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Summary. A perturbing force may remove the degener-
acy of the neutral state of a convecting fluid, giving rise
to a sequence of very long period oscillations. As an
example it is shown that a force-free magnetic field is
capable of generating pure hydromagnetic oscillations
with periods of the order of Alfven crossing-times. Sta-
bility of the perturbation sequence is intimately related
with convective stability of the entire and perturbed
fluid.
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1. Indroduction

As a subadiabatic fluid evolves into a superadiabatic one
the stable nature of its g-oscillations changes to an
unstable one. The transition is smooth and continuous
such that in the limiting case of an adiabatic structure
the entire g-spectrum is neutral. The fluid motions corre-
sponding to neutral and unstable g-modes coincide with
those commonly associated with convective displace-
ments of the fluid. An elaboration of these statements
with proper mathematical reasoning can be found in
Sobouti (1976).

Consider an adiabatic fluid. In addition to the neutral
g-modes, the fluid possesses neutral toroidal displace-
ments. These motions arise from the shear-free nature
of the fluid and are always present. The two sequences
of convective and toroidal neutral modes form a de-
generate state of the fluid. A perturbing force, in general,
is capable of removing part or all of the degeneracy,
giving rise to a new sequence of oscillations. The squares
of the frequencies of the new spectrum are of the order
of the ratio of the perturbation energy to the moment
of inertia of the fluid. Therefore, compared with acoustic
modes, the oscillations have very long periods.

Furthermore, the equation governing the perturba-
tions of the neutral modes is, in its own right, an eigen-

value equation independent from the p-modes of the
system. This enables one to employ an eigenvalue
technique, in contrast with the perturbation analysis of
the non-neutral p-modes that ordinarily requires a per-
turbation procedure. :

In Sections II-V a mathematical analysis of the
problem is attempted. The statements made above are
proved and a computational procedure is developed.
In Sections VI-IX a force-free magneticfield is considered
as the perturbing force. It is shown that the combined
convective and toroidal neutral modes evolve into a
spectrum of pure hydromagnetic oscillations. The eigen-
frequencies and the eigenvectors of axially symmetric
modes are calculated by a Rayleigh-Ritz variational
procedure. The corresponding periods are, of course, of
the order of Alfvén crossing-times. In Section X the
relevance of the present analysis to convective stability
of a perturbed configuration is discussed and an alter-
native formulation of the stability criterion is suggested.

Some properties of g- and p-modes were investigated
in an earlier paper [Sobouti (1977), hereafter referred to
as “paper I"]. The present analysis is a continuation of
the latter in that it explores the behavior of the same
modes when subjected to a perturbing force. Extensive
use has been made of the formalism developed in the
latter reference

I1. The Unperturbed System

In paper I a general Lagrangian displacement of a self-
gravitating fliud was expanded in terms of two inde-
pendent sets of basis-vectors, {, and {,. Of these the
former emphasized the g-character of the displacement
and the latter reflected its p-nature. The equation
governing the eigenfrequencies and the eigenvectors was
expressed as a matrix equation

T°Z°=S°Z°E°, (1)

where T° and S° were constructed from the differential
equation governing the Lagrangian displacement, Z°
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was the matrix of eigenvectors (i.e. the matrix of the
expansion coefficients referred to above), and E° was
the diagonal matrix of eigenvalues (square of the eigen-
frequencies). The use of two distinct sets of basis vectors
allowed a partitioning of the matrices into gg-, gp-, pg-
and pp-blocks. Thus:

A= Agy Agp A=T0 SO ZO EO (2)
APG APP ’ ’ ’ ’ .

