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Summary. In a convectively neutral fluid the g-modes are derived
from a vector potential and the p-modes from a scalar potential.
In a convectively non-neutral fluid the two potentials are coupled.
For small and moderate deviations from convective neutrality,
however, the solenoidal character of the g-modes and the irrota-
tional nature of the p-modes persist.
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1. Introduction

In a study of convective stability of self-gravitating fluids Kaniel
and Kovetz (1967) introduced a decomposition of the linear
motions of the fluid into a toroidal component, an irrotational
component, and a component § =g~ 'V xa, where g is density
of the fluid and a is a vector potential. Recently, Aizenman and
Smeyers (1977) suggested to study the small oscillations of the
fluid in terms of their potential fields. Their starting point was the
Helmholtz theorem which enables one to decompose a vector
field into a solenoidal and an irrotational component. Both of
these papers, however, are silent about any possible connection
between the various components of the motion and the well
established g- and p-character of the modes. Here we elaborate
on these concepts and show that the g-character exhibited by a
linear motion is attributable to its solenoidal component and the
p-character to its irrotational component. In Sect. IT we study the
structure of the vector space, H, of the linear motions of a con-
tinuous medium. We show that H can be divided into two ortho-
gonal subspaces, Hyand H ,, where, the elements of Hg are derived
from a scalar potential ¢ and the elements of H , are derived from
a vector potential A. Pure g- and pure p-modes are only found in
convectively neutral fluids. In Sect. III we demonstrate that the
g- and p-modes of such a fluid are indeed exactly solenoidal and
irrotational, respectively. In Sect. IV we develope an expression
for the scalar potential. '

IL. The Structure of the Vector Space of Small Motions
The discussion below is general and applicable to any continuous
medium whether a spherically symmetric normal star or not. The

- medium, however, is envisaged to have a free boundary on which
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the density ¢ and the pressure p exhibit a polytropic behaviour.
That is, as the inward distance x from the surface tends to zero:
0—x", do/dx—x""1, p—»x"*!, and dp/dx—x", where n is an ef-
fective polytropic index at the surface.

A small displacement field of the medium, &, has finite normal
component and finite divergence at the boundary. Thus,

(1a)
(1b)

& - n|g=finite,
V - &|s=finite,

where S denotes the boundary and n is a unit vector normal to it.
Furthermore, £ belongs to a vector space H in which the norm and
the inner product are defined as

|EP =] o&* - Edv=finite and positive; EeH, (2a)

1.0),=] on* - {dv=finite and real;s,{c H. (2b)
The integration is over the volume of the fluid and g is non negative.

According to Helmholtz, any continuous and once differ-
entiable vector field is uniquely expressible in terms of a scalar
and a vector potential. Let us apply this theorem to gé:

é=—Vd'+VxA',V-4'=0, 3)
where &’ and A’ are solutions of

V2p'= —V - (), (4a)

V2A'= —V x (€). (4b)
The boundary conditions for ¢’ and A’ are obtained from Egs.
(1). To do this we observe that the potentials ¢’ and A’ in Eq. (3)
are independent variables. For, arbitrarily many ¢& vectors can
be constructed with the same V - (g€) [or V x(g&)] but with
different V x (&) [or V - (¢€)]. In an actual fluid this can be
acheived by arbitrary choices of the initial desplacement and the
initial velocity fields. Therefore, the two components V', and
V x A’ should independently satisfy the boundary conditions of
Egs. (1). Thus, as the distance x from the surface tends to zero,
one obtains
Vo' -n—ox"

(5a)
(VxA) n->x"tt (5b)

A detailed derivation of Egs. (5), when £ is a normal mode of a
fluid, can be found in Sobouti (1977, Sect. V).
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A Transformation of the Helmholtz Theorem

The Helmholtz decomposition of Eq. (3) is not compatible with
the inner product of Egs. (2). We propose the gauge transformation

O'=9b+Y, (62)
A'=4+A4, V- -A4=0. (6b)
With the gauge condition of Eq. (8) below, Eq. (3) becomes

0= —gVd+V x A, @)
VxA—VY—Vod=0. ®)

The boundary conditions on @ and A are obtained similarly to
those on @’ and A’. Thus,

V@ - n—finite,

(FxA) -nox"*1

%a)
(9b)

To achieve the purpose we have to show that Eq. (8) can be solved
for A and ¥. Using Eq. (6a) to eliminate @ from Eq. (8) and taking
the divergence of the resulting equation gives

V2P~V - (0 'WoW)=—V - (0 1V od"). (10a)
Taking the curl of Eq. (8) gives
V2A=—VdxVo. (10b)

The boundary conditions on ¥ and V, as read from Egs. (6), (5),
and (9), are

VY -n—>x" (10c)
(VW xA) nox"t1, (104d)

For brevity, we do not elaborate on the fact that Eqs. (10a) and
(10c) can always be solved for . It is an easy matter to carry out
a spherical harmonic expansion of ¥ and convince oneself that
Eq. (10a) reduces to an ordinary second order diffeential equation
with an appropriate boundary condition deduced from Eq.
(10c). Having obtained ¥ one calculates @ from Eq. (6a) and
substitutes it in Egs. (10b) and (10d) and solves for A. Equation
(10b) is a standard vector Poisson equation.

