Eigensolutions of Antonov’s Equation

Y. Sobouti

Institute for Advanced Studies in Basic Sciences,
Zanjan, P.O. Box 45195-159, Zanjan 45195, Iran; and
Center for Theoretical Physics and Mathematics, AEOI
P.0O. Bozx 11365-9161, Tehran, Iran

Abstract. Antonov’s equation, a linearized version of the col-
lisionless Boltzmann equation for self-gravitating stellar sys-
tems, is studied for its symmetries. For an equilibrium system
of spherical configuration, the symmetry group is O(3). There
exists an angular momentum operator in the six dimensional
phase space which commutes with Antonov’s operator. This
enables one to reduce the solution of Antonov’s equation from
the six dimensional space to a two dimensional one.

1. Imtroduction

Collisionless Boltzmann’s equation along with that of Poisson has long
been used to study the possible equilibrium structures of galaxies and
star clusters. It was Antonov (1960), however, who first considered a
perturbation version of these equations and addressed the stability of
such equilibria. In the phase space (q, p), he separated a perturbation
¢(q,p) on a distribution function F(F), E is the energy integral, into
even and odd components in p and demonstrated that the dynamics
of the odd component is governed by a self adjoint operator in some
function space. Throughout sixties to eighties there was a surge of
interest in Antonov’s approach, but mainly to explore the stability cri-
teria. Among the many attempts one may quote those of Lynden-Bell
(1966), Milder (1967), Ipser & Thorne (1968), Lynden-Bell & Sanitt
(1969), Sobouti (1984). Stability of anisotropic distributions was ad-
dressed by Doremus et al. (1970, 1971), Doremus & Feix (1973), Gillon
et al. (1976) and Kandrup and Sygnet (1985). Attempts to obtain the
eigensolutions of Antonov’s self adjoint operator are those of Sobouti
(1984, 1985, 1986) and Sobouti & Samimi (1989, 1995). Here, we fur-
ther elaborate on the symmetries of Antonov’s equation and attempt to
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extract as much information on its eigensolutions as these symmetries
allow.

2. Exposition of the Problem

Let F(E), E = 3p* + U(q), U(q) is a gravitational potential, be an
equilibrium distribution function. Let ¢(q,p,t) = |dF/dE|'? f(q,p,t)
be a small perturbation on F. The linearized collisionless Boltzmann

and Poisson equation governing the evolution of f is (Sobouti 1984,
Sobouti & Samimi 1989)
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where £ = —i(p;0/0q; —0U/08q;0/0p;), j = 1, 2, 3; is Liouville’s
operator in the six-dimensional phase space (q,p). It is multiplied by
i = v/—1 to render it hermitian. The integral represents perturbation
in the self-gravitational field and is over the volume of the phase space
available to the system. A “prime” in the integrand indicates that the
quantity in question is to be evaluated at point (q’, p’). The operator
A as defined by the right hand side of Eq. (1) will be called Antonov’s
operator in honor of his 1960 pioneering on the subject. We decompose
f into even and odd terms in p:

dq'dp’, (1)

fla,p) = ulq,p)+iv(q,p),
u(q,p) = -—u(q,—p),
v(q,p) = +v(q,—p). (2)

Eq. (2) is not a decomposition into real and imaginary parts as yet,
though it will turn out to be that as well. Substitution of Eq. (2) in
Eq. (1) and noting that both £ and A are odd in p, gives

ou Ov
?97 = .«4’0, ——é—t" = Au = Eu, (3)
from which one obtains
0%u 2 ' .
5 = Ay (Antonov's Equation). (4)

3. Function Space

Let H : {g(q,p),(9,9) = [ g*g9dadp < oo} be the Hilbert space of the
square integrable complex functions g(q,p). One may readily verify
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that £ on H is hermitian: (g,Lf) = (Lg,f), g,f € H. Antonov’s
operator, however, is not. For, it is the evolution operator in a time-
dependent potential, U(q) + dU(q,t). If, however, one decomposes H
into two subspaces, Hy : {g+(q,p) = £g+(q, —p)}, even and odd in
p, one can show that A% on H_ is hermitian. Thus, Eq. (3b) is an
eigenvalue equation and may be written as

A?u = w?u. (5)

Naturally, w? is real and any two eigenfunctions » and u' belonging
to distinct w and w’ are orthogonal. One further remark: A is purely
imaginary and A? is real. Therefore, u of Eq. (4) can be chosen real.
Eq. (3) then shows that v also is real. Thus, the decomposition of

Eq. (2) is a decomposition into real and imaginary components as well.

