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ABSTRACT

The front of a hydromagnetic disturbance in a rotating fluid travels with the Alfvén velocity. If a
disturbance is sufficiently localized it may propagate through the medium with little or no dispersion.

I. INTRODUCTION

In association with the propagation of wave packets in dispersive media one nor-
mally introduces the concept of group velocity. When a medium is mildly dispersive a
wave packet of narrow band width may travel over considerable distances without
violent alterations in its form. As long as the original disturbance has not lost its identity
the group velocity may be taken to represent the velocity of propagation of the energy
carried by the packet.

Disturbances of very short duration and/or highly localized in space have a wide
frequency spectrum. Also absorbing media at frequencies near an absorption line are
strongly and anomalously dispersive. In cases such as these the concept of group ve-
locity should be excluded; one simply does not have a well-defined and durable dis-
turbance to propagate and carry its energy with it.

Sommerfeld (1914) showed that the wave front of a light signal, starting abruptly
at a given time, under all circumstances traveled with the velocity of light in vacuum.
Brillouin (see his 1960 compilation) subsequently carried out intensive investigations
on the propagation of electromagnetic signals under a variety of conditions and care-
fully examined the successes and failures of the group velocity as the velocity of propa-
gation of energy.

Lehnert (1954, 1955) showed that an Alfvén wave in a rotating medium suffers
dispersion, and that its two circularly polarized components travel with different phase
velocities. Lehnert also studied the group velocity of hydromagnetic wave packets;
this is relevant to disturbances of narrow frequency spectrum. Such packets, of course,
are of wide spatial extent and do not fall in the class of localized disturbances, which
we study in this paper. We show that if the characteristic scale of the disturbance is
less than V/Q (where V is the Alfvén velocity for a non-rotating system and  is the
angular velocity) the wave will travel with velocity V' without dispersion for a time
of order V/Q*L. We also show that, in all circumstances, the wave front travels with
the Alfvén velocity V. We may note here that other studies of Alfvén waves in rotating
systems are contained in papers by Hide and Roberts (1960, 1961, 1962).

II. FORMULATION OF THE PROBLEM

Consider an infinite mass of an incompressible, perfectly conducting, and inviscid
fluid. Let the fluid rotate uniformly and be imbedded in a uniform magnetic field with
both rotation vector, , and the magnetic field, H, along the z-axis. All physical quan-
tities for this geometry will be function of z alone. Hydromagnetic waves will travel
along the z-axis and will have only the x and y components of polarization. Let us
define the complex fluid velocity # and the complex magnetic field % as

u = -+ 1u, (1
and
h=hy+ by, (2
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where % is the perturbation field superimposed on the initial field H. The linearized
equations governing small velocities and small fields are (cf. Chandrasekhar 1961, p. 199)

ou ) Vzak
Y —Zmu-l-gé—z (3)
and
dh du
"%‘-—-H'b—;, (4)

where V is the Alfvén velocity.

The procedure is to introduce an initial motion into the fluid and follow the develop-
ment of the hydromagnetic waves by solving equations (3) and (4). Let this motion
be along the x-axis, #(z, ¢ = 0) = [#(2), 0, 0], and have the following Fourier spectrum:

uo(z) = (zqr)—wf“’Ao(k) e—ikedl. s)

The initial value of % shall be taken to be zero:
h(z)t =0) =0, (6)

III. SOLUTION
Let the Fourier transform of #(z, £) and A(z, ) be

A (k, t)=(21r)—1/2fmu(z,t) e*zd g M
and
B(k, 1) = (zr)~1/2f°°h(z, 1) eedz (8)

respectively. By applying a Fourier transformation to equations (3)-(6) one obtains
four equations for A (%, t), B(k, t), and their corresponding initial values. These equa-
tions can in turn be solved for 4 and B by a Laplace transformation with respect to
time. Having taken these steps one arrives at

A=4,+id,=Ao(k) e~i% cos(Q2+ k202) /2

9)
__1,140( k) e—iﬂt mﬁ%ﬁ Sin(92+k2v2)l/2t
and

B =B,+1:By =iHA,(k)e i8¢ "(—92—:‘1_'%;—2}7)—1—/5 sin (Q2 -+ k292)1/2¢, (10)

where Ao(k) is the Fourier transform of the initial velocity given by equation (§).
Let us now assume the initial velocity is

sin ko2
up(z) = Up———. @y

This velocity has a maximum at 3 = 0 and falls off at large distances. Its Fourier
spectrum extends from — &, to -4,