To facilitate comparision between the decomposition of Eq.
(7) and that of Kaniel and Kovetz, let us note that Eq. (7) was
derived as direct consequence of the Helmholtz theorem and
under much less restrictive conditions. The vector & in this equa-
tion is not required to belong to H.

The Subspaces of H

An immediate conclusion from Eq. (7) is the division of the vector
space H into two orthogonal subspaces: One Hg with elements
{p=—V®, and the other H, with elements {,=0 'V x A. The
inner product of {4 and { 4 is zero:

[ ol Ly=—[ V&* - (V x A)dv=—[®*(V x A) - dS
+[ &*7 - (7 x A)dv=0. (11)

The Helmholtz decomposition of Eq. (3) and consequently that
of Eq. (7) are unique. Therefore, the decomposition H=Hg+ H ,
is also unique.

The subspace H, is, in turn, separable into two orthogonal
subspaces. From Egs. (3) and (6b) the vector potential A4 is diver-
gence free. Two such vectors, of particular relevance to the present
problem, are: (a) A toroidal vector, A4,=V x (fo¥,), where, # is
the unit vector along r, g is introduced for later convenience, and

¥, is an arbitrary function of the coordinates. However, the
boundary condition on ¥,, as imposed by Eq. (9 b), is ¥, —x as
x—0 at the surface. (b) A poloidal vector, 4,=V xV x (f¥,),
where the arbitrary function ¥, should remain finite at the surface
to insure finiteness of the displacements.

The displacement vector generated by A4, is the poloidal
vector {,=¢ 'V x V x (Fo¥,). This will later be identified as the
generator of the g-components of the displacements and the
subscript g is in anticipation of this property. The displacement
generated by A, is the torodial vector {,=g 'V xV x V x (*¥,).
This will be identified with the neutral toroidal displacements of
the fluid. Either by writing out {, and , in their spherical polar
coordinates or by some vector-algebraic manipulations, it can be
easily verified that {, and {, are orthogonal in the sense of Eq. (2b).
This completes the demonstration of the division of H, into two
orthogonal subspaces H, {{,} and H,{(,}.

IIL. A Classification of the Modes of Self-gravitating Fluids

Let g, p, and Q be the density, the pressure, and the gravitational
field of the fluid, respectively. The adiabatic Lagrangian displace-
ments of the fluid, &(r) exp (iwt), satisfy the following equation

wzec=V(6p>—§6eVp—eV(m), (12)

where

do=—V - (), (13a)
_dp op dp]

p=Lso—|(L) L |V -¢, 13b
4 do e [( ag>m, do av - & (13b)

725Q=4nGV - (gf). (13¢)

The adiabatic derivative of p with respect to ¢ is denoted by
(0p/0¢)., and the derivative prevailing in the equilibrium state
is denoted by dp/dg. From Eq. (12) one obtains the following
variational expression for @?

, W

=— 14
o=, (14)
where
S=[ o&* - &dv, (142)

e |(3) -]
W=\ —==6*gdodv+ =) —=F|oV - &V - Eav
Sede Qoo | %) da]® ¢
—Gff 6*e(rdo(r)r—r'|tdvdv'. (14b)

The variational Eq. (14) and its limited use in actual variational
calculations can be found in Chandrasekhar (1964). The sym-
metry of the W-integral, however, was first demonstrated by
Ledoux and Walraven (1958).

In classifying the modes the following theorem will be used:
If two vectors &; and &, exist, such that S(&, +&,)=S(&)+S(&,)
with no coupling term of the form S(&;, &,), and similarly for W,
then the variational Eq. (14) splits into two independent equations,
wiS(E)=W(&,), and wiS(&)=W(&,). There is no coupling
between @, 4,, and 4, terms in the S-integral. See Eq. (11) and
the paragraphs following it. The corresponding density change,
6¢=V - (¢V®), is independent from 4, and A4,. Furthermore
V - €=0 on account of the fact that ¢ depends on r only. Thus,
there is no coupling between @ and 4, or between A, and 4, in the
W-integral. There is a coupling between & and 4, coming from
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the term containing V - & in the W-integral. This, however,
vanishes for a convectively neutral fluid, (dp/0¢).,=dp/do.
Thus, by the theorem quoted above one concludes the following:

(i) There is a class of the neutral [W (£,)=0] modes of the
fluid belonging to H, subspace. This, of course, is a common
knowledge.

