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A spin system in a time variable magnetic field is considered. For certain fields there
exists a frame in which the Hamiltonian becomes static. The criterion for such fields
is derived. The unitary transformation that accomplishes this task is obtained and the
underlying Schrodinger equation is solved exactly.

1. Introduction

Of interest in problems of NMR spectroscopy are solutions of Schrodinger’s equation
for a spin system in time-dependent magnetic fields. Exact solutions however, are
available only for rotating fields (Rabi') and fields of constant directions. On the
other hand, several approximation methods, mainly of perturbation nature, have
been developed. As early as 1954, Magnus? introduced time-evolution operators
as exponential functions of certain anti-Hermitian operators. He then expanded
the exponent as infinite series such that the nth term of the expansion was of nth
order in the perturbation Hamiltonian. Magnus’ expansion has a good prediction
power for short time intervals. For larger intervals, however, its convergence has
been questioned by Salzman.® Recently, Popescu and Popescu? have improved Mag-
nus’ method by dividing the time interval into smaller intervals and have increased
the convergence of the exponential perturbation technique. Ford® has developed a
method of averaging in which the slowly and rapidly varying terms in the expansion
of a wave function are treated differently. The method has applicability for certain
class of time-dependent fields. A significant number of investigators, notable among
them Montogomery and Ruijgrok,® have developed quantum versions of the well re-
puted perturbation techniques of Krylov,” of Bogolyubov and Mitropolskii,® and of
Frieman® for classical systems.
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In this paper we consider a spin % particle in an initially unspecified magnetic
field. In Sec. 2 we transform the Schrodinger equation into a frame in which the
magnetic field appears planar for all times. In Sec. 3 we look for those unitary
transformations that render the associated Hamiltonian time-independent. In the
process a criterion for fields apt to become static emerges. Once this is achieved
the Schrodinger equation becomes exactly solvable. In Sec. 4 we obtain the exact
solution of Schrodinger’s equation for such fields. In Sec. 5 we work out three
examples in detail.

2. Transformation of Schrodinger’s Equation to a Plane-form Field

Schrodinger’s equation for a spin % particle in an arbitrary magnetic field may be
written as
o

lha = H,'(t)(f,'ib, 1= 1, 2, 3. (1)

where ¢;’s are Pauli matrices, H;(t)’s are proportional to field components and ¥(t)
is a two-component spinor.
By means of the unitary transformation

p(t) = eF 72 [ Ha(r)dT 1) (2)
Eq. (1) transform into
ih %—f = Hr(t)[o1 cos a(t) + o3 sing ()4, (3a)
where
Hr(t) = (H} + HD)*, (3b)
aft) = B(t) — (1), (3c)
cos B(t) = % , sinf(t) = % , (3d)

¥(t) = -Qﬁ /: Hj(r)dr. (3e)

Changing the variable ¢ to «(t), Eq. (3a) becomes

ik 3_¢ = ﬂ (01 cosa + ozsina)é = H(a)é, (4a)
da &

where the second equality defines
'H(a) = ’Hl(a)crl + 7‘{2((1)02 . (4b)

The transformation from t to «a is possible if and only if @ is a monotonically
increasing or decreasing function of . It will be shown that this indeed is the case
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for the fields of our interest. The Hamiltonian of Eq. (4b) is seemingly that of a
particle in a planar field. For (Hr/a) = constant, the equation is of Rabi type and
is immediately solvable. We shall however, come back to this point from a much
wider point of view.

3. Transformation of Hamiltonian (4b) into a Static One

Let us suppose there exists a unitary operator U(«), which transforms H(«) into
an a-independent H'. Thus,

H = U(a)H(a)Ul(e), H(e)=UH'U. (5)
Differentiating with respect to a gives

oH _aut_, tays OU
Sa = MU +UMH 5. (6)

From UU' = 1, one has (8U/8a)U! = —~U(8U'/8a). Eliminating (8U1/8a) in
favour of (8U/0«a) and substituting for 1’ in terms of H gives

oM

'a—a = i[Q(a)a H(a)]: (7)
where we have used the notation
Q) =it Y 9 _ _va. (8)

da or da

For a given H, Eq. (7) may be solvable for Q(t). Equation (8) will then be a
differential equation for U ().

