , χr`(r)
∂Y m

`

∂ϑ
, χr`(r)

im

sin ϑ
Y m

`

]
· (10b)

An appropriate ansatz for the radial function φ, ψ, and χ
are given in Appendix B. The toroidal vector (10a) is obvi-
ously derived from a radial vector potential. The poloidal
vector (10b) is actually the sum of two vectors, one de-
rived from a scalar potential and the other derived from
a toroidal vector potential. See Sobouti (1981).

In Eq. (10) we have suppressed the harmonic index
m from ζζζ’s because a slowly rotating star is axially sym-
metric. Vectors with different values of m are not mutu-
ally coupled. Vectors belonging to the same m, but differ-
ent `’s, however, are coupled. This feature entails a further
partitioning of the basis sets into their harmonic subsets,
[ζζζ`

p, ` = 0, 1, 2, · · · ] and [ζζζ`
t , ` = 1, 2, · · · ]. Correspondingly,

each of the matrices in Eqs. (9) partitions into blocks,
designated by a pair of harmonic numbers (k, `), say. For
example, the rs element of Sk`

pt , say, will be obtained from
Eq. (6a) by inserting the two vectors ζζζrk

p
∗ and ζζζs`

t in that
equation. In the following we rewrite Eqs. (9) taking into
account the new partitioning. Thus,

tt-block:

∑
`′

[
W k`′

tt Z`′`
tt + 2ΩCk`′

tt Z
`′`
tt ω

`
t − Sk`′

tt Z
`′`
tt ω

`
t

2

+W k`′
tp Z`′`

pt + 2ΩCk`′
tp Z

`′`
pt ω

`
t − Sk`′

tp Z
`′`
pt ω

`
t

2
]

= 0, (11a)

pt-block:∑
`′

[
W k`′

pt Z
`′`
tt + 2ΩCk`′

pt Z
`′`
tt ω

`
t − Sk`′

pt Z
`′`
tt ω

`
t

2

+W k`′
pp Z

`′`
pt + 2ΩCk`′

pp Z
`′`
pt ω

`
t − Sk`′

pp Z
`′`
pt ω

`
t

2
]

= 0. (11b)

We again emphasize that each of the factors in Eqs. (11)
are matrices in their own right.

6. Expansion order and spherical harmonic
structure of the various matrices

Expansions of ρ, p, and U in powers of Ω2 results
in a corresponding expansion of all the matrices in
Eqs. (11). Moreover, having the spherical harmonics forms
of Eqs. (10), integrations over ϑ and ϕ dependencies in the
calculation of matrix elements can be performed analyti-
cally. These two tasks are carried out in Appendix A. The
results are quoted below:

Sk`
tt = S``

0ttδk` + Ω2Sk`
2tt(δk` + δk,`±2),

see (A.7)−(A.8), (12)
Ck`

tt = C``
0ttδk` + Ω2Ck`

2tt(δk` + δk,`±2),
see (A.9)−(A.10) (13a)

C``
0tt = (m/`(`+ 1))S``

0tt, see (A.9), (13b)

Ck`
tp = C`k

pt

∗
= Ck`

0tpδk`±1 + O(Ω2), see (A.11), (13c)
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W k`
pp = W ``

0ppδk` + O(Ω2), see (A.12), (14a)

W k`
tp = W `k

pt

∗
= Ω2W k`

2tpδk`±1, see (A.13), (14b)

W k`
tt = Ω4W k`

4tt (δk` + δk,`±2), see (A.14). (14c)

A subscript, 0, 2, 4 preceding the tt, tp, pt or pp des-
ignations of the matrices indicates the order of Ω in the
matrix in question. We also note that as Ω → 0, ωt does
the same. Therefore, it must have the following form

ω`
t = Ω

(
ω`

0t + Ω2ω`
2t

)
. (15)

Substituting these order of magnitude informations in
Eq. (11b) reveals that

Zk`
pt = Ω2Zk`

2pt. (16a)

For Zk`
tt , we have no information so far. Therefore, we

assume the general form

Zk`
tt = Zk`

0tt + Ω2Zk`
2tt. (16b)

7. Expansion of equations of motion

Equations (12)–(16) allow a consistent expansion of
Eqs. (11) at Ω2 and Ω4 orders and enable one to deci-
pher the information contained in them.

7.1. Ω2 order of the tt-block

At Ω2 order Eq. (11a) gives

2Ckk
0ttZ

k`
0tt − Skk

0ttZ
k`
0ttω

`
0t = 0. (17)

For k = `, considering the proportionality of C``
0tt and S``

0tt,
Eq. (13b), one obtains

ω`
0t = 2m/`(`+ 1)I, I = unit matrix, (18a)

Z``
0tt undetermined at this stage. (18b)

For k 6= `, using Eqs. (13b) and (18a), one has

2m[1/k(k + 1)−1/`(`+ 1)]Skk
0ttZ

k`
0tt = 0 or Zk`

0tt = 0. (18c)

Let us summarize the findings so far from a pedagogical
point of view. At the Ω2 order one solves the eigenvalue
Eq. (17). In this equation the Coriolis forces remove the
degeneracy of the neutral motions and create a sequence
of modes of purely toroidal nature. The new modes have
a definite `-symmetry, (Eqs. (18)). They are not coupled
with toroidal motions of k 6= ` symmetry (that is Zk`

0tt = 0)
and with poloidal motion (that is Zk`

0pt = 0, see Eq. (16a)).
Removal of degeneracy, however, is partial. For, of the
three designations of a standing wave in three dimensions,
only (`,m) designations have appeared in the expression
for ω`

0t = 2m/`(`+ 1). A third designation, indicating the
radial wave number, is as yet absent. They will appear at
higher orders of Ω.

