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Summary. It is suggested to identify the neutral con-
vective motions of a fluid as the adiabatic limit of its
non-radial g-oscillations. A definition of g-modes
follows from this limiting behavior. The p-modes are
then identified as those orthogonal to the g-modes.
These definitions have been used to obtain appropriate
expressions for each set of the g- and p-displacements
of the fluid. A Rayleigh-Ritz variational scheme is
developed, which is capable of isolating all normal
modes of the fluid systematically and in an ascending
sequence of mode order. By offering a clearer under-
standing of the problem the new logic is also suggestive
of a procedure to isolate new sequences of oscillations
arising from and dominantly governed by force fields
other than self-gravitation.
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I. Introduction

In his classification of non-radial oscillations of stars
into a g- and a p-spectrum, Cowling (1941) remarks
the following: (a) in g-modes the Eulerian variations
of the density are larger than the variations of the
pressure and-(b) both variations are much less pro-
nounced in g-modes than in p-modes. A later obser-
vation of Ledoux and Walraven (1958, Section 78)
and of Lebovitz (1965a, b, 1966) that a fluid with
adiabatic gradients possesses neutral modes and the
tacit assumption that in the course of convective
motions the pressure equilibrium is not disturbed are
akin to Cowling’s remarks. The circumstance is that
as a self-gravitating fluid tends to acquire an adiabatic
structure, the Eulerian variations of the pressure and
the density in g-modes tend to zero. And the whole of
the g-spectrum reduces to a highly degenerate neutral
convective state.

In this paper a quantitative formulation of the latter
behavior is presented. In Section II, based on their
limiting behaviors, a definition of g- and p-spectra is
proposed and a set of well-behaved trial g- and p-

functions is obtained. In Sections III-V a Rayleigh-
Ritz variational scheme of considerable flexibility and
power is developed. The scheme is applied to obtain
the non-radial oscillation frequencies and displacements.
The degree of coupling between the g- and p-modes,
the circumstances, and the approximations under which
the two spectra may be treated independently are
specified. Computational procedure and numerical
results are discussed in Sections VI and VIIL

That the g-modes of a superadiabatic fluid are
unstable (Ledoux, 1967, 1974; Robe and Brandt,
1966; Robe, 1968) and that the same fluid develops
convective motions are common knowledge. However,
the identification of the g-modes and of the convective
motions of a superadiabatic fluid as one and the same
thing has not been emphasized. The implications which
may follow from such an identifications have been
explored even less. On subscribing to this notion an
enumeration of the normal modes of a fluid becomes
possible. This in turn allows one to determine the
stability of the fluid by looking into the stability of its
modes. The latter point of view is briefly discussed at
the end of Section VIII. Upon removal of the degeneracy
of the neutral convective modes by a weak force, such
as magnetic fields, rotation, tidal forces, etc., it becomes
possible to isolate a sequence of oscillations solely
governed by the force in question. In its own right, the new
spectrum is of interest. More important, however,
is its bearing on the stability of a fluid pervaded by a
perturbing force. Should the characteristic oscillations
of the perturbing force form a stable sequence then the
inevitable conclusion is that the perturbing force
stabilizes the fluid and vice versa. More elaboration
on this is made at the end of Sections IV and VIIL

Full development of the suggestion, however, is taken

up in a subsequent paper where, as an example, a
purely hydromagnetic spectrum is also worked out.

II. A Definition of g- and p-Modes

Let p, ¢ and Q denote, respectively, the pressure, the
density and the gravitational potential of a fluid in
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hydrostatic equilibrium. The equation governing the
Lagrangian displacements, &(r)exp (ie'/?t), of the fluid
is the following

T &=eg€, 1
where

T E=V(dp)—eVQ— oV (6Q), & (1a)
op=—ypV-E-¢-p, (2a)
dg=—qV-E-&-Fo, (2b)
and

P2(5Q)= —4nGdo . ' (20)

The Eulerian variation of a quantity is denoted by 6.
Equation (2a) assumes that the displacements of the
fluid take place adiabatically. Equations (2b) and (2c)
are expressions of the continuity and of Poisson’s
equations, respectively.