It was further shown that in an adiabatic fluid, the
subject matter of this paper, the g- and p-spectra became
independent from one another. All g-frequencies van-
ished and the corresponding g-eigenvectors remained
unspecified. This reduced the g-spectrum to a degenerate
neutral state which was identified as the neutral con-
vective state of the fluid. The various matrices of Equa-
tion (1) acquired the following forms (hereafter to
emphasize the neutral aspect of the displacements the
index g is replaced by n):

0] O
0__
™otz o
8%, 1 0
S°= L‘-—] (3b)
10 | S},
[Z2, 0
Z°= Ll—], 3¢)
o 1z, (

and
0] 0
0 _ 0 _ di 1
E 0 Eg]’ | E,=diagonal. (3d)
Equation (1) reduced to its p-component
T Zor=S00ZrE3 - @

This completes the summary of the background material
on unperturbed systems. The effect of a perturbation
on Equation (1) is considered in the following section.

III. The Perturbed System

Let the adiabatic fluid discussed above be subjected to a
perturbing force. Let Equation (1) take the more general
form

TZ=SZE ©)

with the following partitioned components

[Bat Tuln | lort Ty 2

TonZn~+ TppZ I Tz, + 1,2,

(ot Sl | Cut Sy (s
SoZunt SprZyEr | Spulny+SpiZpE, |

On the assumption of small perturbations, and in view
of the particular form of Equations (3), we observe the
following order-of-magnitude relations among the ele-
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ments of various matrices:

Tnm I;lp’ Tpn < Tpp » (63)
Snp’ spn <‘grm’ Spp 2 (6b)
an’ an <an pr (60)

and

E,<E,. (6d)

The nn- and the pn-blocks of Equation (5a) do not con-
tain zero order terms. Retaining only the first-order
terms of the latter blocks gives

I;mZ nm= S, nnZ nnE n (7)
and
TonZ o+ TppZ pn=0. A ®

We emphasize that T,, in Equation (7) is a pure per-
turbation term. Equation (7) alone determines the eigen-
frequencies of the perturbation spectrum and uniquely
specifies the corresponding eigenvectors Z,,,. This deter-
mination of Z,,, a privilege not shared by Z2, of Equation
(3c), is what has been referred to as the removal of
degeneracy from the neutral state. Equation (7) will con-
stitute the core of the remainder of the paper. Having
found Z,,, Equation (8), now a set of linear inhomo-
geneous equations, will determine the matrix Z,,. We
recall that Z,, is the correction to the no longer de-
generate eigenvectors Z,,. It expresses the perturbation-
induced effects of the p-modes on the neutral states.
From Equation (8) it is apparent that Z,, consistant
with the anticipation in Equation (6¢), is much smaller
than Z,,. We therefore conclude:

Under the effect of a perturbation a new spectrum
of oscillations evolves from the neutral states of the fluid.
The eigenfrequencies and the eigenvectors of the spec-
trum are specified by the perturbation field alone. There
is a coupling between the new modes and the everpresent
p-modes. This, however, is small and is proportional
to the perturbation.

The pp- and the np-blocks of Equation (5a) are con-
cerned with the p-modes and the effects of the perturbing
forces on them. They will not be discussed further.

IV. The T- and S- Matrices

Let ¢i;i=1,2,..., be a set of basis-vectors belonging to
the space of the neutral displacements of the unper-
turbed fluid. By definition

Ti=[C-Tdv ©
and
Su=(C.-otidv, (10)

where 7 is the differential operator governing the
Lagrangian displacements and g is the density of the
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fluid. To obtain J let the hydrostatic equilibrium be
given by

—Vp+oVQ+AF=0, 1)
where, it will be assumed, the perturbing force AF is small

compared with the other terms. The equation governing
the Lagrangian displacement, &(r) exp (i]/;:t), is

T E=e0t, (12)

where

T E=V(5p)— oV Q— oV (6Q)— ASF , (13)
op=—ypV-&—-&-Vp, (13a)
og=—gV-&-¢-Vo, (13b)
0Q=G [|x—y|™ de(X)dV", (13¢)

and

SF=FE. (13d)

The last equation is a symbolic representation of the
Eulerian change in F. To the first order in A let

P=PotAp1, @=0o+ie;, Q=Q+1Q;. (14
The functions p, g, 2, their unperturbed values pg, 9o,
Q, and their perturbation terms p;, ¢; and €, are, in
principle to be obtained from a solution of the equi-
librium Equation (11). Their determination is a problem
separate from the oscillation analysis of the fluid and will
not be pursued here.

