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Summary. In connection with a generalized perturbed
eigenvalue equation (arising, in particular, from the small
oscillations of self-gravitating fluids in perturbed con-
figurations), we have developed a perturbational-
variational Rayleigh-Ritz (PV-RR) expansion scheme
for systematically obtaining the normal modes (eigen-

values and eigenfunctions) in powers of 4; here, 4 is an

external perturbing parameter characterizing the eigen-
value equation. Although carried out within the frame-
work of a Rayleigh-Ritz variational ansatz, the PV-RR
procedure provides more information and insight than
the former by supplementing it with perturbational
considerations. Full details of the PV-RR expansion
procedure are presented in terms of a compact matrix
notation for calculation to arbitrarily high perturbation
orders; the symmetry of the formalism lends itself to
recursive computer programming. The perturbation
(which enters formally through 1) can originate from a
wide:variety of sources in astrophysical contexts, such as
magnetic fields, rotation and/or tidal forces, and non-
adiabaticity of the celestial fluids.

Key words: generalized perturbed eigenvalue equation —
perturbational-variational-Rayleigh-Ritz—normal mo-
des: self-gravitating fluids — stellar interiors

L. Introduction
Consider the generalized perturbed eigenvalue equation
(W —&)*=0; s5=1,2,...,0, (¢Y]

where #” is a linear Hermitian operator, ¢ a density
function positive everywhere in the configuration space
of the system, and &* and &° are respectively the eigenfunc-
tion and eigenvalue of the s'® eigenstate ; throughout, we

Send offprint requests to: Y. Sobouti
*  Contribution No. 1, Biruni Observatory

restrict ourselves to a discrete non-degenerate spectrum
of eigenvalues. Formally, the perturbation enters
through an external perturbing parameter 4 which, in the
present problem, will be taken to be independent of the

_configuration coordinates of the system. In general,

W =W1(a, 1), (22)
0= Q(}*) » g= O-(A') ) (2b9 C)
E=&0), =50, (2d,e)

where the functional dependence of g, o, #” and & on the
configuration coordinates has been omitted.

It will be recognized that Equation (1) is a generali-
zation of the time-independent Schridinger equation in
quantum mechanics. In classical mechanics and in astro-
physics, Equation (1) is obtained from the theory of small
oscillations about positions of stable equilibrium or the
theory of linear departures from positions of unstable or
neutral equilibrium. For a continuous medium, g is the
matter density, #  is a real or complex second-order
integro-differential operator, and ¢ is a symbolic repre-
sentation of the dependence of #° on the density,
pressure (or stress tensor), and their derivatives. Normal
modes of the system are described by the eigendisplace-
ment vectors in real space, &(r)exp[i(e)}/2£], and the
eigenvalues &°. The Hermitian character of #” requires
the &° to be real ; further, for displacements from a stable
equilibrium, the & must be positive corresponding to
periodic oscillations; for linear departures from an
unstable equilibrium, the ¢* must be negative correspond-
ing to exponentially growing displacements; a particu-
larly interesting case where part of the eigenvalue
spectrum vanishes is described in the second paper of this
series (Sobouti and Silverman, 1977), hereinafter Paper
1L

Equation (1), when applied to self-gravitating fluids,
acquires additional and novel features over what one
encounters in the theory of classical small oscillations or
in quantum mechanics. In the presence of gravitation,
convective motions (or convective oscillations, if the fluid
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is inviscid) develop; this gives a bispectral character to
the sequence of eigenfrequencies, the g- and p-
oscillations. From an astrophysical point of view, an
understanding of the problem is essential both in con-
nection with convection in stellar interiors (the g-modes)
and in connection with pulsation (the p-modes).
Vanishing of the g-eigenvalues in adiabatic structures is
the example referred to above which will be dealt with in
great detail in Paper II.

Small oscillations of self-gravitating fluids have been

studied extensively (Ledoux and Pekeris, 1941 ; Cowling,

1942; Ledoux and Walraven, and references cited
therein, 1958; Chandrasekhar, 1964; Chandrasekhar
and Lebovitz, 1964; Hurley et al, 1966; Robe and
Brandt, 1966; Robe, 1968; Andrew, 1967, 1968, 1970;
Sobouti, 1977a,b). Numerous attempts have also been
made to deal with the influence of a perturbing force on
Equation (1) (see for example Ledoux and Simon, 1957;
Clement, 1964a,b; Simon, 1969; Smeyers and Denis,
1971 ; Denis, 1972 ; Goossens, 1972 ; Denis and Smeyers,
1975a,b; Goossens et al., 1976 ; and others). Despite these
studies, however, there is no available procedure for
estimating the effect of a perturbation on the eigenvalues
and, in particular, on the eigenfunctions to any per-
turbation order. For self-gravitating fluids, pertur-
bations may arise from a variety of sources such as
departures from adiabaticity, magnetic forces, and ro-
tation and/or tidal forces, etc.

Usually, Equation (1) cannot be solved exactly even in
the absence of a perturbation. Therefore, approximation
methods are of importance. In this paper, a
perturbational-variational (PV) approach is pursued. In
Sections II and III, some properties of Equation (1) are
reviewed and a Rayleigh-Ritz (RR) ansatz for the
eigendisplacements, &, is introduced. In Sections IV and
V, the PV procedure of Silverman and van Leuven (1967)
is adapted to deal with a RR ansatz to Equation (1); a
concise matrix formulation is developed, and the approp-
riate expressions for the PV-RR expansions of the
eigenvalues, &%, and the eigendisplacement vectors, &, to
arbitrarily high perturbation orders are derived.