Let {, be a convective displacement of the fluid
in the sense of Schwarzschild, ie. a displacement
which leaves the pressure equilibrium of the fluid
undisturbed. Thus

8,p=—ypV-{,—{,-Vp=0. 3)

From Equations (3) and (2b) it follows

5gQ = A(r) * Cg ) (4)

where

A=V, 0—-Ve (42)

and

Vo= 2Vp. (4b)
44

The latter is the adiabatic gradient of the density with
p as the independent thermodynamic variable. Equation
(3) is a specification of the convective displacement,
{, As A of Equation (4) (hereafter referred to as the
Schwarzschild discriminant or non-adiabaticity of the
fluid) and consequently the corresponding d,0 and
0,02 tend to zero, {, becomes an exact but neutral
solution of Equation (1). We are now in a position to
come to a definition of g- and p-modes.

Proposition 1. The g-modes are that sequence of os-
cillations whose limits on approaching a globally
adiabatic structure are the neutral convective motion
of Equation (3).

An example of approach to an adiabatic limit is
given by Ledoux and Walraven (1958). The authors
envisage a situation where the non-adiabaticity para-
meter, A(r), tends to zero at all points proportional to
a small parameter, ¢ independent of r. More general
limiting procedures can be adopted. However, the
neutral convective state of Equation (3) is degenerate
in that either radial or non-radial component of the
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displacement remains unspecified. Therefore, all limit-
ing states will be contained in the space of the displace-
ments of Equation (3) and will be equivalent from the
point of view of our proposition. Whether the g-oscil-
lations behave as proposed is to await until a consistent
picture has emerged and the applicability of the proce-
dure to actual cases is demonstrated. Assuming however,
the proposition is valid, it should be possible to expand
the g-states of an actual non-adiabatic fluid dominantly
in terms of the neutral convective modes of an adiabatic
fluid. Let {,: (£}, g, {%) have the following spherical
harmonic expansion

(P ym 1 1)W1 %) 1 0Yz’”) )
S\ 2 U II+1) o 807 I0+1) r sinf dp )’

where a prime denotes differentiation with respect to r.
From Equation (3) it follows that

!

Py a
Xg=Vy+ W Yy (5a)

The operator 4 of Equations (1) is symmetric
(Chandrasekhar, 1964) and its eigenvectors form an
orthogonal set [Ledoux, (1957) and the references
thereof] in the sense of Equations (6a) and (6b), re-
spectively.

§§i~7§jdV=j E.TEdV (6a)
“and
jgfi-fjdV=0, iFj. (6b)
Let

(%) o 1 0¥ 1y 1 oy”
C”'( :2 Y TI(1+1) pr a0 ’II+1) pr sin 6 6(p)(7)

be another vector field orthogonal to {, Substituting
Equations (5) and (7) in the orthogonality condition
(6b), eliminating y, by Equation (5a) and carrying out
an integration by parts to eliminate the derivative, y;
give

¥»

1 A
0=[el,-{,dV= [ ov, [7,2‘ LI+ {XZ— EX;’H -
(6b)

Requiring Equation (6b’) to hold for all choices of ),
and in the limit of vanishing non-adiabaticity, 4—0,
one finds

=11+ 1)%. (Ta)

Equation (7a) expresses that {, is derived from a po-
tential. Thus

&H=ro, (7b)
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where

b= X160, 9). (70)

I(a+1
Equation (7a), much to its credit, comprises the Kelvin
modes, y=y=r'"!, of incompressible fluids. More
general solutions of it may be constructed as powers
of r. We now propose a definition of the p-modes.
Proposition 2. The p-modes are that sequence of oscil-
lations whose limits on approaching globally adiabatic
structures are the displacements of Equations (7).

Again, should the proposition be meaningful, one
should be able to expand the p-states of an actual
non-adiabatic structure dominantly in terms of the
vector field of Equations (7). That a representation of
p-modes in powers of r, obvious solutions of Equation
(7a), is justified has amply been demostrated by Pekeris
(1938), Cowling (1941), Chandrasekhar and Lebovitz
(1964), Hurley et al. (1966), Robe and Brandt (1966)
and Andrew (1967, 1968). These same functions,
however, give little information on g-modes. Andrew
(1967) correctly observes that inadequate basis-vectors
have, in certain circumstances, failed even to detect the
g-modes. It will be seen that the combined basis-
vectors of Equations (5) and (7) are indeed free from
such inadequacies. They are able to predict all normal
modes of the fluid in a systematic manner and in a
sequence of ascending mode order.