Substituting Equation (14) in Equations (13a—d),
then substituting the results in Equation (13) gives
TE=T o&+AT €, (15)
where the explicit expressions for 7, and I, are
T o&=—V(poV-E+Vpo- &)

+VQoV - (008)+ GaoV § 1x—217 V" (@o)ydV’

and (15a)

T 1&=—V(p,V-E+Vp,- &)
+VQ2oV- (0,8 +GooV [lx—o17 'V -(0,8)adV’
+VQ4V - (208
+GoV [ lx—217'V - (0o8)dV' —FE&. (15b)

The basis vectors ¢’ of Equations (9) and (10) belong to
the space of neutral displacements of the unperturbed
fluid. The Eulerian changes dp,, d9, and 09, corre-
sponding to these vectors are all zero. Consequently

T o6s=0. (16)
Equations (9), (15) and (16), with A suppressed, give
Ta=8- 7 ,Lav. 17

Once again let us observe that T, is determined entirely
by the perturbing force and tends to zero as the latter.
The expression for S,, remains unchanged except that
it will be approximated by its unperturbed value S9,.
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V. The Neutral Basis-Vectors ¢,

Owing to its shear-free nature a toroidal displacement
of a fluid is always a neutral displacement. Let
¢;i=1,2,..., be a set of basis vectors spanning the
subspace of the toroidal displacements. In an adiabatic
fluid for which the structural gradients of p and g are
equal to their adiabatic gradients, convective motions
(or equivalently the g-modes) are also neutral displace-
ments. Let {;i=1,2,..., be a set of basis vectors
spanning the subspace of the neutral convective dis-
placements. In addition to these a solid-body transla-
tion of the fluid is also a neutral displacement. A single
vector is sufficient to describe the translation. For
brevity, however, the latter will be included in the set of
{-vectors. Solid-body rotations of the fluid which also
come under neutral displacements are a special case of
toroidal motions and are already accounted for in the
{set. The displacements just discussed seem to com-
prise all possible neutral motions. We therefore proceed
with the assumption that the basis vectors ¢: (¢, ¢¥),
where ¢/ also comprises the solid-body translations, are
complete and span the whole space of the neutral dis-
placements of an adiabatic fluid.

Division of neutral displacements into convective
and toroidal displacements entails a corresponding par-
titioning of the matrices of Equation (7). Thus

ACC Act
Atc Att

The subspace of the convective modes is orthogonal to
the subspace of the toroidal modes in that the S-matrix
is block-diagonal:

sl 0
0 __ cc
S""‘[o 3

If the nature of the perturbing force is such that the
T-matrix of Equation (17) is also block-diagonal in
exactly in the same manner as S, then there is no
coupling between the convective and the toroidal modes.
Each displacement can then be analized separately. The
latter ruling also applies to a simultaneous and con-
formable subpartitioning of any of the blocks of T and S
into block-diagonalized forms. In Section VI we will
have occasions to utilize this property. Most perturbing
forces, however, e.g. magnetic field, rotation and tidal
forces, couple the convective and toroidal motions.

A= ’ A= I:m: ng an En . (1 8)

. (19)

VI. Pure Hydromagnetic Spectra of Adiabatic Fluids

A magnetic field pervading an otherwise adiabatic fluid
will be capable of removing the degeneracy of the neutral
state and give rise to a sequence of oscillations primarily
determined by magnetic forces. Such oscillations, should
they develop, will have very long periods, of the order of
Alfvén-crossing times. For the sun and for global mag-
netic fields of a few thousand Gauss (the order of magni-
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tude of strong sunspot fields) these periods are as large
as the period of the solar magnetic cycle.