Ao(k)=(%)l/2U0©(ko— ), (12

where $ is the Heaviside’s unit-function. Substituting for 4,(k) in equations (9) and
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(10) and inverting the Fourier transforms give

k, _
u(z,t) =% e—int[[k cos( Q2+ k202) V24 e—ikzdf

(13)
) ko sin (Q2+ k202)2
— 19 (PR e dk]
and . UO . ko B sin(92+ k2'02)1/2t i
h(z,1) =17He*m“/;k Y IDE e~kadh . (14)
After some manipulation these equations may be written as
_ Uy g fsin ko(Vi—13)  sin ko( Vit 3)
w(z, 1) =t e[ BN A
kl)
+ er““"f [cos(Q2+4 E2V2)12t —cos kViE]cos kzdk (15)
0
. s ks sin ( Q2 k2V'2)1/2¢
—1Upde ‘”'/0' (T V)i cos kzdk
and
Uo . 1 2 . .
Wz, ==t Hem ot o 3—17:2— sin ko( Vi—2)+sin (224 ke V'2) /21— koz]g
——lg-(-’ Heiat 'Vl_?t 3 Vt:-z sin ko( Vi+z)—sin[(Q2+ k2 V?2)12t4 ko2 ] 2 (16)
. 2 ko
— UoHe‘”“Tf—z—t f [cos(Q2+ k2V2)V2t—cos kVi]cos kzdk.
0

It is transparent that as ¢ tends to zero (3, £) approaches its initial value U, sin koz/2.
Also by examining the asymptotic form of equation (16) one verifies that 4(z, ) tends
to zero as . Thus equations (15) and (16) satisfy the required initial conditions.

In the limiting case as k;—> «, the initial velocity of equation (11), u#o(z), becomes
more and more localized around z = 0 and approaches a 8-function,

uo(3) = wU6(3) . amn

The corresponding solutions of equations (15) and (16) for positive and negative values
of 3, reduce to

U ) Qt Q
u(iz,t)=7r—2—oe—zm§5(Vliz)‘l—\@(VtiZ)(—‘VTﬂw.]l[V(V2t2—-z2)1/2]
(18)
— E 8 vep e /2
i9(Vits)y Lo (vee— syl
and U
= 42T g Yo iq
JETHEESY: £ 35(1/&2)
(19)

¢ Y z Q )
+O(Vit z)-I—/: ViE—Z5yiA Jl[—V-( Ve — 22)1/2] i’

where J,.(x) is the Bessel function of the first kind of order » and argument x. An im-
portant deduction immediately follows from equations (18) and (19). The fluid motion
and the perturbed magnetic field are both confined to |z| < V¢, and the wave front
travels with exactly the Alfvén velocity.
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IV. VERIFICATION OF THE SOLUTION: CONSERVATION OF ENERGY

It was previously observed that u(z, £) and k(3, ¢) given by equations (13) and (14)
or by equations (18) and (19) have the required initial values. Also by a direct substi-
tution in equations (3) and (4) one may establish that «(z, £) and k(z, ¢) indeed satisfy
the equations of motion. In the following we demonstrate the conservation of energy
(@) by examining equations (9) and (10) which give the amplitudes of the Fourier modes
and (b) by inspecting equations (13) and (14) in the limit of large %o. The prime purpose
of the last line of approach, however, is to obtain a characteristic time during which a
disturbance of a given size would propagate without losing its identity.

a) Conservation of Energy as Inferred from Equations (9) and (10)
The kinetic and magnetic energies carried by each mode are proportional to

A2+ Ap = AA*
and
VZ

fﬁBB*’

2
T(BA+B,2) =

respectively. Evaluation of these expressions from equations (9), (10), and (12) gives
the total energy of a mode

V2
Ei=AA*+; BB* =7 Ug. (20)
The total energy in all modes is then
kﬂ
S Bvdk=nUgks. (21)
__ko
On the other hand the initial energy is also
o] ® qin2
S ui(a)ds = U02f Sin® Koz s — x U, (22)
— — 0 Z

which proves the energy conservation.

b) Conservation of Energy as Inferred from the Asymptotic Forms
of Equations (15) and (16)—Characteristic Length and Time
Extending the upper limit of the integrals in equations (15) and (16) from % to

introduces errors of the order of k. Hence on neglecting terms of this order equations
(15) and (16) may be written as

sin ko( Vi—2) +sin Eo(Vi+3)
Vi—z Vi+ g

+79(Vi—|50)7 o

Vie — g2)12

U(z,t) =3Uje"9¢ g
Jl[%( Ve — z?)w] (23)

—ix® (Vi— s )P Lo F(vir— sy

and
H . sin Bo( Vi—2) sin k(Vi42)
o = -1 = p—iQt —
Az, 1) Uy e ; Vi—sz Vit
(24)
Q 2 Q
__27r—I7 O(Vit— IZI)W—ZT)I—/“’J][V ( V2l2—-z2)1/2}§.
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In deriving these equations the explicit assumptions are made that 2, > QV~! and
t < 2VEQ2. One, of course, notes that on letting ky— « equations (23) and (24) tend
to their exact limits given by equations (18) and (19). The kinetic and magnetic energies
are respectively proportional to

[Cutz, ur (s, 0dz ~ T URRR — 1 Ug-L cos ko Vi[m—+ 2Ci( ko V1) ]

- 2 Vi
(25)
1 2L 1 2 29_215
+4 U, 777 Sin koVi+4n2U, =
and
V2 © T 1 .
—Fﬁ[mh(z, ) h*(z,t)dz ~ Uo2ko+iU02-V—tcos B Vi[w+2Ci( ko V1) ]
(26)
1 . Q2
-1 Ugt ysin kaVi=mUet 5.