III. Rayleigh-Ritz Variational Scheme

Let solutions & and &), of the general Equation (1)
corresponding to the elgenfrequencws ¢ and &, re-
spectively, have the following expansions:

= Sz Y02 (8)
k 1
and
&= Z CiZop+ }2 CoZ o (8b)

where Z™; a, b=g, p are variational constants and
¢¢ and {, are members of Equations (5) and (7), re-
spectively. Let Z be the matrix of eigenvectors formed
from these variational constants. Thus

Z,lZ,

Z= [ Z,Z, } 9
Z4,=[Z51; ab=g,p; i=1,..,n,; j=1,..,m,.
(%a)

Note the partitioning of Z and other subsequent
matrices into the blocks gg, gp, pg and pp. Each element
of a full matrix is designated by indices (},{) of which
(ab) specifies the block in which the element is located
and (ij) determines the element of that particular block.
Full matrices are nxn; n=n,+n, Equivalently one
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may use only one pair of indices, say (k, ), to label the
elements of a full matrix and let the indices run from
1 to n. Partitioning into blocks, however, will be prac-
ticed throughout the paper and will be found helpful
in understanding the behavior of g- and p-modes and
their interrelations.

Coming back to the notation, let E be the diagonal
matrix of eigenvalues corresponding to Z. Thus

- : (10)

o
14
In association with the expansions of Equations (8)

generate the following matrices

T— [;:gy ;}p] (11)
pal ‘pp

and
S= [S“ S‘"’], (12)
SPQ SPP
where
Ti=(¢-T¢d (11a)
and
:ilb=jQCa a,b=g,P; i=1:---3na; j=19""nb

(12a)

In terms of the matrices of Equations (9—12), Equation
(1) may be written in its equivalent but variationally
approximate from as follows

TZ=SZE. 13)

The block-partitioned form of Equation (13) is

’I;ngy-i_TPZPg' T;GZQP_FTPZPP
T Zgs+ TooZ g | TooZop+ TppZ o

pg=—4g9

pp*=pg! “pgTgp

(13a)

[(Sgg 99 + S!?PZPQ

| 99 gp+Sngpp)E ]
(SpsZos+ S ppZrdEs |(Spg oot

PP PP)E
The eigenvalues of this generalized eigenvalue equation
are to be obtained from the characteristic equation

|T—eS]=0. (14)

To obtain an element (ai, bj); a, b=g, p, of Equation
(13) one substitutes the expansions of Equations (8)
for & in Equation (1), premultiplies the resulting
equation by the basis vector ¢ of Equations (5) or (7),
and integrates over the volume of the fluid. Alter-
natively, one may arrive at Equation (13) by substituting
Equations (8) in the variational expression for frequency,
e= [ &-T EdV/ [ o&-£dV, and requiring ¢ to be extremum
with regard to the independent variations of the constants
Zi . Explicit expressions for the elements of T and S
are presented below.
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IV. T- and S-Matrices

The elements of the T-matrix are obtained by sub-
stitution of Equations (1a), (5) and (7) in Equation (11a),
performing integrations over angles and where neces-
sary integrating by parts over r. To carry out angular
integrations in the 6Q term [cf. Egs. (1a) and (2c)] a
spherical harmonic expansion of 1/jr—7| is used. By
virtue of vanishing d,p [see Eq. (3)] the g-elements
of T take particularly simple forms. Thus

: . XAp . o
Ti=Tj= _(j; 2y Vivs + 4G, 1;1] dr (152)
and

ij ji T Ap J iyJj
Ti=Tji= —g EX Yiwl + 4nGY)Y] |dr . (15b)

The expression below for the p-elements, except for
labeling is from Chandrasekhar (1964, Eq. (41)),

N e dr
T=Ty= I P~ )W — %) 2
+ I P [w;(wi’ —x3) + Wi, — xp)

R

j Y;Yjdr .

The auxiliary functions Y] and Y] come from the
expansion of 6Q and are as follows

i tR ir ir 100 dr )
V)= —r' | le(vs —xa)+ w2l - (16)

Alternative expressions for g- and p-components of
Equation (16) are

; 1§ dr
Yj(r)=r' | Ay}, T (16a)
and
V=022 —wi), (16b)
where

; . dr
wi(r)=r _[ (l+1)——xp mog (16c)

The elements of the S-matrix are similarly obtained
from Equation (12a). Thus

Si=1{e 12 vvs + l(lil)xgxﬂ]dr, (17a)
S§L=Sfr,(,il)j Ay dr (17b)
and

Sp=1e 12 Vp¥h + T +1);c,,x,,]d (17¢)

(15¢)

2 (o, $)—
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Only two independent sets of trial functions, say
y; and yJ. enter into Equations (15-17); x; and xJ}
should be substituted for in terms of the latter by
Equations (5a) and (7a), respectively.