One simplifying feature: We note that ω`
0t of Eq. (18a)

is a constant matrix. Therefore, it will commute with
any matrix carrying the same `` designations, such as
Z``

0tt, S``
0tt, etc. This feature was used in the derivation

of Eq. (18c) and will be used repeatedly in what follows
to simplify the matrix manipulations.

7.2. Ω2 order of pt-block

Equation (11b) at order Ω2 along with Eqs. (18) gives

W kk
0ppZ

k`
2pt + (W k`

2pt + 2Ck`
0ptω

`
0t)Z

``
0tt = 0, k = `± 1. (19a)

W kk
0pp is associated with poloidal modes of the non-rotating

fluids. In fact if ζζζp are chosen to be the exact eigenvectors
of the non-rotating star, W kk

pp will be a diagonal matrix
whose elements are the square of the eigenfrequencies of
the p- and g-modes. At least in the case of p-modes, W kk

0pp

is invertible (see Sobouti 1980 for complications in the case
of g-modes). Thus, one obtains

Zk`
2pt = −(

W kk
0pp

)−1 [
W k`

2pt + Ck`
0ptω

`
0t

]
Z``

0tt, k = `± 1.(19b)

By Eq. (8b), Eq. (19b) expresses that a toroidal mode of
the rotating fluid of ` symmetry acquires a small poloidal
component of `± 1 symmetry at Ω2 order.

The case of g-modes is different. Rotation, no matter
how small, cannot be treated as a perturbation on them,
as they are created by minute buoyancy forces and the
low frequency tail of their spectrum gets completely wiped
out by any other force in the medium, here the Coriolis
forces. This, in mathematical language, means that W0pp

for g-modes is not invertible and Eq. (19b) is not appli-
cable to them. The way out of the dilemma is to consider
the sum of buoyancy and other intruding forces as an in-
separable entity, without dividing it to large and small
components. The works of Provost et al. (1980) and of
Sobouti (1977, 1980) are examples of such treatments. We
leave it to the experts in the field to decide whether the
scrutiny of g-modes in rotating neutron stars is a crucial
or an irrelevant issue.

7.3. Ω4 order of tt-block

7.3.1. The ``-subblock

A systematic extraction of Ω4 order terms of the ``-block
of Eq. (11a) with the help of Eqs. (12)–(16) and elimina-
tion of Zk`

2pt term appearing in it by Eq. (19b) gives

T ``
4ttZ

``
0tt −

2m
`(`+ 1)

S``
0ttZ

``
0ttω

`
2t = 0, (20)

where the fourth order T -matrix is

T ``
4tt = [W4tt + (2C2tt − S2ttω0t)ω0t

−(W2tp + 2C0tpω0t)W−1
0pp(W2pt + 2C0ptω0t)]``. (20a)

Equation (20) is a simple eigenvalue problem. Vanishing
of its characteristic determinant,∣∣∣∣T ``

4tt −
2m

`(`+ 1)
S``

0ttω
`
2t

∣∣∣∣ = 0, (20b)

will give the non-degenerate second order eigenvalues ωs`
2t ,

s = radial wave number. Once they are known, Eq. (20)
itself can be solved for the eigenmatrix Z``

0tt. We note
that we have solved two eigenvalue problems, Eqs. (17)
and (20), to remove all degeneracies of the zero frequency
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toroidal motions of the non-rotating fluid. Further exten-
sion of the analysis of equations of motion to orders higher
than Ω4 will result in non-homogeneous algebraic equa-
tions whose non-homogeneous terms are given in terms of
the matrices calculated in the previous orders.

7.3.2. The (`, `± 2)-subblock

The presence of δk,`±2 in Eqs. (13a) and (14c) indi-
cates that two toroidal motions belonging to ` and ` ± 2
are mutually coupled. Likewise, the presence of δk,`±1 in
Eqs. (13c) and (14b) shows the coupling of toroidal and
poloidal motion of ` and `±1 symmetry. This brings in an
additional coupling between two toroidal motions of ` and
`±2 symmetries through the intermediary of poloidal mo-
tions. Therefore, the only unexplored blocks of Eq. (11a)
are those with (`, ` ± 2) designations. As in Sect. 7.3.1
above, we extract the Ω4 order terms of Eq. (11a), but
this time with `, `± 2 superscripts, eliminate Z`′,`′±1

