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Gas flow arising from the orbital motion of stars in a close binary system is a consequence of equations of
fluid motion and is inevitable. The velocity of flow is of the order of and less than the orbital velocities. It has
the same magnitude and topological structure as most radial velocities derived from observations of spectral

lines whose origin lies in the gaseous envelope.
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I. Introduction

This is an attempt to seek a systematic approach
to the motion of gas surrounding close binary systems.
Kuiper (1941), Kopal (1957) and Gould (1959) sought
solutions of this problem by considering the motions
of individual gas particles as restricted three-body
orbits. Prendergast (1960) attempted to integrate
the relevant hydrodynamic equations. He, essentially,
considered a two dimensional flow confined to the
orbital plane of the binary.

As a main theme of this work we wish to make the
following proposition. Motion of gas in the envelope
of binary systems is not necessarily that of jet
streams or particles ejected from the stellar com-
ponents. The gas enclosing the binary can and does
maintain motion even if it has not been ejected
from stars. This statement does not exclude ejection
of matter or undermind its role in the evolution of
the binary. It merely denies to it the role of being
the major contributor to the gas motion in the inner
regions of the envelope.

Thus, from the point of view taken in this paper,
gas flow in a binary system may consist of a part
generated by the orbital motion of the stars and
another resulting from a possible outflow of matter
from the stars. The former flow should always be
present whenever a binary system has a gaseous
envelope and should be derivable from a velocity
potential. In the following we derive an expression
for this potential and show that the calculated
velocity has the proper magnitude and streamlines
have the proper geometry to be of relevance to some

gas flow observations. It should, however, be clear
that the problem solved here is a mathematical one
that may or may not be connected directly with the
observations.

Questions regarding the origin of gaseous envelope
or the consequential problem of outflow of matter
observed in some systems fall outside the scope of
this work and are not discussed. The presence of gas
outflow, however, does not exclude the flow produced
by the orbital motion. It simply combines with the
latter.

I1. Notation

In what follows the subscript ¢ may be 1 or 2 to
denote quantities pertaining to one or the other of
the stars.

a; are the radii of the stars which are assumed to
be spherical, A; their distances from the center of
mass, and 4 = 4, + A4,, the distance between the
two star centers.

(x,y,2) is a rotating right-handed coordinate
system at the center of mass of the binary with the
z-axis along the line of centers, directed in the
positive sense from star 1 to 2 and the z-axis normal
to the orbital plane of the binary. The stars are
assumed to revolve with a constant angular velocity.

(%;, ¥ 2;) are two right-handed coordinate sy-
stems whose origins are the centers of the stars with
the z;-axes directed towards the center of mass and
the z;-axes parallel to the z-axis. The following trans-
formation laws hold among the three coordinate
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systems:
n=4-x,=4,+x,

hh=—Y2=Y,

7 =2,=z.

)

A point may also be designated by its polar co-
ordinates (r;, 0,, ¢;) through the following transfor-
mations:

%, =r;8in 6, cosp, = A — rysinb, cos g, ,

9, = ry cosf = — ry cosl,,

(@)

2, = 1, 8in 0, sin ; = r, 8in 0, sin @,

ry = (A2 + 1% — 2 A rysin 6, cos @,)V/2 . (2a)

I1I. Equations of Motion

The fluid motion investigated below is assumed
to be produced by revolution of the binary system.
This assumption renders the motion an irrotational
flow, derivable from a velocity potential. The fluid
is further assumed to be incompressible. The latter
assumption is good for subsonic flows and is inade-
quate for supersonic ones (Landau and Lifshitz, 1963).

Parker’s (1963) application of Bernoulli’s equation
to a gas in the gravitational field of a star shows that
a large volume of gas can stay in the vicinity of a star
only if it is heated to coronal temperatures. A shell
of gas at stellar atmospheric temperatures will col-
lapse in a matter of hours, the period required for
free-fall. Should coronal temperatures prevail the
flow will be subsonic.

The possibility of transient and/or localized cool
streams of gas is not excluded. Such phenomena fall
outside the scope of this paper. It is not, however,
unlikely that the flow of such streams is strongly
affected by the motion suggested above.

Even if one assumes a cool gas, ignoring the
consequences of not satisfying Bernoulli’s equation
the flow established here will at least give the order
of magnitude.