One observes that as the non- adiabaticity, A, tends
to zero throughout the fluid, Y‘ S;Jp, 7;’},, T” all tend
to zero. The block- partltloned Equation (13a) then
reveals the following facts:

i) Vanishing of the non-diagonal blocks of T and S
results in vanishing of Z,, and Z,, Speaking of the
space of the eigenvectors of Equations (1) this means
that the g-displacements of an adiabatic fluid lie in a
subspace spanned by the basis vectors {, of Equations
(5). The p-displacements lie in the orthogonal comple-
ment of the latter subspace, spanned by the basis
vectors {, of Equations (7). For non-adiabatic fluid
the two subspaces are not strictly orthogonal. For
sufficiently small A4, however, projection of g onto
the p-subspace and that of p onto the g-subspace,
ie. Z,,- and Z ,-blocks, respectively, will remain small.
This is a justification for the expansion of Equations
(8) and a reason for the success of the subsequent
Rayleigh-Ritz calculations of Section VII below.

ii) Vanishing of T, results in the vanishing of E,,
That is, in the limit of adiabatic fluids all g-frequencies
tend to zero. The whole of the g-spectrum reduces to a
degenerate neutral state. An examination of Equation
(13a) also shows that Z,, tends to zero faster than Z,,,.
That is, the g-displacements have smaller projections in
the subspace of p-basis vectors than the p-displacements
in the subspace of g-basis vectors. The new problem
referred to in the introductory section now reveals
itself. Should an adiabatic fluid be subjected to a
perturbing force, part or all of the degeneracy of the
g-spectrum may be removed. The new spectrum
emerging from the removal of degeneracy will be
governed by the perturbing force. Its coupling with
the p-spectrum will be confined to first order per-
turbation terms.

For the sake of completeness, the neutral toroidal
modes of the fluid should be mentioned. A displacement
of the form

1 oy"

18
sin 0 6<p (18)

o)
is always orthogonal to g- and p-displacements. The
matrix-blocks S,, and S,, generated by the pair of
basis vectors (t, g) and (t p), respectively, vanish.
Furthermore, in the absence of force fields other than
self-graviation, there is no coupling between the toroidal
displacements and the g- or p-displacements. By virtue
of fact that toroidal displacements give rise to no
variations in pressure and density, the matrix-blocks
T,, and T;, vanish identically. Therefore the expan-
sions of Equations (8) may not include toroidal dis-
placements of Equation (18). If there is a perturbing
force, however, which gives rise to non-vanishing T,

6Y,"')

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....55..327S

FIO77A8A 7 2. 55 327!

Y. Sobouti: A Definition of the g- and p-Modes

and T, the toroidal displacements should partake
in Equation (8). A case of this nature is treated in the
second paper (Sobouti, 1977b).

V. Ansatz for y and v}

Expansions of {, in powers of r have been successfully
used by many authors (see references at the end of
Section II) and seem to be natural solutions of Equation
(7a) as well. Therefore the following ansatz is adopted:

w rl+2: 1 (19a)
and

ir __ l(l+1) plr2i-2 i

= T3 , i=1,2,.... (19b)

The exponents are chosen to ensure that £, irrespective
. of its g- or p-character, behave as r' as r—0, as demon-
strated by Hurley et al. (1966).

The trial functions for g-displacements require some
elaboration. The clue to a proper ansatz may be sought
in the differential Equation (1) itself. Let the fluid be
approximated by a polytrope of index n and let it have
a constant ratio of specific heats y. In the limit of

A=

1 1 )
;(1+;)—1]g—>0, (20)

and for a g-displacement which now tends towards a
neutral convective motion of Equation (3), Equations
(1) becomes

0oV Q2+0V(0Q)= —eol. (21)

Here and in the remaining part of this section the
subscript g is suppressed. Note that while dp has
dropped out of Equation (21), d¢ and 6Q are present
and tend to zero only as (1+1/n)/y—1 tends to zero.
This occurs in accordance with Cowling’s remark that
in g-modes &g is more pronounced than Jp. It follows
that ¢ of Equation (21) should also be proportional to
the latter coefficient and

lim {¢/[(1+1/m)fy =11}, 14 1m =8, 22)

should be finite. This is the same limiting procedure
as that employed by Ledoux and Walraven in their
study of convection in adiabatic fluid. A brief remark
to this effect and some values of ¢, for polytropes may
also be found in Hurley et al. (1966, Table 5).