In Section VI, the new PV-RR procedure developed
here is discussed, and its relationship to the standard RR
method is analyzed; it is noted that the former method

furnishes additional information by supplementing the.

latter with perturbational considerations. The distinc-
tions among the PV-RR procedure, the original PV
method, and other methods of approximating solutions
to Equation (1) are critically examined. The theoretical
developments of this paper, augmented by the theoretical
and numerical findings of Paper II, indicate that the PV-
RR procedure promises to be a powerful tool for
studying the influence of a perturbation on the normal
modes of self-gravitating fluids. In addition to as-
trophysical problems, the new formalism is immediately
applicable to quantum mechanical calculations of per-
turbed wave functions and energy levels.

II. Some Properties of Equation (1)

Extensive discussions of the variational nature of eigen-
value equations such as Equation (1) exist in the
classical literature. Here, we only summarize the for-
malism in sufficient detail to serve as the point of
departure for development of the PV-RR expansions in
Sections IV and V.

Take the-scalar product of Equation (1) by pre-
multiplication with &* and integrate over the con-
figuration space of the system. Note that in view of the
possibly complex nature of #°, we envisage that the &°
may be complex functions. From the Hermitian property
of #" and the positive-definite character of the density
function p, it follows that

(EWNEY — 6 (ElolEsy =0, (3a)
(ElolE®y =N26,,20, (3b)

where the norm Nj is a finite real positive number. The
notation <...» is the Dirac notation for integration over
the configuration space, e.g.,

(EWNEY = [E*- W Edr, A (3¢)

where dt is the appropriate volume element. In a
variational scheme, it can be shown that the solutions of
Equation (1) render Equation (3a) stationary, i.e., that &°
is stationary in respect to any arbitrary infinitesimal
variations, 6&°, of & in Equation (3a). Conversely, the
requirement that &%, as obtained from Equation (3a), be
stationary with respect to arbitrary variations of &° leads
to Equation (1). [See, for example, Gould (1957) for a
general discussion of the eigenvalue variational pro-
cedure, and Chandrasekhar (1964) for a variational
treatment of small oscillations of self-gravitating fluids.]
Equation (3a) will therefore serve as a variational
expression for calculating &°.

It is clear that the set of the eigendisplacement
vectors, {£°}, form a linear vector space. The inner
product of any two vectors, {? and {?, belonging to this
space is defined as {{?|g|¢?), cf. Equation (3b). In addition
to these properties, it will be assumed that the space
of {£} is complete, and therefore a Hilbert space.
[In connection with linear displacements of spherical
fluid systems, see Eisenfeld (1969) for a proof of com-
pleteness]. Hence, the set {¢*} form a complete orthog-
onal set of vectors spanning this Hilbert space; here,
orthogonality is in the sense of Equation (3b). [See
Gould (1957) for further discussion of these issues.]

The {&°}, however, are usually not known. Let the
{¢;t=1,2,...,00} be another complete set of linearly
independent vectors spanning the Hilbert space of {&°}.
The basis vectors {{'} are prespecified, satisfy the same
boundary conditions as the {&°}, but are selected to be
independent of 4 ; it follows from the A-dependency of #~
and g, cf. Equations (2), that the {{'} can neither be
solutions of Equation (1) nor form an orthonormal set in
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the sense of Equation (3b). Expand &° in terms of the
complete set {{'}:

€‘=ZC‘Z‘5; s=1,2,..., )

where the Z* are linear expansion coefficients; for a
given s, the Z* form a column vector Z*%, Z°=[Z"], t
=1,2,....

In conjunction with Equation (4), define the square
matrices W and S, where

WE=(CWIE ;s ts=1,2,..., (5a)
and
SE=(Clolt>;  ts=1,2,.... (5b)

Note that W and S are Hermitian, and that S is a positive-
definite matrix. Further, let Z be the square matrix of the
expansion coefficients Z** in Equation (4) for all &,
formed by collecting the column vectors Z°,

Z=[Z1=[2]; ts=12,..., (62)
and let E be the diagonal matrix of the eigenvalues, &°,
E=[e]dsmal;  5=1,2,.... (6b)

Substitute Equation (4) in Equation (3a), and require &° to
be stationary with respect to arbitrary variations of the
expansion coefficients, Z*. With the notation of
Equations (5) and (6), one obtains

WZ=SZE. (7a)

Equation (7a) collects, in matrix representation,
Equations (1) for all values of s. We note that due to the
linear homogeneous nature of Equations (7a), each
eigenvector, Z°, is arbitrary to within a complex factor,
ryexp(ia;), where r(>0) and oy are real constants. For
convenience, an eigenvector, Z°, will be normalized so
that the norm, N; of Equation (3b) is unity, thus fixing
" the modulus, r;: The phase constant, a; will be chosen so
that the Z* element of Z* is real ; see Appendix A for the
implications of this choice of phase. It follows that
substitution of Equation (4) in Equation (3b) yields

Z'SZ=1, Z*=real, s=1,2,..., (7b)

where I is the unit matrix. The problem will be recognized
as the familiar one of finding a matrix Z which simul-
taneously diagonalizes W to the eigenvalue matrix E, and
the positive-definite matrix S to the unit matrix I (see, for
example, Goldstein, 1950; Hohn, 1964). In this con-
nection, it should be noted that the basis vectors {{*} can
always be initially orthonormalized in respect to g by,
say, Schmidt orthonormalization (see, for example,
Arfken, 1970) to form a new set of A-dependent basis
vectors; this would eliminate the S-matrix from
Equations (7a) and (7b) at the cost of introducing a more
complicated A-dependency in the resulting transformed
W-matrix. We specifically refrain from orthonormalizing
the {¢'} since the PV-RR procedure developed in Sections