Owing to the complexity of the 7, operator [Eq.
(15b)] elaboration of even the simplest conceivable
example requires enormous amount of mathematical
manipulations and numerical computations. As a very
simple example we restrict ourselves to force-free-mag-
netic fields. Let the perturbing force of Equation (11) be

1
=— - Hx(VxH)=0. (20)

The hydrostatic equilibrium will not be altered by this
force-free field. The perturbation terms p,, 9,, 2, and
all their derivitives will be identically zero. Equations (17)
and (15b) will then give (suppressing the index n)

Ti=— [ Fiav, @1)*

where, {' and ¢’ are members of the sets of convective
and/or toroidal basis vectors, {, and/or {,, respectively,

.9"§=—:—n[6H><(VxH)+Hx(Vx5H)] (22a)
and
H=V x({xH). (22b)

Equation (22b), giving the Eulerian variations of the
magnetic field, assumes infinite conductivity and ex-
presses the frozen-in condition of the field. Substituting
Equations (22)in Equation (21), performing some integra-
tions by parts and eliminating the surface integrals by
virtue of the fact that a force-free field has no component
normal to the boundary surface, give

1 i ¥
=Z1;jH2(V-§)(V c)qv

b [P PNV
T

1 i ¢
[ H- (PO
FH-(H PP DV
b o[ (- PIH- P)H])

T
O @ VI DHIAY

1 i ¢
4o (TG DHYP -0
e @3

For manipulations leading to Equation (23), except for
indexing, one may consult Kovetz (1966), Singh and
Tandon (1969) and/or Grover et al. (1973). KovetZ paper
should be noted for its careful analysis of the boundary
conditions in the presence of a magnetic field of a quite
general nature. A reference to it will reveal how the

*  Note added in proof see page 346
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surface integrals coming from integrations by parts
vanish in case the field is force-free. Kovetz also extends
the variational principle of Chandrasekhar (1964) to
magnetized fluids. The symmetry of the matrix of Equa-
tion (23), which is at the root of the present variational
analysis, is reminiscent of this general variational prin-
ciple.

An axially symmetric force-free field, consisting of
totoidal and poloidal components can be constructed
as follows (see Ferraro and Plumpton, 1966)

n(n+ 1)

H=""D 7 y6),
1/(d Y,
F (5 i —) z e,
Z e, 24
where,
T 1/2
29= (3] Juerie), 2

Ju+12 is the Bessel function of order n+% and Y,(6) is
the spherical harmonic of order n. In order for the normal
component of the field to vanish on the sphere of radius
R one must have

Jur12(@R)=0.

The latter equation determines the value o.

The basis vectors {, and {, can also be given a
spherical harmonic expansion. Most generally one may
write

(25a)

1 1 1 dy'™oyr
1lm ilm —
=YY e @ @
1 1ldy™ 1 oy"
- 26
I+ r dr sinf dp (26)
and
. 1 oy? 1 ayyF
jkp jkp _— Y7k _ — ikp 2K
0, SemoSE e @)

where 1, y and ¢ are scalar functions and will be elab-
orated on later. The next step is to substitute Equations
(24), (26) and (27) in Equation (23) and to carry out the
angular integrations over 6 and ¢. We observe that the
matrix of Equation (23) is quadratic in H and quadratic
in the pair of vectors (¢!, {). Each term of the matrix
contains an angular integration over four spherical
harmonics. The following conclusions follow from a
parity analysis and the integrals.

a) Integrals over ¢ vanish unless the azimuthal
harmonic numbers m and p coming from Equations (26)
and (27) are the same. Therefore the magnetic field,
whether axial or not, couples displacements of the same
azimuthal number, m. According to the remark at the
end of section ¥, a given value of m, regardless of the
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value of the principle harmonic number, I, should be
analyzed independently from other values of m. Only
axially symmetric displacements ie. m=0, are con-
sidered in this paper.

b) Integrals over 0 have the parity 2n+k+ [. They
will vanish unless k+ ! coming from Equations (26) and
(27) is even. Therefore, the axially symmetric displace-
memnts of odd parity, ie. k, I=1,3,..., will be coupled
together and those of even parity, i.e. k, [=24, ..., will
be coupled together. There is no coupling between the
displacements of odd and of even parities. There are no
neutral displacements of either convective or toroidal
type to correspond to k, [=0.