Taking the divergence of Equation (21) and reducing
the results by means of Equations (3), (5) and (2) give

]
3, 1 as
41:ch

—const >0 as r—R, (23)

d
Eln

r—0

331

where g, is the central density of the fluid. Considering
the limiting behaviors of Equations (23) and requiring &
to behave as r' at the center, one arrives at the fol-
lowing possible ansatz for y, and y, of Equation (5a)

i 3 pp 1+2i—2

= 24
Ys " 4nG 0? red . (242)
and

i v, P ;
Xy = Wy + %wg, i=1,2,.... (24Db)

The expression pp'/o> for polytropes has the same
r-dependence as p'?/og’. In obtaining Equation (23)
the former is substituted for the latter. The constant,
—3/4nG, is introduced only to insure dimensional
and order of magnitude consistency in the course of
numerical computations and is of no further con-
sequence. It is comforting to note that at the surface
of the fluid v} tends to zero as |R—r|. x; becomes
finite and does not give rise to ill- behaved integrals.

VI. Computational Procedure

Numerical solutions of Equation (14) for the eigen-
frequencies &, & and of Equation (13) for the cor-
responding dlsplacement vectors & and & were ob-
tained for polytropes. In practice, whenever a function
and its derivitive, say p and p’, were simultaneously
used in integrals which were eventually to be added or
substracted accuracy was lost. The situation was
remedied by expressing the function or its derivitive
in terms of the other by an integration by parts. Guided
by such and in view of the particular ansatz of Equations
(19) and (24), the following alternative form of the
T-matrix was developed and used.

; R I11p 4G
TH=— J j jyi o)
= [ 4| vl ST G g |ar s
R 1 ir j
Ti=-1Y [Ii {% +(1-3) ”’—;’} —4nGw{,] dr  (25b)
0 e\ r r
L R dr
T;=7 EE Py — X% —13) 3
R - . 3 . ldr
+2(-1) g p [wzw:,_ TPy — ;w;wé] )
Ry . . ._dr
=D [ ropw vl
R ./ '
p ir 2 i i i 2 dr
[l -2
R . .
—4nG [ wiwidr. (25¢)
0

No further reduction of Equations (25) and no alter-
native form of the S-matrix, Equations (17), were
necessary.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....55..327S

FIO77A8A 7 2. 55 327!