The equations of motion and continuity in the
rotating coordinates (x, y, z) are

0
a—:’+u-l7u+2w XU+ X(@xr)

—-v(%+ Q) 3)
and

V-u=0 4)

respectively. Here 2 is the gravitational potential
of the stars and the other symbols have their con-
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ventional meanings. Assume

u=-—-Vod—-—w xr.

(3)
Substituting this velocity in Egs. (3) and (4) gives

0 0D
—§=%§5——%|7¢I2+ w(y—gi— - W) — 2 (6)
and
V2o =0 (7)
respectively.

Thus the problem is reduced to that of finding
the potential @ satisfying Laplace’s Eq. (7), vanishing
at infinity and satisfying the following boundary
condition on both stars

Upy=[-VDP—w xr]:n=0

(8)

where, n is a unit normal to the surfaces of the stars.
Equation (8) ensures the vanishing of the normal
component of the velocity on the stellar surfaces.

It is worth noting that the irrotational flow
determnined by the kinematical Eqgs. (4), (7) and (8)
is unaffected by the gravitational field of the binary.
Dynamical effects appear in the pressure Eq. (6) only.

IV. The Velocity Potential

A general scheme for obtaining the flow produced
by an object immersed in a fluid was first developed
by Thomson and Tait (1879, c.f. Lamb, 1932) by
applying the lagrangian equations of motion to the
fluid and object combined. Let the configuration
of the system producing the flow be specified by
generalized coordinates ¢y, ¢,,... The flow being
entirely due to the immersed system, will have the
following potential

P=¢D+ ¢ P+ )

where @,, D,, . . . satisfy Laplace’s equation. If the
velocity normal to the surface or surfaces of the
system is given by

Up =08+ @Sy + -+

where 8, S,, . . . are some functions of the surface
or surfaces bounding the system, then @, D,, ...
should satisfy the boundary conditions:

_ 9%
on

This method applied to a sphere in uniform linear
motion through a fluid gives the familiar dipolar
motion. The flow produced by two spheres in uniform
and parallel motions along the line of centers or
perpendicular to it has also been treated (e.g.

(10)

=8;,... (11)
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Herman, 1887; Basset, 1887) by means of this same
formalism.

In our binary problem, let

D=ow (D, + D). (12)
Substituting this in Eq. (7) gives
Ve, =0, i=1,2. (13)

According to Eqgs. (8), (10) and (11) the normal
gradient of @, should vanish on star 2 and be equal
to —4, cosf; on star 1. Except for a factor w the
latter is the normal velocity —(e@ x #) - m. To ensure
a generalization of our results, however, we write
these boundary conditions as follows:

_ [ 0 Dy (11, b1, 1) ]
arl 1=

(14)
= (@Y + ¢{V sin6, cos ;) cos,
and
_[22(n, 61, @1) _
[ 8r2 ]’:=a=_ 0 (15)

where, Q{1 = 4, and ¢{V = 0. Transformation Eq. (1)
and (2) are to be used to evaluate Eq. (15). Similar
boundary conditions will apply to @,.

To solve Eq. (13) subject to conditions (14) and
(15), we employ a method closely resembling the

method of images used in electrostatistics. Let
djl — @gl) + qjg?.) NN (16)

find @V so as to satisfy Eq. (14) but not (15). Thus
obtamed @ will be the exact potential due to
star 1 in the absence of star 2. Next find @2 such as
to cancel the normal velocity (— ¢<1>/ar2),,=,,, on
star 2 produced by ®{V. Again find & to cancel
the normal velocity (—8®{?/dr,), , on star 1
produced by @2, and so on.

