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Abstract. We investigate the possibility of the excitation of the

oscillation modes of polytropic stars by gravitational waves.

We decompose the displacement vector field of a normal mode

into its irrotational and solenoidal components and show that

the interaction with the gravitational waves takes place through

the irrotational component. We calculate the absorption cross

section of the waves for different modes and find that the cross

section for p modes are orders of magnitudes larger than the

g modes. In the p sequence the cross section is largest for the

fundamental mode and decreases with increasing mode order.
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1. Introduction

Weber (1968) suggested to consider the Earth as a gravitational

wave detector in the millihertz band. Since then many authors

have elaborated on both theoretical and observational aspects of

the problem(Dyson 1969, Ashby and Dreitlein 1975). In quest

for still lower frequencies in the microhertz regions, Mashhoon

and his collaborators studied the secular changes in the orbital

parameters of binaries and in the Earth-Moon and Earth-Mars

distances (Mashhoon 1979, Mashhoon et al. 1981, Anderson &

Mashhoon 1985).

In this paper we study excitation of the normal modes of a

star by gravitational waves. The behavior of the g and p modes

of oscillation and details of their coupling to gravitational waves

are analyzed. The cross section for resonant absorption of the

wave energy are calculated. Numerical values are given for sev-

eral modes of polytropic models.

2. Normal modes of a star

The formalism below is parallel to that of Beiki and Sobouti

(1990) who studied excitation of the oscillation of a binary

member by its companion. Consider a non rotating spherical

star in hydrostatic equilibrium. Let a mass element at r adiabat-

iclly undergo an infinitesimal lagrangian displacement ξ(r, t)
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from its equilibrium position. Let δρ, δp and δΩ denote the cor-

responding Eulerian changes in the density, ρ, the pressure, p
and the gravitational potential, Ω, respectively. The linearized

Euler’s equation of motion is

−ρξ̈ = ∇(δp) + δρ∇Ω + ρ∇(δΩ) = W ξ , (1)

where

δρ = −∇.(ρξ) = −∇ρ.ξ − ρ∇.ξ , (2)

δp =
dp

dρ
δρ− [(

∂p

∂ρ
)ad −

dp

dρ
]ρ∇.ξ. (3)

∇2(δΩ) = −4πGδρ. (4)

All terms in Eq. (1) are expressed in terms of the vector field

ξ. The second equality in this equation is the definition for the

operator W whose properties will be discussed shortly.

3. The Hilbert space of the displacement field

Let H be a function space whose elements are ξ(r) and in

which the inner product is defined as

(η, ρξ) =

∫

η∗.ρξ d3x = finite, ξ, η ∈ H , (5)

where the integration is over the volume of the star. W on

H is self adjoint, (η,W ξ) = (W η, ξ). There follows the

eigenvalue problem

W ξn = ω2
nρξn, (6)

where ωn is the eigenfrequency of an oscillation mode, ξn is its

eigendisplacement vector, and n is a collection of three indices,

indicating the three wave numbers in, say, (r̂, θ̂, φ̂) directions of

a spherical polar coordinates. Furthermore, {ξn} is an orthogo-

nal set and can be normalized to unity,

(ξn, ρξm) = δnm. (7)

The set {ξn} is also complete and may serve as a basis for H .

See Dixit et al. (1980). Thus, any ξ(r, t) may be expanded in

a unique way in terms of {ξn}. Numerical values of {ωn, ξn}
for hypothetical or actual star models are abundant in the astro-

nomical literature of seventies and eighties.
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4. The g and p components of the displacement field

Using a gauged version of Helmholtz theorem (Sobouti 1981),

one may decompose a general displacement vector into an irro-

tational and a “weighted” solenoidal component. Thus

ξ = ξp + ξg, (8)

where

ξp = −∇χp; with∇× ξp = 0, (8a)

ξg = ρ−1∇×A = ρ−1∇×∇× (r̂χg); with∇.(ρξg) = 0. (8b)

Here r̂ is the unit vector in r direction, and χp(r) and χg(r) are

two scalars. Evidently both components are poloidal and mutu-

ally orthogonal, (ξp, ρξg)=0. Next, we define the dimensionless

parameter ε = (ρ/p)[dp/dρ− (∂p/∂ρ)ad]. Schwarzschild’s cri-

terion for convective neutrality is ε = 0. In such a fluid one

readily sees that W ξp = ω2
pρξp and W ξg = 0. That is, the os-

cillatory motions of the fluid are of purely p-type and are driven

mainly by the compression forces −∇δp. The g-type motions

are neutral, ω2
g = 0. It can also be shown (Sobouti & Silverman

1978) that to the first order of smallness in ε, the p oscillations

retain their pure p nature of Eq. (8a), while the g motions de-

velop into a sequence of new and long period oscillations of the

type of Eq. (8b). The latter are driven by the buoyancy forces,

−δρ∇Ω. For larger values of ε the two types get more and more

coupled. One last remark: If ε > 0, then ω2
g > 0; the fluid is

stable to convective motions and the oscillatory g modes de-

velop. If ε < 0 then ω2
g < 0 and convective motions are set

up. The imaginary frequency, ωg , then indicates the rate of the

exponential growth of the convective motions.

