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The case of a quantum two-level system coupled to a time variable magnetic field is
investigated. The Schrodinger equation pertaining to the system is reduced to a second
order linear equation in time and its solutions are sought by an integrating factor tech-
nique. A differential equation for the integrating factor and, therefrom, a criterion for
fields leading to exact solutions are derived. The formalism is capable of giving a wide
variety of closed form radio frequency (RF) wave forms for which Schrodinger’s equation
is exactly solvable.

1. Introduction

Of interest to NMR spectroscopy are solutions of Schrodinger’s equation for spin sys-
tems with time dependent external coupling. The need for such solutions is hastened
with the development of magnetic resonance imaging (MRI). Several approximation
methods of perturbative nature and some numerical methods have been developed.
The exponential perturbation series of Magnus® is good for short time intervals.
Its convergence for longer times, however, has been questioned by Salzman.? Im-
provement to Magnus’s method is worked out by Popescu and Popescu.? Ford*
has introduced a method of averaging in perturbation theory. Montogomery and
Ruijgrok,® have developed and used the quantum versions of the classical perturba-
tion techniques of Krylov and Bogolyubov® and of Bogolyubov and Mitropolskii.” In
numerical approaches, McCurdy, Stroud, and Wisinski® have extended complex co-
ordinate techniques of scattering theory to time dependent Schrodinger’s equation.
They use Simon’s® exterior scaling contour. Sen Guptal® explores the relationship
between the classical and quantum mechanical problems of precession in magnetic
fields. He generates a host of nonequivalent state functions once one is known.
Exact solutions have also been sought. The integrability of Schrodinger’s equa-
tion for fields of constant direction is well known. For rotating fields the problem
is solved by Rabi.!! Recently Dutta, Ghosh, and Engineer'? have studied the exact
integrability of spin-1/2 systems. By means of an auxiliary function they produce
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exact solutions by standard techniques of Hamiltonian dynamics. Their auxiliary
function, however, should satisfy a simplifying differential equation which, in gen-
eral, they solve by perturbation techniques. Carlson!® uses inverse scattering tech-
niques to find RF fields capable of producing desired selective excitation profiles.
He is successful in giving some closed RF pulses, for which Schrodinger’s equation
is exactly solvable. He does not, however, give these solutions. In paper 1,* we
introduced a frame in which an RF field became planar and a second frame in which
the field and consequently the Hamiltonian became static. This led to a criterion
for a class of fields that Schrodinger’s equation for them was exactly solvable.

Here we relax the condition of staticity and arrive at a wider class of exactly
solvable problems. In Sec. 2 we consider a spin-1/2 system in an arbitrary time
dependent magnetic field. We transform Schrodinger’s equation into a frame in
which the corresponding field appears planar for all times. In Sec. 3 we choose a
frame in which the new wave equation becomes a second order one in time with a
diagonalized complex Hamiltonian. In Sec. 4 we consider the integrability of this
equation. We arrive at two criteria, one for the integrating factor and the other for
the RF field. The class of RF fields found here is much wider than that of paper 1.
In Sec. 5 we treat few examples on the way of illustration.

2. Transformation to a Planar Field

Time evolution of a two level (spin-1/2) system in a time dependent magnetic field
is given by

ih% = H;(t)osp, i=1,2,3 (la)

Hi(t) = -% hyBit) (1b)

where ¢’s are Pauli matrices, 1(t) is a two-component spinor, ¥y = gyromagnetic
ratio and B;(t) are the magnetic field components. By a rotation around the y-axis
one may write

B(t) = e~ ks [ HaDdry(p) 2)
Substitution in Eq. (1a) gives
ih g—f = Hy(t)[ozcos a(t) + o1 sina(t)]¢, (3a)
where
Hr(t) = (Hf + H)*, (3b)
a(t) = B(t) - 6(t), (3¢)
cos B(t) = Hif;- , sinf(t) = II-{I—; , (3d)

o(t) = %/ Hy(r)dr . (3e)



Mod. Phys. Lett. B 1992.06:1255-1261. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA @ SAN DIEGO on 02/02/15. For personal use only.