2pt ap-
pearing in it by Eq. (19b) and arrive at

T `,`±2
4tt Z`±2,`±2

0tt =
[
2C``

0ttZ
`,`±2
2tt

−S``
0ttZ

`,`±2
2tt ω`±2

0t

]
ω`±2

0t , (21)

where

T `,`±2
4tt =

[
W4tt + (2C2tt − S2ttω0t)ω0t

−
(
W2tp +

4m
(`± 2)(`± 2 + 1)

C0tp

)
W−1

0pp

×
(
W2pt+

4m
(`± 2)(`± 2 + 1)

C0pt

)]`,`±2

. (21a)

In deriving this expression, on two occasions we have sub-
stituted for ω`±2

0t and shifted the scalar factor 2m/(` ±
2)(` ± 2 + 1) across the other matrices. Returning to
Eq. (21) we substitute for C``

0tt from Eq. (13b) and solve
for Z2tt. Thus,

Z`,`±2
2tt =

[(
ω`

0t − ω`±2
0t

)
ω`±2

0t

]−1

×(S``
0tt)

−1T `,`±2Z`±2,`±2
0tt . (22)

Equations (20), (21) and (22) are all the information con-
tained in the Ω4 order of the tt-block. Whether Z`,`

2tt is
non-zero or otherwise is not clear at this level. To an-
swer the question one has to go to Ω4 and Ω6 orders of
Eqs. (11b) and (11a), respectively. This, however, will not
be attempted here.

7.4. Bibliographical notes

Papaloizou & Pringle (1978) have studied the low fre-
quency g- and r-modes of Eq. (4) in an equipotential coor-
dinate system with their applicability to the short period
oscillations of cataclysmic variables in mind.

Sobouti (1980) has studied the problem primarily with
the goal of analyzing the perturbative effects of slow ro-
tations on p-modes and demonstrating that rotation, no

matter how small, cannot be treated as a perturbation on
g-modes. He argues that the g-modes are fragile structures
and their low frequency tail of the spectrum, below the
rotation frequency of the star, will be completely wiped
out by Coriolis and asphericity forces of the star. The cri-
terion for the validity of perturbation expansion is that
the perturbing operator should be smaller than the ini-
tial unperturbed operator everywhere in the Hilbert space
spanned by the eigenfunctions of the unperturbed opera-
tor, (Rellich 1969). This condition is not met by g-modes
when exposed to rotation, magnetic, tidal forces, etc., as
they have vanishingly small eigenfrequencies.

Provost et al. (1981) present an analysis of what they
call the “quasi-toroidal modes of slowly rotating stars”.
Their work should be noted for the consistency of math-
ematical manipulations exercised throughout the paper.
They noted that in neutrally convective rotating stars one
cannot have modes with predominantly toroidal motions.
They get mixed with the neutral convective displacements.

Lockitch & Friedman (1999) also address the hybrid
modes with comparable toroidal and poloidal motions.
Their work should be noted for the emphasis put on the
(`, m) parities of the hybrid components that get coupled
through asphericity forces.

Yoshida & Lee (2000) study Eq. (4) for a) those modes
that are predominantly toroidal in their nature and b) for
those that have comparable poloidal and toroidal compo-
nents. Their latter modes are the same as those of Provost
et al. (1981).

8. Numerical result for rotating polytropes

The bulk properties of some observed neutron stars seem
to approximate those of a polytrope of index 1. See
Sterigioulas (1998). It has become fashionable to catego-
rize neutron stars as stiff or soft, depending on whether
their density distributions are similar to those of poly-
tropes of index smaller than 1.5 or larger, respectively. To
have an example of each category, sample calculations are
given for polytropes of indices 1 and 2.

The structure of rotating polytropes, taken from
Chandrasekhar (1933), is summarized in Appendix C.
The ansatz for the scalars φs`, ψs` and χs` appearing
in Eqs. (10) are given in Appendix B. The required ma-
trix elements are reduced in Appendix A. For a given
N = 1, 2, . . ., the N × N matrices are numerically inte-
grated. The eigenvalues ω`

0t and ω`
2t are calculated from

Eqs. (18a) and (20b). Once the eigenvalues are known, the
various components of the eigenmatrices Z``

0tt, Z
`±2,`
2tt and

Z`±1,`
2pt are calculated from Eqs. (20), (22) and (19b). The

results are given in Tables 1 to 3.
In Table 1, to show the convergence of the variational

calculations, the eigenvalues ω`
2t are displayed for a poly-

trope of index 2, ` = m = 2, and for N = 1, 2, 3, 4, 5.
This table should be considered as a basis for judging the
accuracy of the numerical values. With only five varia-
tional parameters, the first, second and third eigenvalues
are produced with an accuracy of a few parts in 105, 104
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Table 1. Convergence of the variational calculations. For poly-
trope of index 2 and ` = m = 2, the second order toroidal
eigenvalues, ω`

2t, are displayed for different number of varia-
tional parameters, N = 1, 2, 3, 4, 5. They are in units of

√
πGρ̄.

A number a × 10±b is written as a ± b.