The first three terms on the right-hand sides of these equations, where Ci(x) is the cosine
integral of argument ®, are from the sine terms in equations (23) and (24). The last
term in Q%V~' comes from the products of the sine terms with the terms in J,
and also from J¢? term in equation (23). The terms in J;? contribute of the order of
Q437! and have been neglected, since equations (23) and (25) are essentially valid
for small times. (Also, for this reason, only the first term in the series for the Bessel
functions is taken into account.) It is seen that the kinetic and magnetic energies sum
up to wUo%, which is the initial energy injected.

The first three terms on the right-hand sides do not depend on € and are just the
terms that one expects to find in the absence of rotation. The final terms are propor-
tional to Q%V-! and give the energy dispersed by the action of Coriolis forces. As long
as the latter is small compared with the other terms, the disturbance will travel
without appreciable dispersion. A comparison of this dispersed energy with the first
terms in equations (25) and (26), which carry the main part of the energy, gives a
characteristic time 7 = VkoQ 2 as that during which a disturbance of a spatial extent
kot < 2VQ! will lose its initial form. The latter restriction on the size of the disturb-
ance is the condition under which equations (23)-(26) were derived; the argument is
therefore self-consistent.

V. SUMMARY AND FURTHER DISCUSSION

From equations (18) and (19) it was inferred that the front of a hydromagnetic
wave packet travels with the Alfvén velocity. Also it was shown that a localized dis-
turbance with a characteristic size k! < 2VQ™ may travel for a time interval ¢ <
2Vko2? without significant dispersion. If k2y— o this time interval becomes infinite
and the disturbance can never disperse. This information may actually be obtained
from equations (18) and (19). According to equation (22) the initial energy is propor-
tional to k¢ and for an infinitely localized disturbance is infinite. Now if in the process
of letting ky— « one simultaneously decreases the amplitude of the initial wave as
k172, one will keep the energy finite. For such a limiting process the only finite terms
remaining in equations (18) and (19) will be

u( iz,t)=—725 Upe=i®s( Vi+ z) @)
and
R(+3,t) =+ %%"He—ima(wi 2). (28)
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These equations recapitulate the previous statement that a disturbance of finite
energy and sufficiently compact does not disperse. That is, the dispersive power of a
medium does not only depend on its initial parameters (say, rotation in our example)
but also on the geometry of the disturbance as well. The content of equations (27)
and (28) is indeed contrary to what one might have anticipated from considerations
of group velocity, since a compact disturbance has a wide range of frequency and one
might expect it to disperse very rapidly.

It was mentioned earlier that Sommerfeld found the front of an electromagnetic
signal in a material medium always moved with the velocity of light in the vacuum.
He argued that dispersion and absorption of light by the matter arise from oscillation
of electrons and ions caused by the light signal itself. At the wave front the field is
negligibly small and the motion it induces in the electronsand ions is also negligibly
small. The secondary radiation they produce is therefore asymptotically small, that is,
the wave front does not ‘““see” the matter and proceeds as if in vacuum.

A similar argument may be invoked to explain the propagation of hydromagnetic
wave fronts with the Alivén velocity even in the presence of rotation. Here the disper-
sion arises from the Coriolis force, —2iQu, in equation (3). At the wave front u(z, 7)
and A(z, t) are zero. Hence, in the 1mmed1ate vicinity of the wave front, Coriolis forces
may be neglected, and equatlons (3) and (4) are then just those of the Alfvén waves
in a non-rotating medium. This result is quite general and holds for any discontinuous
disturbance (as, for example, for the special case of the §-function wave treated above).
It will, in fact, hold true in any situation in which dispersive forces are proportional
to the wave amplitude.

The fact that highly localized disturbances are not dispersed by Coriolis forces is
not without astrophysical interest. Consider the propagation of a disturbance, such as
an Alfvén whirl-ring (Alfvén 1950), from the interior of the sun to its surface. The
disturbance would be carried outward by the (small) poloidal field and round the
axis of the sun by the (large) toroidal field. It is difficult to give precise values for Q
and V that would be characteristic of the ‘“spiral” path taken by the disturbance.
Moreover, the direction of Q might be expected to be largely perpendicular to H, a
case not adequately covered by the analysis we have presented. Nevertheless, itis of
interest to make crude estimates; taking @ = 3 X 10~® sec*and V = 10* cm/sec,
we see that, if the size of the disturbance is less than about 0.02 Rg = 1.5 X 10° cm
(KL2Vt = 1.5 X 10 cm), it will not be significantly dispersed in the time 7 =
2VEkor2 = 1.5 X 108 sec. During this time the disturbance will travel a distance of
about Vr = 1.5 X 10° cm = 0.2 Ro. However, because of the large toroidal compo-
nent of the field, the path will be highly spiral and the disturbance will move only
slightly along the outward radial direction. Thus, we would indeed expect large dis-
persion in this case.

I wish to express my indebtedness to Dr. P. H. Roberts for suggesting this problem
and for his patient advice throughout the research. This research was supported by the
United States Air Force under Research Grant AF-AFOSR-62-136.
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