Ezact Solutions of Schrodinger’s Equation for Spin Systems in... 1257

By a change of variable t to a(t), we get

i g(% = g(a)[o3 cos a + oy sinalé, (4a)
H . d
@) =7+, &= (4b)

The transformation from ¢ to «(t) should be single valued and nonsingular. This
requires a to be a monotonically increasing or decreasing function of ¢t and & # 0.
As we shall see shortly, this imposes a constraint on the RF fields. Equation (4a)
has the form of Schrodinger’s equation for a particle in a planar field. Choosing
g(a) = constant specifies a class of fields for which the wave equation is of Rabi
type and is exactly solvable.1* The case of variable g(a) is treated below.

3. Transformation of Equation (4a) into a Second Order One

By means of the unitary transformation
X:e%azaqg: (Icos%+iagsin %) ¢, )]
Eq. (4a) transforms into
.0 1
et Lo .

where I is the unit matrix. Taking another a-derivative of Eq. (6), eliminating
dx/da by Eq. (6) itself, and noting that 67 = 1, 0;0; = i€ijr0%, gives

—Xoaa + V(a)X = '}IX: (7&)
V(a) = —(¢’1 +io3ga), (7b)

where a subscript a denotes a derivative with respect to a. Equation (7a) consists of
two uncoupled linear differential equations of second order one for each component
of spinor x. The two equations are complex conjugates of each other. Each of
them has the form of Schrodinger’s equation in which the eigenvalue is 1/4, a plays
the role of a one dimensional space coordinate, and the potential V(a), given by
Eq. (7b), is complex. If desired, these equations can be solved by approximation
methods. In the following, however, we aim at their exact solutions.

4. Integrability of Equation (7a)

Let

ios [* g(z)dz

n=e X- 8)

Equation (7a) becomes

. 1
Naa — 2i03g{a)na + 2= 0. (9a)
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Let us denote the upper and lower components of the spinor 7 by 5! and 7?2, re-
spectively. The equation for 5! is

, 1
Naa — 2ig(a)ny + 27 =0 (9b)

The equation for ? is the complex conjugate of that of !. Thus, 5% = 5!*. Assume
P(a) is an integrating factor for Eq. (9a). That is, the expression

, 1
P(a)[nae — 2ig(a)nl + = 9'],
4

is an exact differential in o of the form

% [Pn}, + i(["P dz)ql] =0. (10)

Comparing Eq. (10) with Eq. (9b) gives
Put+ 3/°Pd
~2ig(a) = Pats/["Pde (11)
P
Equation (10) gives

1
Pna + 7 (/*Pdz)n' = Ci = constant. (12)

Equation (12) is a first order equation. Once P is known, its solution is

arr—1 z
0 =U(a) (Cl/ UP(z()) dz +Cz> , (13a)
U(a) = ¢ /" Sirtgt s (13b)

where C; and C; are to be determined from initial values. The transformation
from Egs. (7) to Egs. (9) has an exceedingly simplifying feature. Because the only
a-dependent coefficient in Eqs. (9) is that of 7,. The integrating factor method
gives all possible exact solutions without any loss.

The integrating factor P(«) is, in general, complex. Let

/ " P(e)dz = S(a)ei! @ | (14)

From Eq. (4a), however, g(a) is real. Therefore, substituting Eq. (14) in Eq. (11)
and separating the real and imaginary part of the resulting expression gives