IV and V, which is based on obtaining all matrices as
power series in 4, would be divested of its utter simplicity
and symmetry. Thus, the elements ¢° of E are the roots of
the secular determinant,

|W—eS|=0. (7c) |

Each column, Z°, of the matrix Z is an eigenvector in
Hilbert space corresponding to the eigenvalue &° in
Equation (7a); further, Z°, through Equation (4), specifies
an eigendisplacement vector, £, in configuration space.
At present, Equations (7) are of infinite order, involving
expansions in terms of an infinite complete set, Equation
(4). Subsequently, in Section III, these expansions will be
truncated to finite order and dealt with by the RR
procedure. '

III. The Rayleigh-Ritz (RR) Procedure

For a comprehensive survey of the RR procedure, one
may consult Gould (1957). Briefly, it consists of: a)
finding a set of suitable basis vectors {¢*} resembling the
exact eigendisplacement vector {&°} as closely as pos-
sible; and b) truncating the expansion of &, Equation
(4), to the first n terms. Then, via Equations (5) and (6), the
matrices W, S, Z and E, correspondingly truncate tonx n
matrices : The variational Equations (7) also now reduce
to finite-order equations, where Equations (7a) and (7c)
are solved in the standard RR manner for E and Z, and
normalization of the Z* is imposed through Equation
(7b).

It is well known that the proper choice of the basis set
{¢'} is of paramount importance in obtaining accurate
RR results. Sobouti (1977a,b) has proposed and em-
ployed a rapidly convergent basis set in RR calculations
for the g- and p-modes of self-gravitating fluids, and we
shall also use this set in Paper II; specific details of the
{¢'} are not required here.

Let the RR-approximated quantities be denoted by
an index nindicating the order of approximation, e.g., the
eigenvalues as £%(n). Because of the variational principle
underlying Equations (3a) and (7), inequalities hold
among the various RR-approximation orders of the &’(n).
Thus, order the £°(n) in an ascending sequence over s so
thatel(n) < &%(n) £ ... <&'(n). Iftheset {¢';t=1,2,...,n}
is a subset of {{; ¢t = 1, 2, ..., n+1}, it can be shown
(Hylleraas and Undheim, 1930; MacDonald, 1933) that

eln+)=Ze' )=+ D). Se'(n+1)
Se'm)=e" (n+1). ®)

Expressed verbally, the eigenvalues in the n'® approxima-
tion are separated by the eigenvalues of the (n+1)™
approximation so that no two eigenvalues of one RR-
approximation order fall in the interval of two eigen-
values of the other order; further, any given eigenvalue
in the (n+ 1)® approximation is less than or at worst
equal to the corresponding eigenvalue in the n'* approxi-

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978A%26A....62..355S

FI978ACA - =627 ~3555!

358 J. N. Silverman and Y. Sobouti: Normal Modes of Self-gravitating Fluids: I. PV Procedure

mation. It follows that if {{; t=1,2,...,00} spans the
Hilbert space of {&°; s=1,2,..., 00}, then &%(n) for any s
converges from above to the exact eigenvalue &° as n— oo.

In Equation (4), we have apparently constrained the
RR ansatz by introducing only one variational parame-
ter Z* for each basis vector {* instead of one parameter
for each component of {' in real space. Actually, in the
cases considered, constraints do exist among these com-
ponents (Chandrasekhar, 1964 ; Sobouti, 1977a,b). Even
in the absence of such contraints, however, our RR
formalism is quite general since instead of a single basis
vector §'(E;, &3, £7), we could always introduce three basis
vectors, say, {'((}, 0, 0), {'*1(0,{3,0), £'*%(0,0,()), etc,
where the subindices a, f, y denote any orthogonal triad
of components. This is equivalent to individual variation
of the components of the ansatz.

In the following, we will deal with finite vectors and
matrices in the RR approximation. For brevity, however,
the indices indicating the order of the RR approximation
will be suppressed.

We now call attention to the A-dependency of all
matrices in Equations (7), an immediate consequence of
Equations (2) and (5): This A-dependency is obscured in
the conventional RR procedure described in this Section,
but plays a vital role in the PV-RR procedure developed
in the following Sections IV and V.

IV. The Perturbational-variational Rayleigh-Ritz (PV-
RR) Procedure ' ' '

Let #” and g of Equations (2a) and (2b) have convergent
series expansions in powers of a perturbational parame-
ter A. The goal of the present analysis is to obtain
corresponding A-expansions for the RR-approximated
eigenvalues and eigenvectors. Such an expansion scheme,
which we denote as PV-RR, is a modification of the
original PV procedure of Silverman and van Leuven
(1967); the relationship between the new PV-RR and the
original PV procedures is discussed in Section VI.
Formally, we start with the operator %" and the

density ¢ which we assume may be expanded in the
following convergent series:

0 J
A=Y Nod; dj=(j!)‘1(d—di—) ; L=W,0. (92)

A=0

j=0

ar

The insertion of these A-expansions in Equations (5) gives
the corresponding expansions for the matrices W and S,
j
(d—A) . A=W,S. (9b)

A=0

j=o0
On the basis of Equations (7) and (9), we will assume
that similar convergent A-expansions exist for the mat-
rices E and Z. Thus, we take
j
(ﬂ*-) . B=EZ,  (10)
A=0

B= ) ¥B;; B;=()"" |7z

j=0

and attempt to obtain the E; and Z,, j=0,1,2, ..., from
the given expressions for the W, and S;. Note that the
determination of the W; and S, Equation (9b), is quite a
different matter than the determination of the E;and Z,
Equation (10): The former depends upon the problem at
hand and, thus, lies outside the scope of the present
analysis ; for example, in small oscillations about equilib-
rium states, the W, and S; are determined from a study of
the equilibrium state of the system.