The indices i and j of Equations (26) and (27) should
in principle run over an infinite range of values. In the
variational approximation of this paper, however, only
one value of these indices is allowed. Provided the
single functions y and ¢ of Equations (26) and (27) are
reasonable representations of the actual displacements,
the latter choice is a legitimate variational approxima-

- tion. Let us summarize the discussion. Convective basis
vectors will have the form

1 1d¢0dy,
I+1)dr dr db’
The unperturbed fluid is to have adiabatic gradients and
the Eulerian variations of pressure corresponding to ¢

are to vanish. These requirements impose the following
restriction:

- 1
L= 5 v (0Y(6), 0. (28)

dy dy! 1ldg
Similarly the toroidal vectors will have the form:
k_ _ ¢ (r) ﬂ

Single scalar functions y' and ¢* will specify each of the
convective and toroidal vectors, respectively.

VIIL. Ansatz for ¢/ and ¢'

It is shown by Hurley et al. (1966) that y' should behave
as r'*! at the origin. It was also shown in paper I that
y' should vanish as |[R—r| at the surface. The magnetic
field entering Equation (23) is given in terms of Bessel
functions which vanish at the surface, cf. Equations (24)
and (25). In view of these considerations y' was chosen
as follows

1 @n+1)! Z (ar) A+
2"l (o) )

The numerical factor is introduced to ensure the order-
of-magnitude consistancy in the computations.

The expressions below for ¢' are empirical. They are
chosen from a rather large number of experimental
computations on the basis of good first estimates for

(30)
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eigenfrequencies and by the subsequent convergence of
the results. The following observation, however, pro-
vided guidance in the course of trial computations.

a) ¢' For Odd Harmonics—We recall the solid body
translation of the fluid was a member of {, displacements.
This is actually a p-mode of /=1 which happens to be
neutral and for which y"=y"=r2 It was shown in
paper I that in an adiabatic fluid all p-modes are
orthogonal to the convective-displacements of Equation
(28). The non-diagonal elements of the S-matrix corre-
sponding to a pair of convective- and p-displacements
vanish. However, to choose a displacement orthogonal
to the solid-body translation of the fluid is simply to
require that the displacement in question should not
impart a net momentum to the system. Thus

R
Str=] ely'+r¢1dr =0, 1=1. 31)

Equation (31) is indeed satisfied if v and yx are related
by Equation (28a).

A parallel argument can be advanced with regard to
the toroidal functions, ¢'. A solid body rotation of the
fluid is member of {,-displacements. It corresponds to
I=1and ¢™'=r>. Other values of ¢*(I=1) can be chosen
orthogonal to ¢™". The condition is that the ¢! in ques-
tion should not impart a net angular momentum to the
system. Thus

R
S:}mt—_— _ j Q¢’rdr=0, I=1. (32
0

There is no evidence as to how ¢' should behave at the
center. Our numerical calculations, however, indicated
faster convergence if ¢' behaved the same as'y' ie. as
r'*1, On requiring this and also requiring ¢' to remain
finite at the surface and comparing the particular forms
of Equations (31) and (32) one arrives at the following
expression:

1 ody

=yp'+ -

Sroe 1=135, (33)

Although Equation (33) is derived for I=1, it was found
suitable also for other odd values of I.

b) ¢' For Even Harmonics—The guideline devel-
oped in the odd case no longer applies. From a large
number of functions behaving as r'*! at the center and
remaining finite on the surface the following was chosen:

1 ady

1__ ax — .
V=t e (4)

VIII. Computational Procedure

The matrix elements T, T and T* were calculated by
substitution of the magnetic field of Equations (24), (25)
and the appropriate vectors ¥ and/or {!in Equations (23).
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Table 1. Eigenvalues and eigenvectors of pure hydromagnetic oscillations of a convectively neutral fluid. Eigenvalues are displayed in lines marked
by an asterisk. Columns following the eigenvalues are the corresponding eigenvectors. The convective and the toroidal components of the eigen-

vectors are marked by “C” and “T™, respeetively. The unit of eigenvalues is the ratio of the total magnetic energy to the moment of inertia of the
system