.30169+0

.19860+0 .60797+0

.16137+0 .44344+0 .1371+1

.16136+0 .43726+0 .11361+1 .30568+1

.16132+0 .43714+0 .10106+1 .24613+1 .52712+1

and 102, respectively. Likewise, the numerical values in
the remaining tables should be trusted to the same degree
of accuracy and for the first few modes.

In Table 2, the second order eigenvalues, ω`
2t and co-

efficient matrices, Z``
0tt, Z

`+1,`
2pt , and Z`+2,`

2tt are given for
polytrope of index 1 and for ` = m = 2, N = 5. In Table 3
we give the same calculations for polytrope of index 2.
The eigenvalues are in units of

√
πGρ̄. They are in agree-

ment with those of Lindblom et al. (1999), Yoshida & Lee
(2000), and Morsink (2001). Each of these authors have
used their own technique which are different from that of
the present paper.

A novel feature of the present analysis is the provision
of much detail on eigendisplacement vectors, information
that can be profitably used to calculate any other bulk
or local parameter of the model. For example, for modes
belonging to ` = m = 2 one may write

ξξξs,2
t =

∑
r

ζζζr,2
t (Z2,2

0tt )
rs + Ω2

∑
r

ζζζr,3
p (Z3,2

2pt)
rs

+Ω2
∑

r

ζζζr,4
t (Z4,2

2tt )
rs, (23)

in which the first sum is the backbone of the mode and is
of zero order. It is toroidal motion of ` = m = 2 symmetry.
The second sum is the coupling of ` = 3, m = 2 poloidal
motion with ` = m = 2 toroidal motion. It is a poloidal
motion and is of second order. The third sum is the cou-
pling of ` = 4, m = 2 toroidal motion with ` = m = 2
toroidal motion and again is of second order. In Figs. 1
to 4 we have plotted the radial behavior of

∑
r ζζζ

r,2
t (Z2,2

0tt )
rs,∑

r ζζζ
r,3
p (Z3,2

2pt)
rs, and

∑
r ζζζ

r,4
t (Z4,2

2tt )
rs for polytropes of in-

dices 1, 2 and the first two modes, s = 1, 2. The center and
the surface are nodes in all curves. For s = 2 there is an
extra node in between in every curve. The general rule is
the number of nodes for any parameter f(r, θ, ϕ) belong-
ing to the radial mode number s, is s + 1. This includes
the ever-present nodes at the center and the surface of
the star. This feature is faithfully present in all five modes
that can be constructed from the data of Tables 1 and 2,
even though we know that the numerical values for s = 4
and 5 are only orders of magnitude.
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Fig. 1. Radial behavior of the various components of the
eigenfunction of Eq. (23) for ` = m = 2, s = 1, n = 1.∑

r
�

r,2
t (Z2,2

0tt )
rs, dashed curve;

∑
r
�r,3

p (Z3,2
0pt)

rs, dot-dashed

curve;
∑

r
�

r,4
t (Z4,2

2pt)
rs, dotted curve. Data for Z’s are taken

from the first column of Table 2. Nodes in all three compo-
nents are at the center and surface.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r/R

Fig. 2. Same as Fig. 1 for ` = m = 2, s = 2, n = 1. Data for Z’s
are from the second column of Table 2. Note the extra node in
all three components.

9. r-mode time scales

In this section we study the dissipative effects of viscosity
and gravitational radiation on r-modes. Quite generally
and regardless of whether the star rotates or not, the total
energy of an undamped mode, ξξξ(r, t), is

E =
1
2

∫ [
ρ ξ̇ξξreal · ξ̇ξξreal + ξξξreal · Wξξξreal

]
d3x, (24)

= maximum kinetic energy of the mode.

See Appendix D for proof of Eq. (24). In the pres-
ence of viscous forces and the gravitational radiation, the
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Table 2. Second order eigenvalues ω2t and coefficient matrices, Z2,2
0tt , Z3,2

2pt, and Z4,2
2tt are given for m = 2, N = 5 and the

polytropic index 1.

ω2t .32203+0 .84087+0 .19790+1 .48110+1 .96363+1

Z2,2
0tt

–.58565+1 .38532+1 –.29986+1 –.27754+1 .14743+2
.12510+2 –.11134+2 .82347+1 .72343+1 –.73216+2
–.12234+2 .84713+1 –.34999+1 .18385+0 .14699+3
.64179+1 –.87049+0 –.73634+2 –.15379+2 –.13539+3
–.15465+1 –.78018+0 .49263+1 .11366+2 .47334+2

Z3,2
2pt

–.39677+0 –.82952+0 .96949-1 –.12394+0 –.27257+0
–.20041+0 .98613+0 –.28392+0 .65146+0 .10959+1
.63624+0 .96043+0 –.27949+0 –.14499+1 –.17471+1
–.41126+0 –.37431+0 .42798+0 .10202+1 .98804+0
.92562-1 –.53391-1 –.13166+0 –.23806+0 –.18318+0

Z4,2
2tt

.58000+1 –.30934+1 .27352+1 .30368+1 –.40984+1
–.16462+2 –.10961+2 –.10022+2 –.11591+2 .18955+2
.21461+2 .15392+2 .14924+2 .18085+2 –.35467+2
–.14090+2 .10291+2 –.10129+2 –.12810+2 .30614+2
.37608+1 –.27390+1 .26484+1 .33165+1 –.10091+2

s = 1 s = 2 s = 3 s = 4 s = 5

Table 3. Same as Table 2, for polytrope 2.