Before secking the expansions of Equations (7), let us
introduce a simplifying compact notation. The A-
expansion of the product of any two matrices, AB, will be
written as

AB= ¥ 7i4B),, A (11)
j=o0

where (4B); denotes the collection of all j**-order terms in
the expansions of AB. Thus,

(4B)o=4,B,, (12a)

(AB),=A,B;+A,B,, (12b)

and in general,

(AB)J= i AkBj—k; j=0’ 1’27'-” (120)
k=0

Similarly, for the product of three matrices, ABC, we will
write

ABC= ¥’ J¥(4BC),, (13)
j=0

where

(ABC)y=A,B,C,, (14a)
(ABC), = A,B,C,+ A4,B,Cy+A,B,C,, (14b)
and in general,

.
ABC),= ¥ 'Y ABC,sey; j=0,1,2... (140

k=0 1=0

Now substitute the A-expansions of Equations (9b)
and (10) in Equations (7a) and (7b), and equate the
coefficients of like powers of 1 in the resulting equations;;
in the notation of Equations (11}+(14), one obtains

(W2);=(SZE);; j=0,1,2,..., (15a)
and
(ZTSZ)J.=I<30].; j=0,1,2,.... (15b)

To cast the problem into a transparent form, we in-
troduce further simplifying notation: Let (WZ)), (SZE);
and (Z'SZ); denote the collection of all j™-order terms
but excluding the terms containing E; and Z; whose
solutions are sought. Thus, for j=1,2,...,

(WZ); = (WZ)j - WOZj P
(SZE);=(SZE),~ SoZ,E;—SyZ,E,,

(16a)
(16b)
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and
(2'8Z),=(Z'SZ),~ Z}SyZ,~ Z!SoZ,. (16¢)

With the latter notation, Equations (15) take the follow-
ing form for j=1,2,...:

WoZ;—SoZ;Ey—SoZE;= —(WZ);+(SZE);, (17a)
and
Z{)SOZJ.+Z}SOZ0 = —(ZfSZ)}. (17b)

The solutions for E, and Z, are obtained from
Equations (15) for j=0; the solutions for the E; and Z;, j
=1,2,..., are derived from Equations (17). The explicit
method is described in detail in Section V following.

V. Explicit PV-RR Solutions for the E; and Z;

A. Zero-order Calculations

For j=0, Equations (15) reduce to
WoZo=80ZoEo,

Z1S,Z,=1.

(18a)
(18b)

Equations (18a) and (18b) have the same structure as
Equations (7a) and (7b). Therefore, as in Equation (7c),
the elements & of E, are the roots of the zero-order
secular determinant,

[ Wy —£4S,]=0. (18¢)

Equations (18) are solved for the matrices E, and Z, by
the standard RR procedure summarized in Section III;
this completes the zero-order calculations.

B. First-order Calculations

Having determined E, and Z,, one turns to the calcu-
lation of the matrices E; and Z,. For j=1, Equations (17)
reduce to

WoZ, —SoZ,Eg—SoZoE, = —W,Zy+8,ZoEy,  (192)
ZSoZ, +Z1SyZo=—Z}S,Z,. (19b)

At this point, an important distinction should be noted
between Equation (18a) for E, and Z,, and Equation
(19a) for E, and Z  : The former are a linear homogeneous
set of equations for the elements of E, and Z, whose
solution requires the use of a secular determinant; the
latter, on the other hand, are a linear inhomogeneous set
for the elements of E; and Z, which can be solved by
standard linear means. Further, this inhomogeneity,
which arises from Equation (17a), persists for all j=1 so
that no secular determinant occurs in the PV-RR pro-
cedure after the lowest-order calculations are completed.

The simplest way to solve Equations (19)is to proceed
as follows: Premultiply Equation (19a) by Z} and reduce

the resulting expression by Equations (18); this yields
EyZ}SoZ, —Z}S,Z,Ey—E,
=—Z\W,Z,+Z}S,Z,E,. (20)

The diagonal elements (pp) of the first two terms on the
left-hand side of Equation (20) are identical and cancel
each other ; therefore, the diagonal elements on the right-
hand side give the matrix E, :

B, =[Z}W,Z,— Z}8, ZoEo] "™ ; (21)

note from Equation (21) thatin addition to E,and Z,, W,
and S, are also required to determine E,.

We now turn to the determination of Z,. For
simplicity of presentation, we confine ourselves in the

-text to the special but widespread case where the

matrices, W, S, and consequently, Z, are real; hence, all
W,, §; and Z; are also real. The general case of complex
matrices is treated in Appendix A. Thus, consider the
non-diagonal elements (pq) of Equation (20):

(e§ —£5)Z8'S 21

= —[ZYW,Z,— Z}S, Z,Eo ], p+q. (22a)

Recall that all matrices are nx n, and that the column
vectors Z% and Z4 have n components; for any fixed g, p
assumes (n—1) values, p=1,2,..., #gq,...,n. Thus,
Equation (22a) is a set of (n—1) linear inhomogeneous
equations for the n unknown elements, Z%, t=1,2,...,n,
of the column vector Z%. We will supplement these (n— 1)
equations with the n'® equation furnished by the normali-
zation condition on Z4, namely, the diagonal element (gq)
of Equation (19b):

Z88S,Z29=—1274S,74. (22b)

Solution of Equations (22) for each value of g, ¢
=1,2,...,n, yields the matrix Z, ; note that as in the case
of E,, the matrices E,, Z,, W, and S, are all required to
determine Z,. One can formulate the above results
succinctly in terms of the matrix Q; defined as

Q5= (b —e8) "' [ZIW1Zo— Z}S, ZoE 17,
P+4q,
oY =—-13245,78.