N =1, Uneven harmonics:

* 0418406 +00

c 0.100000 +01

* 0409282 +00 0165124 401

c 0.100000 +01 —0478386 —01

T 0154712 +00 0.100000 +01

* 0407409 +00 0738877 +00 0.377757 +01

c 0.100000 +01 0450205 —01 —0.779420 —02

T " 0248057 +00 —0.480580 * +00 0.207989  +00

c —0261019 +00 0.100000 * +01 0.100000 +01

* 0406296 +00 0727131 +00 0370986 +01 0.815705 +01

c 0.100000 +01 0408131 —01 —0.893291 —02 0.135675 —02

T 0233435 +00 —0473535 +00 0213310 +00 0730700 —02

c —0217314 +00 0.100000 +01 0.100000 +01 0773421 —01

T —0.113919  +00 —~0.117628 +00 —0242074 +00 0.100000 +01

* 0406032 400 0725569 +01 0361707 +01 0437520 +01 0.100665 +02
c 0.100000 +01 0400449 —01 0988174 —02 0129921 —03 —0934671 —03
T 0231011 +00 ~0472587 +00 0202547 400 0292290 —01 —0.383562 —02
c —0.209907 +00 0.100000 +01 . 0917097 400 0.168936 +00 0479858 —01
T —0.139188 +00 —0.137928  +00 0.574763  +00 0382332 +00 —0.825525 +00
c —0.117628 +00 —~0.940668 —01 0.100000 +01 0.100000 +01 0.100000 +01
N =1, Even harmonics:

* 0207413 +01

c 0.100000 +01

* 0205897 +01 0351999 +01

c 0.100000 +01 0.768565 —01

T —0.136411 +00 0.100000 +01

* 0205398 +01 0325654 +01 0436817 +01

c 0.100000 +01 0.734586 —O01 —0417766 —02

T —0.158772 +00 0.660260 -+00 —0.207620 +00

c —0.185641 +00 0.100000 +01 0.100000 +01

* 0205293 +01 0323440 +01 0410432 +01 0154172 +02

c 0.100000 +01 0.823639 —01 0170411 —02 —~0.293386 —02

T —0.149869 +00 0793929 400 0170292 400 ~0279452 —01

c ~0201634 +00 0.100000 +01 0.100000 +01 0.830663 —01

T 0491729 —01 —0.165423  +00 —0239370 +00 0.100000 +01

The convective vectors were taken from Equations (28)
and (30). The density distribution to be used in Equa-
tion (28a) was that of polytrope 3/2, the adiabatic fluid
corresponding to the ratio of specific heats 5/3. The
toroidal vectors were taken from Equations (29) and
(33) or (34). After eliminating the derivatives of spherical
harmonics, each angular term consisted of an integration

where (J(; J 5 Jg ) is a 3-j symbol. Among other properties

we recall that 3-j symbols are zero unless j,, j,, j; satisfy
the triangle condition j, + j,—j,, =0 for any permutation
(k, I, m) of (1,2,3). The statements given after Equation (27)
can be verfied by employing the latter property of the

over four Legendre polynomials. The latter were cal-
calculated by the following formula.

L [ POOPLIPIP (I

e T T

n=k—1| :

3-j symbols. The numerical expression is:

(jl J2 Js) —(—1)yn (J—2j1)!(J—ij)!(J_zjs)!]llz
000
GN!

(J+1)! |
GI—i)1GT—i)GI—js)!
J=ji1+j2+]3- (36)
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For further reading on 3-j symbols see, for example,
Edmonds (1957). After carrying out angular integrations,
integrations over r were carried out numerically.