332 Y. Sobouti: A Definition of the g- and p-Modes
Computations for the following values of various g §_ 8|>‘§_8l_§§_
parameters were attempted. 2 M m e m m m
: . £ 3zas2
. . _ “-
Ratio of specific heats, y=5/3. § 'ﬁl?\r o 2539 % g
Spherical harmonic No., [=1,2,3,4,5,6,. 2 | <l ==L Sgegse
[
. 2
Polytropic index, n=1,15,2,25,3,35,4. g
.\ S 53838388838
The data for polytropes were taken from the British - FAir ;: ; I 1 +++
. . . -
Association tables (1932). A maximum number of ten < o §§o§ % ?,2%553
variational parameters, five of each g- and p-terms, ;.g g §§§§ % 2RAEY
. = o
were considered. _ . § |2 2833538383335
Equations (25) and (17) were numerically integrated & . b
by Simpson’s rule. A modified algorithm of Moller g 588z ==558= = 2238¢%
. . . o o O o0 o o o o
and Steward (1?71) for “Generalized matrix _elgenvalue 2 T33IFITTIRIETERRS
problems” available at the SARA Computing Center £ goggman “o“éJ 2 mgomo
. Q vy o 0 § AN O N N wn
of Amsterdam was used to solve Equations (13) and S 2888828388 gggg%
. . . . \O — —
(14). Briefly, the algorithm consists of transforming T = ) S S32 8 a8gey ABITS
and S simultaneously into a quasi-triangular matrix 8 |~ eegececeggecegegs
. . . ]
and an upper triangular matrix, respectively. B
It should be noted that the procedure developed g1l § § 5|§ § §§§§ § 28588
i - i 5 FHE+ T
here 1s‘mode1. free. Equaﬂ_ons (25),'(24), (19), (17) .and 2 LA i g . . .
(16) which are immediately involved in the computations 58 § 2 § 3 § 3 § a8 23 § § a8
. . . v b Nl v
contain no reference to any particular fluid structure. “ 3 g0 E% g 8T §§ S 838FE
. . . . . [ ANWO VWV
Only pressure, density and their derivatives are required g o Zg2zz9g g 93232338
o e, . . = 2
to initiate a numerical calculation. 85 ! [ [
o <=
o
B o 888358835888353858388:59
VIL Numerical Results 22| |dadaad iR A0 RES0
. )
' ss| |Z5Es5358529835585 85355
A small sample of the computations, thought to be <3 22823 x3¥ 323 xRS
mpe o 1 Dt i g5 | ES28¥Ee5a g8 8g3ss
representative, is published separately in the Supplement 25| |223259:2298 S880 32883%d
. . . < (=] oo ocooco o oo
Series of Astronomy and Astrophysics (Sobouti, 1977a). Z %° Bl * * * °°9
These detailed computations are intended to reveal §°§
. - 2 .
th; main features of the idea advocated throughout g3 IS 93858
this paper. As an aid to the reader, however, short g’g ;5 ull ull ;_]- ;_]- ;:
tables on polytropes 1.5 and 2 are included here. The 58 g &8¢ %%3
. . © o X F 0O o
discussion below refers to both the Supplement and % H 39 - SN =k
. 5 =)
the abbreviated Tables. PR YN 3338 Svor
Both the eigenvalues (i.e. squares of the frequencies) E§ b
nd the eigenvectors (i.e. the set of the variational R - -
a t g ( ¢ O A 23838388838
parameters) of the first and second harmonics are  ; g FIF+++ 133737
presented. For the higher harmonics I=3, 4, 5and 6  * & =i ggg%g
only the eigenvalues are given. Each Supplement Table % g 3R g % S %% =83
. . Q N Q
contains computations from one to ten parameters. 2 | g 29223 Eoazc
Eigenvalues are in units of 47Gg_/(n+ 1). In tables of g & o ! [
I=1 and 2 they are displayed in lines marked by an 83 558555895 sss
. . : e =S S o53553 3 >33 3
asterisk. Columns following eigenvalues are eigen PP 1733393833933 33
vectors. The g- and p-components of the vectors are 5= Dommmmmmm @ ommmoo
explicitly marked and the largest component is assigne = NEN SRASES R 8] 3
. - O — —
the unit value. Due to the lack of space, the gs- and &2 OSSR ARES 7 %ﬁwgg
. . . B o) 1N AN AT N NN~
ps-eigenvalues and eigenvectors are displaced to the o8 < °eegeeeggS S ogssS
upper left and to the upper right of the tables, re- ;%"
spectively. In Fhe n=15 tab}es (the .adlal_)atlc poly- =2 8382888=88=88388:5888
trope) the g-eigenvalues, which are identically zero %i g SRAR L ShAEy
and the g-eigenvectors, which are indeterminate, are 5"_3 £88¢ $283%8821g823=
omitted .2 =) m:\coggts ST & ald8S
: . . =8 P ES YIS 28222 2888
Q = O\ ™ O\
Cpnvggence of the elgen.val.ues' in different ap- 28| < 222233223582 2933%@
proximations was used as an indication of the overall &3 w s L %
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consistancy and accuracy of the procedure. More
important, however, was the repetition of the eigen-
vector patterns in various approximations. While
convergence of the eigenvalues is guaranteed by the
extremum principle underlying Equation (1), repetition
of eigenvectors can only be expected if the basis functions
themselves are adequate representations of the actual
displacements. A study of the tables of /=1 and 2
shows that for the ansatz of Equations (5), (7), (19)
and (24) this expectation is fulfilled. ,

Needless to say that in overlapping regions the
present calculations are in conformity with those of
previous authors. While it is of no practical consequence,
as a matter of procedure consistency one exception
should be commented on. Our entries for n=2, [=2
and y=5/3 seem to agree with those of Chandrasekhar
and Lebovitz (1964) and those of Robe and Brandt
(1966). The corresponding entries of Hurley et al
in the fourth figure of p-modes are larger than in the
other calculations. Hurley et al. have attempted direct
integrations of the oscillation equations. Their p-
frequencies are expected to be the smallest of all similar
frequencies obtained by variational techniques. Dis-
cordance may have been caused by slightly different
input pressure and/or density data.

Particulary for the polytropes 1 and 2, nearest to
the adiabatic polytrope 1.5, the lowest g- and p-modes
were obtained with reasonable accuracy with as few
as four variational parameters. Larger numbers of
parameters, however, were attempted in order to obtain
information on higher modes.