(23a) -
(23b)

Equations (22) can now be combined into the compact
matrix form,

Z1S,Z,=0;. (24a)

One can immediately invert Equation (24a) to obtain Z,
explicitly by noting from Equation (18b) that Z}S,
=Zy 1. Thus,

Z,=2,0,. (24b)

Equations (21) and (24) uniquely determine E, and
Z,, respectively; this completes the first-order
calculations.
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C. j-order Calculations

The general procedure for deriving all higher-order
matrices E; and Z; is exactly the same as for the first-
order case. The only restriction is that the calculations
must be performed successively, in an order-by-order
manner for j=1, 2, etc., since for a given j, all lower-order
E, and Z,, k<j, must be known; we have already
observed this pattern in the first-order calculations.

In summary, then, premultiply Equation (17a) by Z};
after reduction by Equations (18), one obtains for j
=1,2,...,

E Z}S\Z;—Z}S,ZE,—E;

=— [ZI,(WZ)}—ZI,(SZE);] . (25)
The diagonal elements of Equation (25) give E;:
E,=[ZY(W 2);~ ZYSZEy . 6)

The non-diagonal elements of Equation (25), sup-
plemented with the diagonal elements of Equation (17b),
i.e., the normalization condition on Z, suffice to evaluate
Z;: Thus,

(e§ —8)Z8'SZ]

=—[Z\WZ),—ZY(SZE);J", p=*q, (27a)
Z§S,Zi=—3(Z'SZ)M. (270)
Equations (27) can be condensed into
Z§S0Z;=0;, (282)
or equivalently,
Z;=24Q;, (28b)
where the matrix Q; is defined as

71=(eb —eb) ' [ZH(WZ);— Z{(SZE);]™,
P*4, (292)

Q= —3(Z'sZ)M. (29v)

In deriving Equations (28) for the general Z,, and also
Equations (24) for Z,, we have discarded the equations
arising from the non-diagonal elements of the orthonor-
mality condition, Equation (17b), since they do not
supply additional information independent of that al-
ready contained in the Equation of motion (17a). In
addition, we explicitly demonstrate in Appendix B that
the solution so obtained is indeed compatible with the
discarded equations.

In general, for j=1,2,...,E;
Equation (26) and Z; by Equations (28); it is apparent
from these equations that the calculations of E; and Z;
requires as input all E, and Z,, k<j, and all W, and S, k
<j. After completion of the j*®-order calculations, E and
Z will have been determined through the j'* order, and Z
will satisfy the orthonormality conditions of Equation
(17b) through the same order.

is determined by

Finally, from Equations (4), (6a) and (10), the j*®*-order
eigendisplacement vector, &, is given by

g;'=§;¢z;.s'; j=0,1,2,...; s=1,2,...,n. (30)

This completes the development of the PV-RR
procedure.

VI. Discussion

In this Section, we study various aspects of the PV-RR
formalism derived in Sections IV and V.

From Equations (18) and (26)29), we see that in
general the PV-RR computational procedure falls na-
turally into two phases: 1) initial solution for j=0 of a
matrix-diagonalization problem; and 2) successive so-
lution for j=1,2,..., of a set of linear inhomogeneous
variational equations of the same form. Nevertheless, the
formalism is quite flexible and significant extensions are
possible ; in Paper II, for example, such extensions are
devised to treat the bispectral g- and p-character of the
normal modes of self-gravitating fluids.

We now turn to an analysis of the PV-RR and RR
methods. The RR procedure, based on the variational
principle, remains, of course, a powerful tool to which
one can always turn to compute eigenvalues and eigen-
vectors for any given numerical value, A=4,, of the
external perturbing parameter. One can, however, gain
additional information by supplementing the RR me-
thod with perturbational considerations, as in PV-RR;
in general, this permits the investigation of the functional
dependence of the variational solutions on A. For a
quantum-mechanical example of this approach, one may
consult Silverman and Brigman (1967) who made a
perturbational study of a wide variety of variational
eigenvalue calculations for the Schrodinger equation. In
the PV-RR procedure, via the Taylor expansions of
Equation (10), one can predict the intrinsic behavior of
the solutions of Equations (1) and (7) under the influence
of a perturbation ; further, as a valuable by-product, one
obtains the derivatives of E and Z at 1, Equations (26)
and (28), which are useful per se. The insight gained by
this method of analysis for normal modes is best
demonstrated with specific calculations. Thus, in Paper
11, the PV-RR method is used to study the expansions of
the g- and p-modes of a self-gravitating non-adiabatic
fluid about the adiabatic limit ; several significant results
are derived which are obscured by or inaccessible to the
RR procedure. For example, one finds that the normal
modes of the adiabatic fluid can be obtained from two -
independent eigenvalue problems pertaining to two
positive-definite Hermitian matrices; each of these pro-
blems has a bounded but increasing spectrum of eigen-
values. In the vicinity of the adiabatic limit, the two
eigenvalue problems are coupled in an asymmetric
manner. Despite the complexity of the problem, the

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978A%26A....62..355S

S,

FI978ACA 7 2. 627 .