Criterion for the ezistence of static hamiltonian

The Hamiltonian of Eq. (4b) is an expansion in Pauli matrices. The same could be

assurmned for Q(a),

Qa) = Q(a)os, i=1,2,3. (9)
where Q(a)’s are as yet unknown functions of a. Substituting Eqs. (4b) and (9)
in Eq. (7) and using the commutation rules [0}, 0;] = 2ie;;50%, €;jx = Levi-Civita
symbol, gives

ON;
Multiplying Eq. (10) by H; and summing over i gives
OH;
'Hrga— = 26 HiH; % = 0, (11a)

or

HiH: = HE + H3 = const. = K2 (11b)
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Substituting for H; from the defining Eq. (4b) and using Eq. (11b) gives
Hr = K&. (12)

Considering the fact that Hr is the magnitude of the magnetic field in the zy-plane
and is non-negative, the monotonically increasing or decreasing nature of a with

time becomes evident.
With the definitions of Egs. (4b)-(4d), Eq. (12) becomes

%H;;(t) = % cos™! —IZ—; - -I—l{—HT . (13)
Equation (13) is a relation between the three components of the magnetic field.
It is the criterion for the integrability of Schrodinger’s equation. To elucidate the
point let us consider the simple case of NMR fields B : [B; cos wt, B sin wt, Ba(t)]
where B; is constant. Equation (13) requires Bj also to be constant. As a second
example consider B : [af(t), bf(t), Bs(t)] which is a field whose projection in the
zy-plane has a constant direction. From Eq. (13) one obtains B3(t) o< f(t) that
is the whole field has to have a constant direction in space. As the last example,
consider B : [at, b, Bs(t)] where a, b are constant. Solving Eq. (13) for Bs(t) gives
Bs(t) = —ab/(b® + at?) = (1/K)(b? + a®t?)'/2. The following section is devoted to
derivation of (¢) and U(t) for the field satisfying the criterion (13).

4. Solution of Schrodinger’s Equation

Equation (10) is three-algebraic equation for Q. Equation (11b), however, shows
that they are not independent. Hence, one may choose any one of Q;’s arbitrarily.
In the following we choose 25 equal to zero and solve Eq. (12) for €. Thus,

R NC.AYRE!
Q(a) = Wz (E:>0'3 = —5 a3 . (14)

In obtaining the second equality, Egs. (4) and (12) have been used. Substituting
Eq. (14) in Eq. (8) and solving for U(a) gives

U(a) = €329 = T cos %+i03s'm -;—, (15)
where 7 is the unit matrix. Transforming Eq. (4a) by U(«) after some algebra one

obtains

/ h
lh—aa—f;' = (I{UI - '2—03>¢I, (168.)
¢ =U¢. (16b)

To obtain the solution of the original Schrodinger’s Eq. (1), one takes the follow-
ing steps. One solves Eq. (16a) for ¢’ with a given initial value ¢'(0) = ¢(0) = %(0),
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gets ¢ from Egs. (16b) and (15), and (t) from Eq. (2). The final result, using
Egs. (3¢)-(3e), becomes

Y(t) = e 7 P73 F a(H 01 - 03)yq) (17

This completes our discussion of the exactly solvable spin—% problems in variable
magnetic fields. The case of higher spins are also worked and will be presented
elsewhere. In the next section we give two examples on the way of illustration.

5. Examples

Three cases are treated here. 1) The standard rotating magnetic field of NMR. and
a reproduction of Rabi’s solution. 2) Damped rotating field. 3) A planar field with
constant component in one direction. The last one is only of academic value and is
intended to show the range of applicability of the method.

5.1. Rotating field, B : (B;cos wt, B;sinwt, By)

With B; and By constant, the field satisfies the criterion (13). By Eq. (12) a is pro-
portional to ¢. From Egs. (13), (12) and (3d), one obtains K = (k/2)[w1/(w — wo)],
a(t) = (w — wo)t and B(t) = wt. Equation (17) immediately gives

d)(t) — e?wtaae?[wlal+(wo—w)03]t¢(0) ’ (18)
where w; = ¥p1, wo = vBoy and 7 = gyromagnetic ratio. This is Rabi’s solution.
5.2. Damped rotating field, B : [Bie~*! cos wt, Bye~*sinwt, By + (% - Bo)

(1-e?)

With X constant, this field satisfies the criterion (13), which in the case of A — 0 be-
comes Rotating field. As with Rotating field (5.1), we have, k = (%/2) [w1/(w—wo)],
a(t) = (1 — e~ /A)(w — wo) and B(t) = wt. From Eq. (17) we obtain

l1—e

Y(t) = e TW193 T ETF w101 4 (wo = wIosly ) | (19)

As an application, we may calculate the probability that a spin which is up at time
t = 0 will be down at time ¢. This probability is:
At .
= sin W+ (v —wo)?)?. (20)

11
P(-33)
w? 4+ (w — wo)? 22

In the limit of A — 0 we obtain the Rabi result.

2

'(0, 1)(3;21“”"33_7‘ 1= w01 +(wo = w)os) <(1)>

2 -
wi , 1—e

5.3. B(t) : Blf(t), 1, 0]

This is a field with a constant y component and a variable and, as yet, unknown z
component, Bf(t). Substituting the field in Eq. (13) gives f(t) = —at/(1 — a?t?)!/?
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where a is an arbitrary but nonzero constant and 0 < ¢t < a~1. Substituting this
field in Eq. (17) and using Egs. (3d) and (12) gives

P(t) = e T (0T at)os  Fisin T at)(§ 01 - 03) ) (21)
where w = yB.
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