ω2t .16132+0 .43714+0 .10106+1 .24613+1 .52712+1

Z2,2
0tt

.30158+1 .17867+1 .11589+1 .82841+0 .10498+2
–.36757+1 –.25829+1 –.20167+0 .15548+1 –.45626+2
.16613+1 –.30333+1 –.85360+1 –.14096+2 .84738+2
–.37105+0 .52330+1 .14253+2 .24110+2 –.75082+2
.14113+0 –.18708+1 –.59865+1 –.13019+2 .25924+2

Z3,2
2pt

–.14392+1 –.28790-1 .29383+0 .19977-1 –.24544+0
.10270+1 –.14184+1 –.11345+1 .15290+0 .92290+0
–.28306+0 .15325+1 .57987+0 -.95505+0 –.14964+1
–.17515-1 .71869+0 –.63417-1 .68145+0 .73244+0
.20617-1 .13678+0 –.15707-1 –.15094+0 –.11366+0

Z4,2
2tt

–.30726+1 – .16563+1 –.14505+1 –.14874+1 –.21505+1
.71922+1 .48149+1 .43706+1 .46605+1 .81784+1
–.83777+1 –.58904+1 –.56669+1 –.63205+1 –.13491+2
.51958+1 .36393+1 .34767+1 .40067+1 .10782+2
–.13588+1 .93612+0 –.85413+0 –.92167+0 –.34032+1

s = 1 s = 2 s = 3 s = 4 s = 5

combined rate of dissipation (Cutler & Lindblom 1987) is

dE
dt

= −
∫

(2ηδσ∗
abδσ

ab + ζδσ∗δσ)d3x

− ωt(ωt −mΩ)
∑
`≥2

N`(ωt −mΩ)2`

× (|δD`m|2 + |δJ`m|2) , (25)

where η and ζ are the shear and bulk viscosities respec-
tively,

δσab = 1
2 (∇aξ̇b + ∇bξ̇a − 2

3δab∇∇∇ · ξ̇ξξ), shear strain, (26a)

δσ = ∇ · ξ̇ξξ, bulk strain, (26b)

N` =
4πG
c2`+1

(`+ 1)(`+ 2)
`(`− 1)[(2`+ 1)!!]2

, c = speed of light,

δD`m =
∫
δρ r`Y ∗

` md3x, mass multipole moment, (27)

δJ`m =
2
c

√
`/(`+ 1)

∫
(ρ ξ̇ξξ + δρv) · Y ∗

` md3x,

current multipole moment, (28)

Y ` m =
1√

`(`+ 1)
∇× (r̂Y` m),

toroidal vector spherical harmonics. (28a)
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Fig. 3. Same as Fig. 1 for ` = m = 2, s = 1, n = 2. Data for Z’s
are from the first column of Table 3. Nodes are at the center
and the surface.
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Fig. 4. Same as Fig. 1 for ` = m = 2, s = 2, n = 2. Data for Z’s
are from the second column of Table 3. Note the extra nodes
in all components.

For a mode of the type of Eq. (23) the bulk viscous dis-
sipation (bv) comes entirely from its poloidal component,
as ∇∇∇ · ζζζt = 0. For m = ` this has the following rate

(dEs`/dt)bv = −ω`2
0tΩ

6
{
Zk`†

2pt(bv)Z
k`
2pt

}ss

, k = `+ 1 (29)

where the elements of the new matrix, (bv), are

(bv)rq =
∫
ζ

[
d(rψrk)/dr − k(k + 1)χrk

]
[
d(rψqk)/dr − k(k + 1)χqk

]
dr/r3. (29a)

The shear viscous dissipation has contributions from both
toroidal and poloidal components of Eq. (23). To the low-
est order in Ω, however, the toroidal component has the
dominant contribution. Thus,(
dEs`/dt

)
sv

= −ω`2
0tΩ

2
{
Z``†

0tt (sv)Z
``
0tt

}ss

, (30)

Table 4. Shear viscous-, bulk viscous-, and gravitational
radiation- time scales in seconds are given for polytrope 1 and
s = 1, 2, 3, 4, 5 from top to bottom. A number a×10±b is writ-
ten as a ± b.

s τ̃sv τ̃bv τ̃gr

1 2.14 + 8 1.20 + 11 −2.79 + 0

2 7.78 + 8 1.12 + 11 −8.71 − 1

3 1.41 + 9 1.04 + 11 −5.53 − 1

4 1.72 + 9 9.72 + 10 −5.66 − 1

5 1.47 + 8 9.06 + 10 −1.00 + 0

where

(sv)rq = `(`+ 1)
∫
η

[
(rdφr`/dr − 2φr`)

×(rdφq`/dr − 2φq`)
+(`2 + `− 2)φr`φq`dr/r2

]
. (30a)