Having obtained the T- and S-matrix, solutions of
Equation (7) were attempted. In variational calculations
from one to at most six variational parameters, from the
collection of convective and toroidal terms, were con-
sidered. The eigenvalues, i.e. the squares of the eigen-
frequencies were expressed in units of the ratio of the
total magnetic energy to the moment of inertia of the
fluid. The latter are

i
% [H2dV = "("8+ )22 (2)H°R? (37a)
[ or*dV =03069MR?, (37b)

respectively, where z, is the first zero for Z,, H is the
physical amplitude of the magnetic field, and R and M
are the physical radius and the physical mass of the
convecting fluid, respectively. All calculations of basis
vectors, matrix elements, eigenvectors, etc..., are done
with the radius of the fluid normalized to unity. This
means that the variable r, throughout the paper should
be interpreted as r/R. Particularly in the interpretation
of the eigenvectors the adoption of unit radius should
be kept in mind.

Eigenvalues and Eigenvectors of n=1 (n being the
harmonic number in the expansion of the magnetic field)
are given in the accompanying table. Eigenvalues are
displayed in lines marked by an asterisk. The column
following an eigenvalue is the corresponding eigenvector.
Convective and toroidal components of the vectors are
marked explicitly. Let us remember that an eigendis-
placement, &, is to be calculated from

¢ =Zl',- af.tal:, (39)

where a. and 4} are the convective and the toroidal
components of the corresponding eigenvector.

Example—From the table, the column eigenvector
of the lowest uneven mode in the third approximation
is (1, 0.248, —0.261). The corresponding eigendisplace-
ment will be

&(r, 0)=C1(r, 0)+0.248L} (r, 6)—0.261L2(r, 6) (38a)

where, ¢! and ¢ are to be obtained from Equations (28)
and (30) and ¢! from Equations (29) and (33).

IX. Remarks on Long-Period Aspects of the Oscillations
and the Displacement Patterns

Strictly speaking, the numerical results of this paper are
pertinent to a fluid in a globally neutral convective state
and pervaded by a force-free magnetic field. The con-
vective envelope of the sun with a mass of about 0.002 M
and a thickness of 0.15 Ry may fulfill the assumption
of neutral stability and is presumably the seat of some
large scale magnetic fields. There is the temptation to
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contemplate that at least the gross features of the present
calculations are of relevance to the magnetic periodicity
of the sun. In no way, however, should the remark be
interpreted to imply a theory of solar magnetic activity
or the sunspots. B

From the table the eigenvalues of the lowest odd and
even modes are respectively, 0.406 and 2.053, in the units
of Equations (37). The corresponding periods in a
physical unit are

. M/M\'72 1
dd — 5 o]
P°Y(yrs)=4.78 10 ( R /Ro) H(Gauss) (39a)
and
M/M\/? 1 '
ven _ 5 0]
P (yrs)f2.13 10 (R/Ro ) H(Gauss) (39b)

For the mass and the radius of the solar convective
envelope and for large scale magnetic fields of a few
thousand gauss, typical of local sunspot fields, these
periods fall well within the 22- and 11-year solar mag-
netic cycles.

The dlsplacement vectors “corresponding to the
lowest uneven mode in the second approximation is

éodd V_ v/ R)
#/R? © 9,

Pi)= _XZ(Z1x)a Zy(z1)=0,
o 2(r/R)
odd — V; ) sinf,
, ' | 1dg
xMx )— dx +EE1P
PR A /R
£214 20,155 sinf.  (40)

4 (r/R)?
The r-component has different signs in different hemi-
spheres. The 6- and ¢-components have the same signs
in both hemispheres. The @-component is a toroidal
shear-free displacement and is about 15% of the r- and
0-components. On the surface the -component vanishes
while 6- and ¢-components tend to a finite limit.
The displacement vector corresponding to the lowest
even mode in the second approximation is

v2(r/R)
- “wRY C©

6even

20_1)3

3
Y}(x)= 2_21 x3Z(z,x),

even__ 11/5 2*(t/R) .
& ———l/: R cos fsin 6,

dp? 1de
27 - 2
)= ax T edx "’
even 0136 2'(7'/R)
o =% 4n ) cosfsinf. 41)
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The r-component has the same sign in both hemispheres
while the 6- and @-components reverse the sign from
one hemisphere to another. The toroidal ¢-component
is again much smaller than the other ones. Along the
z-axis and in the equatorial plane the displacement is
purely radial. Non-radial components are most pro-
nounced in the § =45°-directions. The surface behavior
is the same as for the odd case.