Note added in revision: Toroidal modes of the fluid in

the present scheme have the form ξt = ∇ × ∇ × ∇(r̂χt),

χt(r) =scalar. In the Newtonian models considered in this paper

they are neutral and remain neutral upon exposure to gravita-

tional waves. The referee, however, has informed us of a recent

work of Kokkotas (in press) where he shows that in relativistic

stars they also are excited by gravitational waves.

5. Interaction with gravitational waves

The perturbation of the metric tensor associated with a weak

gravitational wave propagating in the z -direction may be written

as,

hµν(x, t) = <{Aµνe
i(kz−ωt)}, (9)

where ω = ck, and Aµν , in a transverse-traceless gauge, is

Axx = −Ayy = A+, Axy = Ayx = A×, all others zero. (9a)

Here A+ and A× are the amplitudes of the two orthogonal po-

larizations of the wave. We shall assume A× = 0 and the wave-

length much longer than dimensions of the star (i.e. eikz ≈ 1).

The relevant non vanishing components of the Riemann curva-

ture tensor are then

R1
010 = −R2

020 = −
1

2
h11,00 =

1

2
ω2A+(ω)e−iωt. (10)

The geodesics of a mass element at x will deviate from that of the

center of mass at the origin upon exposure to the gravitational

wave. The corresponding acceleration is

d2xi

dt2
= −Ri

0j0x
j . (11)

By Eq. (10), however, this can be written as

ẍ = −
1

2
ω2A+(ω)e−iωt∇V, (12)

where the potential V is

V =
1

2
(x2 − y2) =

√

2π

15
r2[Y2,2(θ, φ) + Y2,−2(θ, φ)]. (12a)

Coming back to the oscillations of the star, we add the New-

tonian force term associated with the acceleration of Eq. (12)

to the right hand side of Eq. (1). To account for attenuation

of the motion within the star we also postulate a friction force

proportional to the velocity, 2γρξ̇, γ=const. Thus,

ρ(ξ̈ + 2γξ̇) + W ξ = −
1

2
ω2ρA+(ω)e−iωt∇V. (13)

This is the equation of a damped wave driven by the external

force of the gravitational radiation. We solve it by expanding

ξ(r, t) in terms of the normal modes (ωn, ξn) of the W operator,

Eq. (6). Thus

ξ(r, t) =
∑

m

cmξm(r)e−iωt. (14)

Substituting Eq. (14) in Eq. (13), multiplying the resulting ex-

pression by ξ∗n(r) and integrating over the volume of the star

gives

cn =
1

2
A+(ω)

ω2

(ω2 − ω2
n) + 2iγω

(ξn, ρ∇V ). (14a)

5.1. Energy absorption

Time dependence of ξ(r, t) and of the gravitational force is pe-

riodic. The time-averaged rate of the energy transfer to the star

becomes

¯dE(ω)

dt
=

1

2
Re

∫

ξ̇∗(r, t) · (−
1

2
ω2ρA+(ω)e−iωt∇V )d3x. (15)

Substituting for ξ̇ from Eq. (14) and simple manipulations

gives

¯dE(ω)

dt
=

1

4

∑

n

γA2
+(ω)ω6

(ω2 − ω2
n)2 + 4γ2ω2

| (ξn, ρ∇V ) |2 . (15a)

We assume that the amplitude A+(ω) remains reasonably con-

stant over the Lorenzian profile. One can then see that the res-

onances occur at ωn + O(γ2) with half-width 2γ + O(γ3) and

maxima (ω4
n/4γ)(1 +O(γ2)). Thus, the total energy absorption,

proportional to the area ω4
n/2 of the line profiles, becomes

(
¯dE

dt
)tot =

1

8

∑

n

A2
+(ωn)ω4

n|(ξn, ρ∇V )|2. (16)
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Table 1. Cross sections for different modes of polytropic indeces 1.5, 2, 2.5

Polytropic Index 1.5 Polytropic Index 2 Polytropic Index 2.5

mode ω2
n

|(ξn, ρ5 V )|2 σn ω2
n

|(ξn, ρ5 V )|2 σn ω2
n

|(ξn, ρ5 V )|2 σn

p5 6.345(+1) 6.3867(-7) 6.365(-5) 6.112(+1) 1.5946(-5) 1.531(-3) 5.979(+1) 1.4613(-4) 1.372(-2)

p4 4.130(+1) 1.0238(-5) 6.641(-4) 4.063(+1) 1.0914(-4) 6.965(-3) 4.068(+1) 5.8340(-4) 3.727(-2)

p3 2.351(+1) 1.8897(-4) 6.978(-3) 2.407(+1) 8.7635(-4) 3.313(-2) 2.512(+1) 2.6647(-3) 1.051(-1)

p2 1.029(+1) 5.2094(-3) 8.420(-2) 1.155(+1) 9.6116(-3) 1.743(-1) 1.314(+1) 1.5576(-2) 3.214(-1)