Dissipation due to the gravitational radiation, to the low-
est order, comes from the current multipole moment, δrJ`.
This has the following vector elements

δrJ` = iω`
0tΩ

2`
c

∫
ρ0 r

`+1φr`dr. (31)

To obtain the dissipation time scales: a)we have calculated
the integrals of Eqs. (24)–(31), numerically. b) For the
bulk and shear viscosities we have adopted the values of
Cutler and Lindblom, η = 347ρ9/4T−2 g cm−1 s−1, ζ =
6.0 × 10−59ρ2ω−2

t T 6 g cm−1 s−1, where T is the tem-
perature. For the a mode of radial node number s and
` = m = 2, we obtain

1
τs(Ω, T )

=
1
τ̃s
sv

(
109 K
T

)2

+
1
τ̃s
bv

(
T

109 K

)6 (
Ω2

πGρ̄

)

+
1
τ̃s
gr

(
Ω2

πGρ̄

)3

,(32)

where ρ̄ is the average density of the star. Here τ̃s
sv, τ̃s

bv,
and τ̃s

gr are the shear viscous-, bulk viscous- and the gravi-
tational radiation- time scale, respectively, which are nor-
malized for T = 109 K and Ω2 = πGρ̄. The total dissipa-
tion time scale is

1
τ(Ω, T )

=
∑

s

1
τs(Ω, T )

· (33)

For a model of 1.4 M� and R = 12.53 km we have calcu-
lated τ̃s

sv, τ̃s
bv, and τ̃s

gr for s = 1, 2, 3, 4, 5 and displayed in
the unit of time in Tables 4 and 5. Our values for s = 1
are in agreement with those of Lindblom et al. (1999)
and, Yoshida & Lee (2000). To the best of our knowledge,
the values for s ≥ 2 are new.

In a newly born hot neutron star, T ≥ 1012 K, the
bulk viscosity has a dominant role in damping out the
perturbations and cooling down the star. In colder stars,
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Table 5. Same as Table 4, for polytrope 2.

s τ̃sv τ̃bv τ̃gr

1 1.28 + 9 2.07 + 10 −3.60 + 0

2 6.89 + 8 2.84 + 10 −3.51 + 0

3 1.68 + 8 3.60 + 10 −7.52 + 0

4 1.74 + 9 4.36 + 10 −5.61 + 0

5 6.24 + 7 5.04 + 10 −6.68 + 0

T ≤ 1010 K and Ω2 ∼ πGρ̄, the gravitational radiation
is more important than radiation shear and bulk coun-
terparts. While driving the r-modes to become unstable,
it spins down the star. It is believed that the star loses
much of its energy and angular momentum through the
gravitational radiation in this stage. In a case study of
Andersson & Kokkotas (2000), the rotational period in-
creases from 2 ms to 19 ms in one year. Below T = 108 K
and Ω2 ∼ πGρ̄/100, the shear viscosity is the dominant
factor in cooling down the star.
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Appendix A: The elements of S,C and W
matrices

In calculating the elements of various matrices, the follow-
ing parameters and integrals are encountered frequently:

Q` =
[(
`2 −m2

)
/ (2`− 1) (2`+ 1)

]1/2
, (A.1)

∫
cosϑY ∗

kmY`mdΩ = Q`+1δk,`+1 +Q`δk,`−1 ,

dΩ = sinϑdϑdϕ, (A.2)

∫
sinϑY ∗

km∂Y`m/∂ϑdΩ =

`Q`+1δk,`+1 − (`+ 1)Q`δk,`−1,

(A.3)

∫ [(
m2/ sin2 ϑ

)
Y ∗

kmY`m + ∂Y ∗
km/∂ϑ∂Y`m/∂ϑ

]
cosϑdΩ =

`(`+ 2)Q`+1δk,`+1 + (`2 − 1)Q`δk,`−1, (A.4)

∫
cos2 ϑY ∗

kmY`mdΩ =

(Q2
`+1 +Q2

`)δk` +Q`−1Q`δk,`−2 +Q`+1Q`+2δk,`+2,

(A.5)

∫ [
(m2/ sin2 ϑ)Y ∗

kmY`m + ∂Y ∗
km/∂ϑ∂Y`m/∂ϑ

]
×P2(cosϑ)dΩ =

3
2

[
`(`+ 3)Q2

`+1 + (`− 2)(`+ 1)Q2
`

−1
3
`(`+ 1)

]
δk` +

3
2

[(`− 2)(`+ 1)Q`−1Q`δk,`−2

+`(`+ 3)Q`+1Q`+2δk,`+2] . (A.6)

The basic definitions for S, C, andW matrices are given in
Eqs. (6). Expansions of ρ, p, and U entering these defining
integrals are in Eqs. (2). The zero and Ω2 orders of these
variables are sufficient to carry out the analysis of Sect. 7
up to the Ω4 order consistently.

Finally, the spherical harmonics form of the basis
toroidal and poloidal vectors are given in Eqs. (10).
Angular integrals entering the definition of any matrix
element at any desired order are performed analytically.
Integrals in radial directions are left for numerical calcu-
lations.