- X. Convective Stability of Perturbed Configurations

The reasoning of Sections II and III has shown that a
conservative perturbing force removes the degeneracy
of the combined convective and toroidal neutral state
of an adiabatic fluid. The new sequence of normal modes
which developes is solely characterized by the restoring
forces induced by the perturbation. Due to the conserva-
tive nature of the perturbing force, the corresponding
frequencies are either real or imaginary but never com-
plex. And due to the weak nature of the perturbation
they are much smaller than the acoustic frequencies of
the fluid. For example the force-free magnetic field gives
rise to purely hydromagnetic oscillations. The fre-
quencies as judged from the present calculations form
an ascending sequence. The corresponding periods are
of the order of Alfvén crossing-times.

The picture presented above is intimately related to
the question of the convective stability in the presence
of a perturbing force. Should the perturbation spectrum
be a sequence of stable oscillations then the perturbation
has stabilized an otherwise neutral fluid, and vice versa.
On making the structural gradients of the density and
pressure steeper than the adiabatic ones the fluid will
continue to remain stable until the lowest eigenstate
induced by combined superadiabatic and perturbation
forces becomes unstable. A precise statement and a
proof of the assertion just made, is attempted in a sub-
sequent paper. An elucidation, however, is given below.

Let the fluid be slightly non-adiabatic. In the absence
of a perturbation it will develop a g- or equivalently a
convective-sequence of normal modes. Let there be a
one to one correspondence between these g-states and
the perturbation-states. That is, assume that the eigen-
displacements of the non-adiabatic unperturbed fluid,
as non-adiabaticity tends to zero, have the same limits
as the eigendisplacements of the adiabatic but perturbed
fluid, as the perturbation tends to zero. Incidentally this
is not the case for the force-free magnetic field of this
paper, and that is why the analysis of the general case
is more involved. If the fluid is both slightly non-adiabatic
and slightly perturbed the corresponding eigenvalues
will simply add together. Let ¢, and ¢, be the lowest
g-cigenvalue and the lowest perturbation eigenvalue,
respectively. The fluid will be convectively stable if

€yt £per 20. 42

Y. Sobouti: Pure Perturbation Spectra

It was shown in paper I that as the Schwarzschild dis-
criminant 4=V ,;0—Vp tends to zero all g-eigenvalues
tend to zero proportionally to A. Define a as follows

ral /G W

By the statement just made

A=aVp=

&g,= (%)oa as a—0. 44
The g-eigenvalues of subadiabatic fluids are positive
and those of superadiabatic ones are negative. Therefore,
¢, and a are always of opposite signs and (de,/da), is
negative. Substituting Equation (44) in Equation (42)
the condition for convective stability becomes

aan aan Eper
(aln p>ad/ (alnp) 1S =G, 43

The criterion (45), in agreement with the conventional
mode of thinking, corrects the Schwarzschild criterion
for the effect of the perturbation. This has become
possible on account of a crucial assumption that in the
limit of vanishing non-adiabaticity the perturbation
does not cause a mixing of the convective modes (or in
the language of linear vector spaces, a rotation of the
convective eigenvectors). Indeed the assumption is latent
in any stability study of perturbed configurations as a
local phenomenon and by analyzing the buoyancy
forces. The consequences of abandoning the assumption
are far reaching. They argue in favor of global stability
criteria in terms of the integral properties of the fluid
in contrast with local stability conditions in terms of the
local structure of the fluid. Further analysis of this aspect
of the problem is planned.
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Note added in proof. Since the submission of this paper the author
has been able to establish the following result: As long as the condition
of p=p(g) holds in the equilibrium state of fluid, contributions of the
density and pressure perturbations, ¢, and p, respectively, to the T,,-
matrix are identically zero. Equation (21) will then hold for any field
configuration.
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