We now proceed to the actual calculation of the
potentials @{. Equation (14) is a linear combination
of the surface harmonics Y,(0;,) and Y} (6, ¢,),
suggesting a combination of the corresponding solid
harmonics for @{:

OD (.. 0. o) = L o0 B o5, 4 Lom oL “1
1 (11, 01, 1) = 5 @1 7 008Uy + 7

3QI

- cosf, sinf, cosg; . (17)

Thus chosen, @{ satisfies both Eqs. (13) and (14).
We transform Eq. (17) by means of Egs. (2) and then
evaluate the normal velocity on the surface of star 2,
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(_ a!pgl)/arz)r,=a, .
1 a? 1 Act
@‘11) = — (_ Q(ll)_sl + §q£1) ,4{1 ) 7 cos 0,
1 .
+5adP o r2 cosf, sin B, cos g, , (18)
() e
a"z f==u=_ 7'%2
Ly _ (3 o g2 )
RS el o 3 91" da,
1 5 A a,a? a3 a.
AV ¢ ) 1 %2
3o 3 % i ] 00802+ 732
3 2 1
. [(5 A4 — 5 ¢ “2) + —!ﬁl) (4% + a3) 7%;]
. 1
+ 0080, sinf, cos g, — 5 ¢i 4 at 0 -
- cos 0, sin%0, cos? @, . 19
2 2 P2

We have employed Eq. (2a) to express r, and dr,/0r,
in terms of r, and have further introduced the
notation

(4% + a3 — 2 4 a, sinh, cos @,)1/2 .

(20)

T2 = (7'1)1',=aS =

Let

Ry, = (4* + a)'? 21

and expand all powers of r,, in Eq. (19) about R,,.
Keeping only the first and the second order har-
monics we obtain

2op
_( a"z )as

— (QP + ¢® sinb, cos @,) cosh,, (22)

where
@ = - [FoPa-— (5 0P a — 5o 4a)

a? 5 Aat a?
R, TS 15;: ] (23)
and
0= - [BaP 4+ ay i

Adia

(20w g2 — 2o A0y

5(2 Q1Y a3 391 A“l) T
_ﬁqg) A“}g:az]' (24)

Except for the negative sign, the normal velocity of
Eq. (22) is of the same form as Eq. (14). Therefore,
the potential cancelling this velocity on the surface
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of star 2, as in Eq. (17), will be Table
j 1 2 3 4
PP = Q(z) ' coasB2 +3 qﬁz’— cos0, sinf, cos @, . !
(25)  4,=4,= .50, a,=a,=.50
9 . . P = Q¥ .500000 —.008944 .000160  —.000003
The. term @2, t}owever, will entail a furth(?r cor- %}) _3(2,, 0 — 026833 i~000704 — 000014
rection @) obtained from Eq. (17) by substituting
some coefficients Q¥ and ¢ for @V and ¢{V. A 4, =4,=.50, a —=a,=.25
scheme for deriving these coefficients is given below g0 — g 500000 —.002937 +.000021
following Eq. (28). ¢ =¢¥ 0 —.004294  4-.000032
Thus collecting the series @gl), P, ... and the
similar terms @, @@, ... for the flow produced 4, = 40,4, =60, a,=0a,=.25
by star 2 we arrive at the following total potential: QY 400000 —.002350  +.000025
Q¥ .600000 —.003525 -.000017
¢ .0 —.003436  -+.000039
P=o [2 LI R 3 ql,.al cos0, sin 6, cos g, & 0 —.005154  --.000026
Lo (26)
+3 2% cost+ q, s cosf, sin O, cosgvz]
where V. The Velocity and the Streamlines
With respect to a non-rotating frame the in-
Q=0"+@P+ -+ + Q"+ -+ 27  stantaneous velocity is —V @ whose components are
and A
L . . . _@_wy[ {Q13(1+x)
=q(1)+q(1)+...+q;)+q(2)+... (28) %

Similar relations, with subscripts 1 and 2 inter-
changed, hold for @, and g,. The coefficients Q% and
g? for even values of j are given in terms of Q¢ D and
q"“l) by Egs. (13) and (24). If j (=3) is odd sub-
seripts 1 and 2 should be interchanged in these
equations. We also recall from the convention
following Eq. (15) that Q" = 4, and ¢{"’ = 0.
Inspection of Eqgs. (17), (25) and (23) reveals that
o0 | e | a
(25|~ (o5 |~ W+ -

This ratio is approximately that of the volume of a
star to the volume of a sphere containing the whole
binary. In the most unfavorable case of a hypothetical
binary with a, = a, = 1/2 4, this ratio is about 1/10
indicating the rapid convergence of the series (16),
(27), and (28). The values of some Q¢ and ¢{”) given
in Table 1 confirm this statement.