(1+4f2)S? 4+ 4S% = K? = constant, (15a)

s =fot 252 () - p]nsr-wn. s
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The remaining task is the following:
e For an arbitrary choice of S and K, one solves Eq. (15a) for f(a) and then
Eq. (14) for [* P(z)dz and P(a).
e One substitutes the results in Eq. (15b) and obtains g(a).
e One assigns an arbitrary single-valued and continuous function of time to a(t)
and uses Eq. (4b) to get Hr(t).
e One chooses (t) arbitrarily and uses Eq. (3¢) to obtain the y-component of the
field.
¢ Finally one employs Eq. (3d) to obtain the other components of RF fields.
The freedom of choices in first, second and fourth steps enables one to produce
enormously wide classes of RF fields.
The solution of original Eq. (1a) for 1(t) as obtained from Egs. (2), (3c), (5),
(8) and (13) is

U(a) (cl [ Ay A 02)

U*(e) (G 1 Gy d + C)

where C; and C, are specified by initial conditions. Equation (16) is the complete
and exact solution.

(1) = o= 509B(Ogmics 17 gds

» (16)

5. Examples

To create integrable RF field we choose [* P dz = S(a)e/(?) arbitrarily and proceed
through the steps outlined in the closing paragraphs of Sec. 4.

5.1. Cases of S(a)e*f(®) = qett>
Substituting this in Eq. (15b) we find g(«) = C = constant. The state function for
this case as obtained from Eq. (6) or (16) is

P(t) = eTPWo2F a()(2Co5=032)y () a7

Many field configurations can be constructed by the arbitrary choice of 8 and a.
For example, the choice of a = (w —wp)t, # = wt and C = w/2(wg — w) leads
through Eqgs. (3) and (1b) to the rotating field,

B : (Bj sin wt, By, By cos wt), (18)

where wg = yB¢ and w1 = yB;. Further examples in this category can be found in
paper 1.

5.2. Cases of S(a)e'’(®) = (sin a/2)e¥mtanc/d K — /5
This expression already satisfies Eq. (15a). Substituting in Eq. (15b) gives g(a) =
—1/(2sin a/2). The state function for this case, as given by Eq. (16), is
(2i + cos §) (Crh(a) + C2) ]

(~2i+ cos §) (Ch* () + C3) (19)

‘l/)(t) = e—T' 02!’(‘)6503 Intan af4 [
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where . z
a e-—21 Intan £

h(a) = — _dzx.
(2i + cos %)2
Again a rich variety of RF field can be accomodated in this class. For example
choosing & = —2sin™!(1 + A%t2)~1/2 and B = 0, Eqgs. (3) give the following time

decaying pulses.
B B
B:(0, , , 20
( 14 A2¢2 2\/1+,\2t7) (20)

where B = 2) /1.

A case of common interest is a magnetic field consisting of two parts: a static
component directed along the z-axis, and a time varying component along the y-
direction, say. For this purpose one may choose a = —8 = 2sin~! U(t), where U(t)
is as yet unspecific. Using Eqgs. (3b)-(3¢) and the constancy of the z-component of
the field we obtain U(t) = (cosh wt/2)~!. The corresponding field becomes

B
B.(O,W,B), (21)

where w = 4yB. This is the field that Carlson!® obtains by his inverse scattering
technique.

5.3. Cases of S(a)e’ (@) = (sina/2y/2)e~insina/2v2) [ —1

In Eq. (15a) we choose S(a) = sin(e/2v/2), K = 1 and obtain f(a) = —In
sin(a/2v/2). Substituting this in Eq. (15b) gives g(a) = (1/2V/2) cot(a/v/2). From
Eq. (16) the state of system is

) . cos L) eflncos (O h(a) + C
'/)(t)=e'%"2!’(1)e‘§"a'"3i"°’/\/§ ( ﬁ) (Cih(e) 2 (22)

(cos 705) e~ N F(Crh*(ar) + C)

where
ei Intan _x

Mo = [ 33 g
(a) / coszﬁidx

We recall that two of the variables o, 3, and @ are arbitrary. The choice of a =
V2 cot~! e=* and 8 = wt — a gives an oscillating and decaying RF field with three
components,

sin wi

Bye=t | V2 B, Bie~*t
B: —_ B, —— t
(cosh Y’ " cosh At " cosh At PWH] o (23)

where A = 2yB; and w = vB.
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