p1 2.119(0) 4.0377(-1) 1.343(0) 3.113(0) 2.9824(-1) 1.458(0) 4.832(0) 1.9896(-1) 1.510(0)

g1 0 0 0 5.633(-1) 7.4242(-4) 6.569(-4) 1.805(0) 4.3563(-3) 1.235(-2)

g2 0 0 0 2.967(-1) 1.2377(-4) 5.768(-5) 9.904(-1) 8.9175(-4) 1.387(-3)

g3 0 0 0 1.839(-1) 2.4745(-5) 7.148(-6) 6.284(-1) 2.3766(-4) 2.345(-4)

g4 0 0 0 1.254(-1) 6.0549(-6) 1.192(-6) 4.192(-1) 8.0304(-5) 5.287(-5)

g5 0 0 0 8.858(-2) 1.1506(-6) 1.600(-7) 2.646(-1) 2.0701(-5) 8.604(-6)

Frequencies, ω2
n

, are in units of 3.95 × 10−7(M∗/M�)(R�/R∗)3 sec−2.
Cross sections, σn, are in units of G2ρcM∗R∗

2/γc3.

For ρc� = 16 gr/cm3, R� = 6.96 × 1010 cm, M� = 2 × 1033 gr and γ = 1 s−1, this unit is 2.5 × 1010 cm2.

5.2. Absorption cross section

The energy flux of the gravitational waves per unit frequency

interval is

Φ(ω) =
c3

16πG
< ḣ2

xx + ḣ2
yy >time av.=

c3A2
+(ω)ω2

8πG
. (17)

The cross section for the energy transfer from the gravitational

waves to the star is the ratio of ( ¯dE/dt) to 2γΦ(ωn), the total

flux across the resonant profile. Thus

σtot =
π

2

G

γc3

∑

n

ω2
n|(ξn, ρ∇V )|2. (18)

6. The overlap integrals

Using the g and p decomposition of Eq. (8) for ξn gives

(ξn, ρ∇V ) =
∫

ρ(−∇χ∗
n + 1

ρ
∇×A∗

n).∇V d3x

= −
∫

ρ∇χ∗
n.∇V d3x =

∫

χ∗
n∇ρ.∇V d3x (19)

By Eq. (12), V is a spherical harmonic of order 2. Therefore,

only the normal modes belonging to l = 2, m = ±2 will con-

tribute to the overlap integral, that is, χn(r) = χn(r)Y2,±2(θ, φ).
Substituting for χn and V and carrying out integrations over θ,

φ gives

(ξn, ρ∇V ) = 4

√

2π

15

∫

dρ

dr
χn(r)r3dr. (19a)

For numerical calculations the following steps were taken.

1) A Rayleigh-Ritz variational method was employed to

obtain the eigenfrequencies and eigenfunctions for various g and

p modes(Sobouti & Silverman 1978). The method consisted of

expanding the p and g potentials of Eqs. (8) in power series of r,

substituting the resulting ξ’s in Eq. (6) and finding the expansion

coefficients by variational calculations.

2) The information thus obtained was used to extract the

χp potential for each of the p and g modes and to calculate the

overlap integrals of Eq. (19a), and eventually the cross sections

and the energy absorption rates. Numerical values for polytropic

structures are summarized in Table 1.

7. Concluding remarks

The gravitational radiation, being a quadrupole one and deriv-

able from a scalar potential excites only the second order har-

monic modes of the star and that only through the irrotational

component, χn. Therefore, the g-modes with small irrotational

components present much smaller absorption cross sections to

the gravitational radiation than the p modes. In the p sequence

the cross section decreases as the mode order goes up. It is

largest for p1, commonly known as the fundamental mode in

Cowling’s (1941) terminology. See Table 1 for these behaviors.

The analysis following Eq. (9) was carried out for a (+) polarized

radiation. The result for a (×) polarization and, consequently,

for unpolarized radiation will, however, be the same.

Acknowledgements. We would like to thank Professor B. Mashhoon

for helpful discussions and suggestions.

References

Anderson J., Mashhoon B., 1985, ApJ 290, 445

Ashby N., Dreitlen J., 1975, Phys. Rev. D12, 336

Beiki Ardakani A., Sobouti Y., 1990, A&A 227, 71

Cowling T.G., 1941, MNRAS 101,367

Dixit V.V., Sarath B., Sobouti Y., 1980, A&A 89, 259

Dyson F.J., 1969, ApJ 156, 529

Kokkotas K.D., “Pulsating Relativistic Stars”, Proc. of the Les Houches

Summer School, Eds. J.A. Mark and J.P. Lasota, Cambridge Univ.

press, in press (gr-qc/9603024)

Mashhoon B., 1979, ApJ 227, 1019

Mashhoon B., Carr B.J., Hu B.L., 1981, ApJ 246, 569

Sobouti Y., Silverman, J.N., 1978, A&A 62, 365

Sobouti Y., 1981, A&A 100, 319

Weber J., 1968, Phys. Rev. Lett. 21, 395

This article was processed by the author using Springer-Verlag LaTEX

A&A style file L-AA version 3.