(ii) There is a class of the normal modes of the convectively
neutral modes which belong to Hy subspace. These are non-
neutral [W(&,)+ 0] and have to be identified with the non-neutral
p-modes of the fluid.

(iii) There is a class of the normal modes of the neutral fluid
which belong to H, subspace. These are neutral and have to be
identified with the neutral degenerate g-, the only remaining
modes of the fluid. Variational calculations of Sobouti (1976)
and Sobouti and Silverman (1978), which employ {, and {, of
this paper, confirm these identifications, numerically.

In a convectively non-neutral fluid the g-modes are non-
neutral and non-degenerate. For small values of (0p/0g).,—
(dp/dp), however, they reniain uncoupled from the p-modes. The
W-integral for such g-modes is simply the integral containing
V - &in Eq. (14b). Thus,

dp o\ *
we)=([(Z) L] % (%) 0 xan.oxapa,

-

(15)

where (V x A), is the radial component of V x 4. Equation (15) in
a different notation and with a different derivation is given by
Smeyers (1966). An alternative derivation of it based on a per-
turbation technique and more details and numerical results are
given by Sobouti and Silverman (1978).

Many of the physical characteristics of the g- and p-modes
can be most easily deduced from the mathematical properties
disclosed in this section. For example, the original observation

of Cowling (1941), that the density and pressure variations are.

less pronounced in g-modes than in p-modes, becomes simply an
expression of the fact that ¥ - (¥ x 4)=0, and the vector potential
does not contribute to the Eulerian changes in ¢. Or the observa-
tion that the self-gravitation term is less important in g-modes
than in p-modes is similarly explained.

IV. An Expression for the Scalar Potential

Regarding the scalar potential ¢’ there is a confusion in the litera-
ture. To clarify the situation we derive an explicit expression for
@’'. A formal solution of Eq. (4a) is

¥ ()= [ V' (@Dlr—r|"d

+1—_f {V'tp’lr—r’l'l—dS'V’(Ir—r’I'l)} -dS’. 16)
4n g

The first term in the surface integral vanishes by the boundary
condition of Eq. (5a). On the other hand the solution of the
Poisson Eq. (13¢) for 6Q s

1
- Q=4—_f (&) Ir—r'| " dv’

4nG

(7'8Qlr—r' |7 =8QV" (Ir—¥'| ")} -dS". (17)

1
+167r2G£
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This equation should be solved subject to the continuity of 62
and n - VoQ on the surface, which actually leads to vanishing of
the surface integral. The two Egs. (16) and (17) have the same
source function, the volume integral. But the surface integrals are
different, for the boundary conditions on @’ and 6Q are not the
same. Both inside and outside a surface, however, the potential
due to a surface source distribution is a Laplace potential. Thus,
we conclude that

()= —

@)=~ = (6Q+Y), (8)
where

V2 =0. 19)

The boundary value of Y can be obtained as follows. From Egs.
(3) and (18)

1 (6@ o
4nG<6r 6r>+(VXA)"

At the surface R, the left hand side vanishes because of ¢ and
(V x A), vanishes because of Eq. (5b). Thus, one obtains

%W
6rR

0é,= (20)

_00Q
“or

5Q(R)

=+ =R 1)

where the second equality is the boundary condition on the
I-th. harmonic component of 6Q (Ledoux and Walraven 1958,
pp. 513-514). With the boundary value of Eq. (21) the unique
finite solution of the Laplace Eq. (19) is

I+1

e )——c( ) Y70, ¢), r<R (222)

R I+1
=-C (7> Y™ (6, ¢),r>R, (22b)
where C=0Q(R) and an explicit expression for it is given below
Eq. (23).

For the sake of completeness let us also give an expression for
0Q(r) (Cowling, 1941). The surface integral in Eq. (17) is zero.
Expanding |[r—r'|~! in Legendre polynominals and integrating
over the r'-directions gives

8Q(r)=G{r ¢V j So(ryrt*2dr
0

R
+rt [ So(r)r =4 VaAr Y0, ¢), r<R, (23a)
R I+1
=C (7) }’lm(ea ¢)s r>R3 (23b)

where do(r) Y™ is the I-th. harmonic of dg(r) and C=0Q(R)=
R

G [ So(r)r**2dr’/R'**. From Egs. (18), (22), and (23) one may now
)

construct the potential ¢'. As a demonstration of consistency we
observe that: a) Outside the star both @’ and V'@’ are identically
zero. b) On the surface of the star gé— — VP’ —0. The potential
@' itself, however, is discontinuous across the surface. This is
due to the existence of the surface integral in Eq. (16). Aizenman
and Smeyers (1977) do not make the distinction between the
different boundary conditions for @’ and 0Q. As a result they
identify @’ with 69, missing the y-term (see their Eq. 13 and the
comments thereof).
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