The p,-modes of /=1, commonly dismissed as a
trivial one, play a critical role in the present formalism.
It is well known that a solid body translation of the
entire fluid is an exact solution of Equation (1) with
the corresponding frequency equal to zero. In our
notation this has the interpretation that the basis vector
¢, of Equations (7) and (19) happens to be the actual £}
displacement of Equation (8b). All p,-components of
the T-matrix, namely T,}; a=p, g, vanish. This in turn
results in vanishing of all components of the correspond-
ing eigenvector, Z1}; a=g, p except Z}} which becomes
unity. The /=1 Tables reflect these values. The fact
that one has isolated an exact solution does not however,
imply that it could be excluded from the set of basis
vectors. The basis vectors of Equations (3) and (7) in
non-adiabatic fluids are not strictly orthogonal. Ex-
clusion of ¢} would therefore make the set of basis
vectors incomplete and the modes other than p, will
not properly be represented. The physical interpretation
is the following. For I=1, all trial functions of Equations
(5), (7), (19) and (24), though not solid body motions
cause displacements of the center of mass. It is neces-
sary to include ;‘11, in the ‘expansion of a general dis-

" placement of the fluid in order to eliminate the center
of mass motion caused by other terms. Finally, although
the orthogonality condition for the basis vectors is not
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fulfilled, it is not severly violated either. Off-diagonal -
elements, S3J, a=p, g, of the S-matrix are not exces-
sively large. Consequently, the projection of a general

displacement & on ¢} will be small. This indeed is the

case. In the I=1 entries the values located in the same

row as the unit value of p, are systematically smaller
than the other components of the eigenvector in question.

VIII. Concluding Remarks

Since the early work of Pekeris (1938) and of Cowling
(1941) many authors have investigated various aspects
of non-radial oscillations. A wealth of information is
summarized by Ledoux and Walraven (1958) and in
the review articles of Ledoux (1967, 1974). The present
analysis, by virtue of the classification proposed in
Section II, is intended to bring out a more systematic
understanding of non-radial oscillations. And perhaps,
in the light of a new logic, to advance further details.
The following observations, some confirming known
facts and some new are noteworthy.

What is commonly known as the fundamental mode
appears to be the lowest p-mode of the present analysis.
In Hurley et al. what are called as “convective modes”
and “pulsation modes” of /=1 are our g-modes and
p-modes, respectively. And for /22 what are called as
“Kelvin modes” are our p-modes.

The eigenvalues behave in strict conformity with
the well known fact that the g- and p-spectra have
accumulation points at zero and at infinity, respectively.

Addition of a g-term to the variational sequence
causes a rather large change in all g-frequencies. The
p-frequencies, however, change only slightly. Conversely,
addition of a p-term to the variational sequence causes
a large change in all p-frequencies. But the g-frequencies
change only slightly. This is a justification for the
propositions of Section II. There it was conjectured
that the functions of Equations (5) are adequate re-
presentations of g-states. And the functions of Equations
(7), independent from the former functions, are adequate
representations of p-states. The variational behaviour
of eigenvalues observed above confirms the conjecture.

Addition of a g-term increases the absolute values
of all frequencies, irrespective of their g- or p-nature.
Addition of a p-term decreases the absolute values of all
frequencies irrespective of their g- or p-nature. A
categorical ruling that the g-modes obey a maximum
principle and the p-modes obey a minimum one is
true only in the limit of adiabatic structures. The
property just discussed holds for the ansatz of Equations
(19) and (24). This very property is the fruit of the pre-
cautions taken to ascertain, though not to prove, that a)
the basis vectors are complete and b) they are ordered
in such a way that they bear a fair resemblance to the
eigendisplacements ordered in an ascending order of
modes. Our experimental calculations with other trial
functions, however, confirm Andrew’s (1970) obser-
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vation that convergence behaviour of eigenvalues de-
pends crucially on the choice of trial functions.

A g-displacent is dominantly represented by the
g-trial functions of Equations (24). This is inferred
from the large values of the g-components of a g-eigen-
vector. The converse, that is, the dominance of p-compo-
nents in a p-eigenvector, also holds. It is not, however,
as pronounced as the former. Particularly in the n=1
and 2 polytropes, closest to the adiabatic polytrope
(n=1.5) the p-components of the g-vectors are very
small. This is partially because of the existence of a
neutral convective limit to the g-spectrum. In fact it
can be proved that in the limit of adiabadic structures,
the g-modes become independent from the p-modes
far more rapidly than the converse. This is the same
property observed in Section VII that the neutral
p;-mode of =1, affected the other modes but itself
remained unaffected by others. Let us emphasize again
that this extremely interesting behaviour is at the
root of a previous remark that a weak force field im-
posed on an adiabatic structure is capable of generating
its own sequence of oscillations. This takes place by
removing the degeneracy of the convective neutral
modes and virtually without hinderance from the ever-
present p-modes of the fluid.