The S-matrix:

(Sk`
0tt)

rs = δk``(`+ 1)
∫ R

0

ρ0φ
r`φs`dr, (A.7)

(Sk`
2tt)

rs = δk``(`+ 1)
∫ R

0

ρ20φ
r`φs`dr

+
3
2

{
δk`

[
`(`+ 3)Q2

`+1 + (`− 2)(`+ 1)Q2
` −

1
3
`(`+ 1)

]

+δk,`−2(`− 2)(`+ 1)Q`−1Q` + δk,`+2`(`+ 3)Q`+1Q`+2

}

×
∫ R

0

ρ22φ
rkφs`dr. (A.8)

The C-matrix:

(Ck`
0tt)

rs = (m/`(`+ 1))(Sk`
0tt)

rs, (A.9)

(Ck`
2tt)

rs = δk`m

∫ R

0

ρ20φ
r`φs`dr

+
9
2
m

[
δk`

(
Q2

`+1 +Q2
` − 1/9

)
+ δk,`−2Q`−1Q`

+δk,`+2Q`+1Q`+2

] ∫ R

0

ρ22φ
rkφs`dr. (A.10)

(Ck`
0pt)

rs = (C`k
0tp)rs∗

= −iδk,`+1`Q`+1

∫ R

0

ρ0

[
ψrk + (`+ 2)χrk

]
φs`dr

+iδk,`−1(`+ 1)Q`

∫ R

0

ρ0

[
ψrk

−(`− 1)χrk
]
φs`dr. (A.11)
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The W -matrix:

(W k`
0pp)rs = δk`

{ ∫ R

0

ρ−1
0 dp0/dρ0δ

r`
p ρ0(r)δs`

p ρ0(r)dr/r2

+
∫ R

0

[(∂p0/∂ρ0)ad − dp0/dρ0]ρ0(dψrk/dr − χrk/r)

× (dψs`/dr − χs`/r)dr/r2
}
, (A.12)

(W k`
2pt)

rs = (W `k
2tp)rk∗

= −3im [δk,`+1Q`+1 + δk,`−1Q`]

×
∫ R

0

ρ−1
0 dp0/dρ0ρ22δ

rk
p ρ0(r)φs`dr/r2, (A.13)

where

δr`
p ρ0(r) =

[
(1/ρ0)(d/dr)(rρ0ψ

r`) − `(`+ 1)χr`
]
,

(W k`
4tt)

rs = 9m2[δk`(Q2
`+1 +Q2

`) + δk,`−2Q`−1Q`

+δk,`+2Q`+1Q`+2]
∫ R

0

ρ−1
0 dp0/dρ0ρ

2
22φ

rkφs`dr/r2.(A.14)

Poloidal motions give rise to density perturbations
and therefore to perturbations in self gravitation. In
Eqs. (A.12) and (A.13) the latter is neglected (Cowling’s
approximation) for simplicity. Otherwise there is no con-
ceptual difficulty in including another term in Eqs. (A.12)–
(A.13) to avoid this approximation.

Finally, we note that the upper limit of all radial in-
tegrals here is the radius of the non-rotating star instead
of that of the rotating one. We reproduce the argument
of Sobouti (1980) to show that, in most cases, the effect
arising from this difference in the limits of integration is
of far higher order in Ω2 than would influence the analy-
sis of this paper. Let ∆R(ϑ) = R(ϑ) − R be the distance
between two points with coordinate ϑ and situated on the
surfaces of rotating and non-rotating stars. Obviously ∆R
is of Ω2 order. In a typical error integral,

∫ R+∆R

R f(r)dr,
we expand f(r) about R and obtain∫ R+∆R

R

f(r)dr = f(R)∆R+
1
2
f ′(R)(∆R)2 + · · · (A.15)

In Eqs. (A.7)–(A.14) the integrands depend on a com-
bination of the variables ρ0, ρ20, ρ22, p0 and p22. For
a star of effective polytropic index n, at the surface ρ0

and p0 vanish as (R − r)n and (R − r)n+1. The leading
error terms of Eq. (A.15) are (4R)n+1 ∝ Ω2(n+1) and
(4R)n+2 ∝ Ω2(n+2), respectively. The distorted quanti-
ties ρ20, ρ22 and p20, p22 tend to zero as (R − r)n+1 and
(R−r)n. However, considering the fact that these are sec-
ond order quantities and should be multiplied by an extra
factor of Ω2 wherever they appear, the leading error term
in expressions involving them are also of the order Ω2(n+1)

and Ω2(n+2). Thus, the largest error committed in replac-
ing the volume of the rotationally distorted star by that
of the non-rotating one is of the order Ω2(n+1), a matter
of no concern for the analysis of this paper if n ≥ 1.