In the development following Eq. (22), in which
we omitted the third — and higher — order harmonics,
it is, however, fruitless to look for accuracies better
than 1/4 (a,/r;)% the magnitude of the contribution
of the third-order harmonies. The inclusion of higher
harmonics, however, can easily be arranged within
the framework of the expansion developed here.
This will introduce no conceptual difficulty but does
render the calculations tedious.

(29)

4,
+ Q2 3(__2__)..}

s
+ 2B <A=—x)]}]

oo {4 (0

a21-s5)-

g of Y
—*{ e (1-57)

3
(o)
-0,—ouz[3 (57 -5)
+%{qla%——(‘4‘: 2 _ gyayd

Streamlines are obtained by solving the following
differential eqgs.

(Al + x)*

(30)

@31

(32)

————— (33)
In the orbital plane @, = 0. Consequently streamlines
passing through this plane lie on it and satisfy the
first of Eq. (33). An approximate integral for the
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Fig. 1. Streamlines in the orbital plane. The total mass, the
separation between the two stars and the angular velocity
of rotation are chosen to be unity. The arrows indicate the
directions and magnitudes of the orbital velocities in a center
of mass system of reference. Crowding of streamlines in a
region indicate a larger velocity of flow. Masses and radii
of the stars are denoted by m,, m, and a,, a, respectively.
m, = my = 0.50, @, = a, = 0.25

latter Equation is?)
Y@ y) = [ (P,dx — D,dy) = const. (34)
Substituting for @, and @, in Eq. (34) and integrating

give

1 3+ 2y (4,
Y,(x’y)=_w[2_T{Qla§(l+ ) (4 &)

1

+ Qyad (73+2y’)(As—w)}

3

1 A, + x) — 92

Ay — ) — gt
oy == "’}]z=0. (35)

‘We have, however, integrated the first of Eqs. (33)
numerically and plotted the solution in Figs. 1—4.
The approximate integral (35) was employed only to
generate streamlines corresponding to roughly equi-
distant values of ¥ (, y) in the orbital plane.

1) By a direct differentation of ¥ (z, y) and employing
the fact that @ satisfies Laplace’s equation one may show
that Eq. (34) is an exact integral of the following equation:

dx _ dy
2¢,— [dudx ™ 2¢,— [Pudy *

In the orbital plane, excepting the z-axis @,, is small. The
latter equation does not differ greatly from the first of
Eq. (33). On the z-axis, however, both terms in the denomi-
nator of the left hand side become of the same order and
tend to zero. Equation (34) therefore cannot be a good
representation of the streamlines in this neighborhood.
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Fig. 2. m; = 0.6, m, = 0.4, a, = a, = 0.2. See also legend
for Fig. 1

Fig. 3. m; = 0.6, m, =04, a, =04, a, = 0.2. See also
legend for Fig. 1

Fig. 4. m; = .6, my = .4, a; = 0.6, a, = 0.2. See also legend
for Fig. 1

The motion in the envelope may qualitatively
be described as follows. To an observer outside the
binary system it will seem that stars tend to carry
the surrounding gas with them. The gas is pushed
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out by the preceding hemispheres and is drawn into
the vacuum developed behind the following hemi-
spheres. The order of magnitude of the gas velocity
in the neighborhood of the stellar surfaces is that
of the orbital velocity. It never exceeds the latter
and drops off inversely as the cube of the distance.
The gas around the less massive secondary has a
larger velocity than that around the primary.

Struve (1946) found that for a group of binaries
with A-type primary stars and G-type secondary
stars the velocity, V, of some emission features and
the period, P, of the system followed the relation
V3 P ~ const. With the picture of gas flow suggested
above this empirical relation may be simply ex-
plained. In the immediate vicinity of the stars,
presumably the most likely place for emission lines,
gas velocities are proportional to the orbital velocities
of stars. The latter velocities in turn follow Kepler’s
law V3 P oc md/(m, + m,)* where V, is the orbital
velocity of a star. For Struve’s sample of stars the
left-hand side of this relation is approximately the
same for all systems, as the binary components are
roughly of the same stellar type.
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Without constructive criticisms of Professor Robert
H. Koch this work would not have been accomplished.
During the preparation of this paper the author was a
visiting Professor at the Department of Astronomy, Uni-
versity of Pennsylvania and enjoyed a sabbatical leave from
Pahlavi University, Iran.
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