A verification of Cowling’s observation (c¢f. Intro-
duction) can be found in the fact that the p-components
of g-eigenvectors are rather small. It suffices to note
that the g-components of an eigenvector, by virtue of
Equation (3), give no contribution to the pressure
variations, while the variations in density receive
contributions from both components of a vector. There-
fore, because of the smallness of the p-components
of a g-vector, corresponding pressure changes always
remain smaller than density changes.

The p-frequencies for any fluid structure are always
real. All g-frequencies of a sub-adiabatic fluid (4<0)
are real. See the tables for n>3/2 and y=5/3. All
g-frequencies of a super-adiabatic fluid (4>0) are
imaginary. See the tables for n<3/2. And those of an
adiabatic fluid (4 =0) are of course zero. In fact a study
of T-matrix will reveal that as a fluid passes monotoni-
cally from a subadiabatic state to a superadiabatic one,
the stable nature of the entire g-spectrum changes
smoothly to an unstable one. The frequencies on either
the stable or unstable side of the neutral limit are
proportional to ]/Z This is an implication and an
implementation of Schwarzschild’s stability criterion.
In view of the latter observation we conclude this
section by a note on the various types of displacements
that a fluid may admit.

IX. A Classification of the Lagrangian Displacements

The operator 4 of Equations (1) is symmetric and its
eigendisplacements are orthogonal to one another.
The space of eigendisplacements contains the three

Y. Sobouti: A Definition of the g- and p-Modes

mutually orthogonal subspaces of the g-, p- and the
toroidal-modes. The toroidal subspace is always span-
ned by the basis vectors of Equation (18). In the case
of an adiabatic fluid the g-subspace which has actually
become neutral is spanned by the basis vectors of
Equations (5) and the p-subspace by those of Equations
(7). In non-adiabatic fluids the latter two subspaces
are not strictly orthogonal. Depending on the value
of the Schwarzschild discriminant, however, their g-
or p-nature is more or less retained.

In a sub-adiabatic fluid one knows of no other
solution of Equations (1) which falls outside the three
subspaces above. In an adiabatic fluid there exist
neutral convective displacements. These, however, were
identified as the neutral g-modes. In a super-adiabatic
fluid one is aware of convective displacements and also
knows that the g-modes are unstable. Noting that all
quantities pertaining to g-modes (e.g. eigenvalues, T

" matrix, etc.) on either side of an adiabatic fluid vary

proportionally to the Schwarzschild discriminant, a
quantity defined to decide the fate of convection, it
seems unjustified to think that on going from a sub-
adiabatic structure to a super-adiabatic one the space
of eigendisplacements, suddenly and discontineously
acquires a new subspace to accommodate the convective
displacements. It is therefore conjectured that:

The convective displacements of a super-adiabatic
fluid and its unstable g-modes are one and the same
thing. A fluid, regardless of its structure, admits of only
three basic types of g-, p- and toroidal eigendisplace-
ments.

On subscribing to this conjecture one will be able
to formulate the question of stability of a fluid in a
basically different way: A fluid is stable if and only if
all of its possible eigendisplacements of Equations (1)
are stable. To illustrate the method let us consider the
stability of a fluid in the neighborhood of the adiabatic
limit. Such a fluid has always stable p-modes (instabilities
arising from unusual values of the ratio of specific
heats excluded) and neutral toroidal modes. Its g-modes
will be stable if T}, is a positive definite matrix. Keeping
only the first power of A in Equation (15a) this in turn
requires that the Schwarzschild discriminant be posi-
tive. Thus:

- | = —_— >
A= ( dr)“‘ o 20. (26)

Equation (26) will of course be recognized as the
criterion for convective stability. It expresses the
condition that the fluid is stable if the structural gradient
of the density (or equivalently that of the pressure)
is steeper than the corresponding adiabatic gradient.
Expressed as such it includes both Schwarzschild’s and
Ledoux’s (1947) criterion, in case the mean molecular
weight is variable, as special cases. If the fluid is per-
turbed by an additional force field, the same procedure,
at least in principle, should be followed. The question

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26A....55..327S

FIO77A8A 7 2. 55 327!

Y. Sobouti: A Definition of the g- and p-Modes

should be asked how any one of the modes is affected
by the pervading field and if there are modes which
become unstable. Further elaboration on this may be
found in Sobouti (1977b).
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