J. N. Silverman and Y. Sobouti: Normal Modes of Self-gravitating Fluids: I. PV Procedure 361

procedure of this paper, with proper extensions, enables
one to delineate the details of the interconnections
between the two spectra.

It is of interest to examine the relationship between
our PV-RR procedure and the original PV procedure of
Silverman and van Leuven (1967): The latter was de-
veloped to deal with an ansatz of any form to the
eigenfunction, containing either non-linear variational
parameters or a mixture of non-linear and linear parame-
ters; the former, on the other hand, was specifically
adapted to the case where all variational parameters are
the linear RR-coefficients, cf. Equation (4). Due to the
general form of the ansatz considered, the original PV
procedure is more complicated, and although, once
again, from first order onward, all PV variational
equations are linear and inhomogeneous, it becomes
increasingly tedious to generate them, particularly for a
large number of non-linear variational parameters; in
contrast, due to the form of the RR-ansatz, the PV-RR
procedure is far simpler, and can be readily extended to
any A-order for any number of RR-coefficients because
the general PV-RR Equations (26)—29) remain invariant
in structure. In this connection, the compact Q-matrix
formalism, Equations (28) and (29), renders the PV-RR
procedure particularly well suited for recursive com-
puterized calculations. Further, it should be noted that
the PV-RR technique, although more specialized in
respect to variational parameters, is a generalization of
the PV procedure in that it pertains to the more general
Equation (1) rather than the simpler Schrddinger equa-
tion treated in the latter.

A number of other quantum-mechanical approxima-
tion methods, such as Rayleigh-Schrddinger (RS) per-
turbation theory and the variational-perturbational (VP)
procedure (Hylleraas, 1930; Scherr and Knight, 1963),
can be generalized to deal with Equation (1); for a survey
of quantum-mechanical RS theory, one may consult
Hirschfelder et al. (1964). Here, we summarize the main
points of difference between RS and VP theory on one
hand, and PV theory (including both the original PV and
PV-RR methods) on the other: To apply conventional
RS theory, it is normally required that the spectrum of
exact solutions to the zero-order (unperturbed) eigen-
value equation be available; these then serve as a
complete set for the expansion of the exact perturbed
solutions, thus leading to the well known. RS infinite
summations with exact zero-order energy denominators.
Similarly, in the VP approach, at least the zero-order
solution to the lowest state of a given symmetry must be
known exactly or approximated to a very high degree of
accuracy ; one must then solve exactly or again approxi-
mate to a very high degree of accuracy each successive
perturbation order of the eigenvalue equation before one
can proceed to the next perturbation order. In PV theory,
however, there is no requirement that any exact zero-
order solutions be known ; thus, the PV procedure may
be applied to an arbitrary variational solution to the

perturbed eigenvalue equation to generate its A-
expansion about the corresponding zero-order va-
riational solution, whether exact or not. Specifically, in
PV-RR, the higher-order eigenvalues and eigenvectors
are obtained in terms of the optimum zero-order RR
solutions to Equations (18), E, and Z,. In this con-
nection, one notes that Equations (26), (28) and (29) are a
generalization of the conventional RS summations in-
volving energy denominators, yet the present formalism
remains simple and symmetric in structure for all 1-
orders. This simplicity stems from the severe economy of
notation which, in turn, was adopted to retain the
symmetry of the infinite A-expansions of the W- and S-
matrices ; in conventional RS problems, this symmetry is
obscured because the operators and corresponding mat-
rices have truncated A-expansions. Since exact zero-order
solutions are usually not available for Equation (1), the
PV-RR procedure is particularly well qualified for
attacking the problem, and, as is demonstrated in Paper
11, yields results of excellent accuracy coupled with
analytical insight. These significant consequences of the
PV-RR analysis are confirmed mathematically by noting
that the eigenvectors of any RR-approximation, al-
though only approximations to some members of the set
of exact eigenvectors, in their own right span a finite-
dimensional Hilbert space. Therefore, the entire theoreti-
cal foundation of Hilbert space is applicable to RR and
PV-RR expansions, while this cannot be said about the
other approximation methods since they generally em-
ploy exact eigenvectors of the infinite-dimensional
Hilbert space.

An important related advantage of PV theory lies in
the flexibility of choice it offers in the selection of the
perturbation parameter 4. In RS and VP theory, one
must, perforce, select A so that the exact zero-order (A=0)
solutions are known, or can be accurately approximated
without undue labor ; therefore, the choice of A is dictated
by mathematical rather than physical considerations. In
the PV approach, however, since exact zero-order so-
lutions are not required, one is at liberty to define 1 and
select its origin as one pleases; an example of this is
furnished in Paper II, where A is so selected as to measure
the departure of oscillating self-gravitating fluids from
adiabaticity. Further, since the A-origin can be shifted
arbitrarily in the PV approach, one can overcome the
problem of a possible limited radius of convergence by
expanding about different values of 1 =4, thus analyti-
cally continuing the PV-RR expansions over a wide
range of A.