Appendix B: Ansatz for the scalars φs`, ψs`

and χs`

The vicinity of the center of a star is a uniform medium,
in the sense that, as r tends to zero, ρ(r), p(r), U(r),
etc. all tend to constant values. Any scalar function, σ(r)
say, associated with a wave in such a nondispersive uni-
form and isotropic environment should satisfy the wave
equation ∇2σ(r) + k2σ(r) = 0, k =const. Furthermore,
if this scalar is associated with the spherical harmonic `,
i.e. if it is of form σ(r)Y m

` (ϑ, ϕ) and is finite at the ori-
gin, should tend to zero as r`. Therefore σ should have an
expansion of the form σ(r) = r`

∑∞
s=0 asr

2s. This is how
the solutions of Laplace’s equation (k = 0), the spherical
Bessel function and many other hypergeometric functions
behave. A spherical harmonic vector, ξξξ` belonging to `,
quite generally can be written in terms of three scalars

ξξξ` = −∇∇∇(σ1Y
m
` )+∇∇∇×A,A = r̂σ2Y

m
` +∇∇∇×(rσ3Y

m
` ),(B.1)

where σi, i = 1, 2, 3 are scalars of the type described
above. Therefore, the radial and non-radial components
of ξξξ should have the form

ξr, ξϑ, ξϕ → r`
∑
s=1

bsr
2s−1. (B.2)

To ensure this behavior, it is sufficient that the scalars φr`,
ψr`, and χr` entering Eqs. (10) are proportional to r`+2r.

We adopt the following ansatz for the

(φr`, ψr`, χr`) = θ(r)r`+2r , r = 0, 1, 2, . . . (B.3)

where θ(r) is the polytropic function, found by trial and
error, that ensures faster convergence of the variational
calculations. The ansatz has the required r` behavior at
the center. Two remarks are in order here:

1) That a power set {r`+2r, r = 0, 1, 2, . . .} is complete
for expanding any function of r that behaves as r` near
the origin follows from a theorem of Weiresstraus (Relich
1969; Dixit et al. 1979).

2) We have chosen the ansatz of Eq. (B.3) for their
simplicity. They are not the most efficient ones for rapid
convergence of variational calculations. The set of the
asymptotic expressions that helioseismogists use for
eigendisplacement vectors in the sun and other stars
would, perhaps, give a faster convergence of the numer-
ical computations, see Christensen-Dalsgaard (1998) and
references therein.

Appendix C: Review of rotating polytropes

The structure of rotating polytropes is taken from a land-
mark paper of Chandrasekhar (1933). A summary of what
is needed here with slight changes in his notation is as fol-
lows

ρ0 = ρcθ
n, ρ20 = nρcθ

n−1Ψ0, ρ22 = nρcθ
n−1Ψ2, (C.1)

p0 = pcθ
n+1, p20 = (n+ 1)pcθ

nΨ0, p22 = (n+ 1)pcθ
nΨ2,

(C.2)
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where ρc and pc are constants, θ is the polytropic variable
and satisfies the Lane-Emden equation

(1/η2)(d/dη)(η2dθ/dη) = −θn,

η =
[
(n+ 1)pc/4πGρ2

c

]
r, (C.3)

and Ψ0, Ψ2 satisfy the following

(1/η2)(d/dη)(η2dΨ0/dη) = −nθn−1Ψ0 + 1, (C.4)
(1/η2)(d/dη)(η2dΨ2/dη) = (−nθn−1 + 6/η2)Ψ2. (C.5)

It should be noted that Chandrasekhar’s rotation param-
eter is Ω2/2πGρc. For the purpose of this paper we have
integrated Eqs. (C.3)–(C.5) numerically.

Appendix D: The energy of normal mode

Let us take the real part of Eq. (4) and write it in the
following form

Wξξξre + 2ρξ̇ξξre × ΩΩΩ + ρξ̈ξξre = 0 (D.1)

We take the scalar product of Eq. (D.1) by ξ̇ξξre and inte-
grate over the volume of the star. The Coriolis term gives
no contribution. The first term considering the hermitian
character of W gives∫
ξ̇ξξre · Wξξξred3x =

1
2

∫
(ξ̇ξξre · Wξξξre + ξξξre · W ξ̇ξξre)d

3x

=
1
2

d
dt

∫
ξξξre · Wξξξred3x. (D.2)

The third term in Eq. (D.1) gives∫
ρξ̇ξξre · ξ̈ξξred

3x =
1
2

d
dt

∫
ρξ̇ξξre · ξ̇ξξred3x. (D.3)

Equations (D.1) and (D.2) should add to zero, which after
a time integration gives the constant total energy

E = Ekin + Epot =
1
2

∫
(ρξ̇ξξre · ξ̇ξξre + ξξξre · Wξξξre)d3x. (D.4)

Next we substitute for Wξξξre from Eq. (D.1). After simple

manipulations, we obtain

E =
1
2

∫
ρ( ˙ξξξre · ˙ξξξre − ξξξre · ξ̈ξξre)d3x

=
1
2

∫
ρ

[
2ξ̇ξξre · ξ̇ξξre − ∂

∂t
(ξξξre · ξ̇ξξre)

]
d3x

= 2Ekin − 1
4

d2

dt2

∫
ρξξξre · ξξξred3x. (D.5)

Since the time dependence of ξξξre is sinusoidal, upon taking
the time average of Eq. (D.5) the second integral vanishes
and we obtain

E = 2Ekin = Ekin(maximum), QED. (D.6)
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