4. Symmetries of £ and A

4.1. Discrete symmetries

Let () and P be two parity operators on functions of q and p, respec-
tively:

Qg(a,p) = g(—a,p), Pg(q,p) = g(a, —p)- (6)

For an even potential, U(q) = U(—q), both £ and 4 are odd in both q
and p. One as the following anticommutation and commutation rules

{ﬁaQ} = {‘Ca P} =0, [*Ca QP] =0, (7)
{A7Q}:{‘A7P}:O’ [.A,QP]ZO,
[A%,Q] = [A% P] =0. (8)

One, therefore, may choose solutions u(q, p) either odd or even in either
q or p. By Eq. (3), then the parities of v(q, p) will be opposite to those

of u(q, p).
4.2. Continuous symmetries, O(3) symmetry

For F'(E), U(q) is spherically symmetrical. Simultaneous rotations of
g and p axes about the same direction by the same angle, leaves £ and
A form invariant. The generators of such infinitesimal rotations in H
are the following angular momentum operators

Ji=L;,+ K; = iE@jk(qj'a/aqk +pj5/8pk). (9)
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This is the sum of two angular momenta, L; in ¢ space and K; in p
space. Their algebra is

[Jz’,Jj] = —iE,;ijk, [Li,Lj] = -—?:SijkLk, [Ki,Kj] = —iEiijk. (10)
By direct verification one may easily see that
(L, Ji] = [A, Ji] = [A%, J;] =0. (11)

There follows that it is possible to find simultaneous eigenfunctions
for the set of operators Az,J2,Jz,Q,P) and (A, J?,J,,QP). Sim-
plifications that these symmetries introduce are enormous. It will be
explained shortly that the eigensolutions of J? and J, can be worked
out in terms of the direction angles of q and p vectors. This imme-
diately reduces the six-dimensional integro-differential Eq. (4) into a
two-dimensional one in terms of the magnitudes of ¢ and p.

5. FEigensolutions J? and J,

From the literature in angular momentum one learns that it is possible
to find simultaneous eigenfunctions for (J2,J,,L* K?). Let, in bra
and ket notation of Dirac, this be |jmlk> with respective eigenvalues
jG+1), —j <m < 4, I1(l+1) and k(k +1). One also learns that there
exists simultaneous eigenfunctions for (L?, L,, K%, K). This simply is
\lmykmy> = Y™ (8, 9)Y,"* (a, B), where (8, ¢) are the direction angles
of q and (a, 6) are those of p. Both sets of kets are complete and can
be expressed in terms of one another. Thus

lgmlk> = Z Hmikmg><lmikmgljmlk>, mp=m —my, (12)

Ty

where <...|...> are the Clebsch-Gordan coefficients, subject to the
restrictions m = m; +my and (7,1, k) satisfying the triangle condition,
the sum of any two to be larger than the other and the difference of
any two to be smaller than the other. With these preliminaries one
may now cast Eq. (4) into a variational form. First we multiply it
by u*(q,p) and integrate over the volume of phase space. Notmg the
hermiticity of £ we obtain ‘ ‘

wiu,u) = (u,A%u) = (ATy, Au) = L
(Lu, LPu) + Gsign (Fg) x o (13)

[ 1Bl (L) Bl (Cu)a - o'|* dadpdd .
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Next, for a given j and m, we let

u(q,p) = Y u(g, p)|imik>, (14)
N

where (J,1, k) is subject to triangle condition. We substitute Eq. (11)
into Eq. (10) and integrate over the direction angles (4, ¢) and («, 3)
appearing in |jmlk>. Finally, we adopt a polynomial expression in g
and p for uy;(q,p) and go through the machinery of variational cal-
culations. This converts the variational integral Eq. (13) into a set
of algebraic equations for the coefficients appear in the polynomial
expression. Vanishing of the characteristic determinant will give the
eigenvalues. For radial oscillations of polytropes, 7 = 0, some periods
of oscillations are reported by Samimi & Sobouti (1995).

6. Concluding Remarks

e Evolution of the odd-p component of a small perturbation on
a distribution F(FE) is governed by a self adjoint operator .42,
Eq. (4).

e A% has an O(3) symmetry and can have simultaneous eigen-
functions with J? and J,.

e Eigenfunctions of J2 and J, can be expressed in terms of the
products of two spherical harmonics Y, (6, ¢) and Y."*(a, ).
This reduces the problem from the six-dimensional space to a
two-dimensional one in terms of the magnitudes of ¢ and p.

e Eigensolutions of A? are classified into sequences designated by
two discrete indices j and m.

o Within each (j,m) sequence discrete eigenfrequencies have been
found for polytropes via a variational scheme.

e The question of whether the eigenfrequencies of Antonov’s equa-
tion are discrete or continuous or both remains open. It may be
worth knowing that, however, for a quadratic potential and ne-
glecting the perturbations in self-gravitation, Antonov’s problem
can be solved exactly (Sobouti & Dehghani 1992). The modes
are discrete and each is designated by six integers.

e A last point on the same issue: hydrodynamic equations, con-
tinuity and Euler’s have discrete eigenfrequencies. They are the
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zeroth and the first p-moments of Eq. (1) in which the second
moment is, through an equation of state, expressed in terms of
the zeroth one and the sequence is terminated. Isn’t it feasible
that if one considers n of such moment equations and expresses
the n + 2°4 moment in terms of the n-th one, one will obtain
discrete eigensolutions. In star clusters and galaxies collisions
do not play as decisive a role an in a gas, for instance. Isn’t it,
however, possible that they might be operative in smearing out
the higher p moments of the distribution function. If this takes
place the system will have discrete eigenfrequencies. Variational
calculations which deal with a finite number of trial functions
just do such smearings. All these considerations are indicative
of discrete oscillation modes in stellar systems. The question
of whether the present precision of the photometric CCD records
allow their detection is, of course, a matter of the art observation.
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