A well known feature of RS theory permits the
calculation of the perturbed eigenvalues to one per-
turbation order higher than the perturbed eigenfun-
ctions; indeed, still greater economy is possible if all A-
expansion terms of the operator are individually
Hermitian as then the eigenvalues can be obtained
through (2j+ 1)** order from a knowledge of the eigen-
functions through j* order. Silverman and van Leuven
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(1967) have shown that similar results also hold in PV
theory. Thus, as is to be anticipated, inspection of
Equation (26) reveals that the expansion of the eigenvec-
tor matrix Z through j®* order suffices to compute the
eigenvalue matrix E through (j+1)® order; further,
Silverman (1978) has obtained for the general case of
Equation (1) the explicit RS and PV-RR expressions for
theej;and &3, , in terms of the & and Z}, k=0, 1, ...,j. In
many applications of RS, VP and PV theory, this
reduction in the required order of the eigenfunction is
essential because often it is a difficult task to obtain the A-
expansion of the eigenfunction while the subsequent
calculation of the A-expansion of the eigenvalue is
routine. In the PV-RR procedure, however, the signific-
ance of this reduction is largely diminished because it is
almost as simple to solve Equations (28) for Z; as it is to

- compute E; with Equation (26); this is another advantage
of the present formalism.

It was noted in Section IV that the determination of
the W, and S, Equation (9b), is a problem beyond the
scope of the present analysis. Some comments, however,
are appropriate. Ideally, the A-expansions of #” and g,
Equation (9a), would be available to any desired order,
thus permitting the direct calculation of the W, and §;
from Equations (5); this is certainly possible in selected

- astrophysical applications, such as for a force-free mag-
netic field, and is normally the case in quantum-
mechanical applications. Nevertheless, should the #7;
and g; not be readily available due to the mathematical
complexities, the W, and S; could, in principle, be
obtained numerically to sufficiently high order; this is
illustrated in Paper II. Further, the order to which these
A-expansions need be carried to obtain sufficient con-
vergence can be reduced by the previously mentioned
technique of shifting the A-origin and expanding about
several selected values of A,

Finally, it is worth noting that although the PV-RR

formalism presented here was developed to study the
astrophysical problem of self-gravitating fluids in per-
turbed configurations, the procedure is immediately
applicable to any perturbed eigenvalue of the form of
Equation (1), including the Schrodinger equation in
quantum mechanics.
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Appendix A: The Complex Q-Matrix

Consider the general case of complex W-, S- and Z-
matrices. We recall that Equation (27a) provides only (n
— 1) relations among the n components of a given column
vector, Z%; this, indeed, is the maximum information
anticipated, since Equation (27a) itself originates from
the linear homogeneous Equations (7a), whose solutions
for each column vector are, in general, arbitrary by a

complex factor, rjexp(ia), cf. comment following
Equation (7a). The modulus, r; has already been fixed by
arbitrarily requiring the norm, N, of the eigenvectors to
be unity, thus entailing Equation (27b) ; in the case of real
variational coefficients, this was sufficient to define a
unique Q;, and consequently, a unique Z;, Equations (29)
and (28), respectively. In the case of complex variational
coefficients, however, Equations (27b) and (29b) specify
only the real parts of Z4'S,Z% and Q%; the imaginary
parts of these quantities are still arbitrary to the extent
that the solutions of Equation (7b) are arbitrary to within
a phase factor, exp(io;). We fixed this phase factor by
arbitrarily requiring Z of Equations (7), and con-
sequently all Z; in its A-expansion, to have real diagonal
elements ; we shall employ this choice below to determine
the imaginary part of the 0%, after the remainder of the
Q,-matrix has been determined. Thus, Equation (27a) and
the diagonal elements of Equation (17b) give,
respectively,

518,28 = (¢4~ )~ [ZK(WZ),

—Z{SZE)]"=0Q%, p=+q, (A1)
Z38,Z8+ 2418, 28 = —(Z'SZ)/. (A2)
The latter equation yields
Re(Z315,Z2%) = — 3(Z1SZ) 1 =Re(Q%). (A3)

The non-diagonal elements and the real part of the
diagonal elements of the Q-matrix are now defined in
Equations (A1) and (A3), respectively, but the imaginary
part of the Q% remains undefined. In analogy with
Equations (A1) and (A3), let, however,

Im(Z%'5,2%=Im(Q%), (A4)
and combine Equations (A1), (A3) and (A4) into
Z}S0Z;=0;, (AS)
whence

Z;=240;. (A6)

Imposition of the condition that the diagonal elements,
Z%, of Equation (A6) be real, leads to

0=Im(Z%)=Z Im(Q%)

+3 Y (@Bop-zer ), (A7)
p+q

from which one finally obtains the desired definition,

Im(Q#)=—3(ZH ™! Z (ZFQF —ZF*Q5); (A8)
p¥q

the right-hand side of Equation (A8) is unambiguously

determined by Equation (Al). This completes the de-

finition of the complex Q-matrix, thus generalizing

Equations (28) and (29) of the text.
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Appendix B: The Non-diagonal Elements of Equation
(17b)

In deriving the first-order PV-RR Equations (22) or (24)
for Z,, and the general PV-RR Equations (27) or (28) for
Z;,j=1,2,...,we have only used the diagonal elements of
the PV-RR orthonormalization condition, Equation
(17b), to supplement Equation (17a), and have discarded
the non-diagonal elements of the former equation, cf.
comment following Equations (29). The legitimacy of this
procedure is obvious because the normalization of any
given set of orthogonal vectors, which is imposed through
the diagonal elements of Equation (17b), in no way
affects the orthogonality of said vectors, which is re-
flected by the vanishing of the non-diagonal elements.
In this Appendix, we directly demonstrate that these
discarded non-diagonal elements of Equation (17b) are,
in fact, implicitly contained in the general Equations (27)
or (28) for Z;: To prove this, first note that the non-
diagonal elements (pq) of Equation (17b) are explicitly

Zg*SOZ‘}. + Zj."fSOZ‘g =— (Z*SZ)}"“ R
p*q, j=12,.... (B1)

Next, add Equation (28a) to its adjoint ; the non-diagonal

elements (pg) of the resulting expression are
Z8SoZ3+ 215,28 = [0, + 01",
p+q, j=12,.., (B2)
where, from Equation (29a),
[Q;+Q]17= (e} —eb) " {ZL[(WZ);— (SZE);]}™
+(e§—eb) " H{[(WZ);—(SZE)]1'Z}™,

p*q, Jj=12,... (B3)
Equation (B3) can now be easily reduced by Equations
(17a) and (18) to
[Q;+Q]1"=(ef —&b) ' [(Z}S,Z;

+Z180Zo)Eg— EZYSoZ; + Z}SeZo)1%,
p*q, j=12,.... (B4)

Finally, via Equations (17b) and (B2), Equation (B4)
reduces to Equation (B1), Q.E.D. Note that the proof is
valid for the general case of complex variational expan-

sion coefficients as it involves only the non-diagonal
elements of the Q,-matrix, which are defined identically
in both the real and complex cases, Equations (29a) and
(Al), respectively.
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Summary. The g-eigenfrequencies of an adiabatic fluid
are identically zero; their growth rate with departure of
the fluid from the adiabatic limit and the subsequent
motions, however, are obtainable from an eigenvalue
equation. The p-modes of the adiabatic fluid are also
solutions of another eigenvalue equation. These two
eigenvalue problems are derived and solved. In a non-
adiabatic fluid, taking the departure of the fluid from
adiabaticity as a perturbation parameter and using a
perturbational-variational Rayleigh-Ritz technique, the
g- and p-modes are expanded about those of the adia-
batic limit mentioned above. The expressions for the
zeroth- and the first-order g- and p-eigenvalues and
eigenvectors, and the second-order g-eigenvalues are
analyzed and computed. With regard to convection, the
information on g-modes should be of particular interest :
In a slightly superadiabatic fluid, the first-order g-
eigenvalues and their corresponding eigenvectors give
the time rate of growth of the convective instabilities and
the patterns of convective motions, respectively.

Key words: generalized perturbed eigenvalue equation —
perturbational-variational Rayleigh-Ritz —  self-
gravitating fluids: normal modes, convection, pulsation
— stellar interiors

1. Introduction

An immediate inference from the Schwarzschild stability
criterion is that adiabatic fluids in gravitational fields are
in neutral convective equilibrium. That, however, neutral
convective motions could exist in the fluid was ma-
thematically confirmed by Lebovitz (1965a, b and 1966).
Sobouti (1977a, b), identifying these motions of the
adiabatic fluid with its neutral g-modes, proposed a
definition and developed a mathematical expression for
the g-modes of self-gravitating fluids. The definition and

Send offprint requests to: J. N. Silverman
*  Contribution No. 2, Biruni Observatory

the appropriate representation for the p-modes then
followed from the requirement that the p-modes should
be orthogonal to the g-modes. In the latter formalism,
adiabatic fluids prove to have a simpler structure of
normal modes than the non-adiabatic media. In fact, an
analytical separation of the space of normal modes of
adiabatic fluids into a g- and a p-subspace becomes
possible.

In the present analysis, we expand the normal modes
of a non-adiabatic fluid about those of an adiabatic
structure. A measure of departure from adiabaticity is
taken as the perturbation parameter and the procedure
of Silverman and Sobouti (1977, henceforth referred to as
Paper I) is employed to obtain a series expansion of the
eigenfrequencies and eigendisplacements. The analysis is
carried out within the framework of Sobouti’s definition
of the g- and p-modes and the identification of the g-
modes with convective oscillations. The latter work
(Sobouti, 1977a) will be referred to as Paper I11. Frequent
references to equations of Papers I and III will be
indicated by the roman numerals I or III, respectively,
before the equation number in question; for example,
Equation (I.7) will mean Equation (7) of Paper 1.

In Section II, the equation of motion and its matrix
representation are introduced. In Section III, the per-
turbation parameter and the expansion of various oper-

“ators and their equivalent matrices are discussed. In

Section IV, the procedure of Paper I is further extended
to incorporate the bispectral g- and p-character of the
normal modes into the formalism. In Section V, the
numerical procedure is analyzed, and in Section VI,
conclusions and numerical results are discussed.

II. Equation of Motion

Adiabatic Lagrangian displacements, &(r) exp(ie*/*t) of a
self-gravitating fluid satisfy the following generalized
eigenvalue equation,

WE=8; s=1,2,..., (1a)
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where while those of Equation (II1.3) depended on the structure
1 of the non-adiabatic fluid ; as a consequence, the use of the

WE=Vop) - E‘sQVp —eV(6Q), (b)  former resultsina slightly different set of matrix elements
(cf. Appendix A) than those of Paper III. On the other

op=—yp¥V-§—¢-Vp, (22)  hand, this restriction of the g-basis vectors to the
do=—gV-E—E-Vp, (2b)  adiabatic fluid renders the matrix elements independent

) ofthe perturbation parameter, which will be taken to be a
V*(6Q)= —4nGde, (2¢)  measure of departure from adiabaticity, and is thus of

and g, p and Q denote the density, the pressure, and the
gravitational potential, respectively.

In the Rayleigh-Ritz approximation and in the
notation of Paper I, the eigendisplacements, &°, will be
expanded in terms of a finite set of basis vectors, {{*;
t=1,2,...,n}. Thus,

€s= thztsv' (3)
t

Equation (la) will be written in its equivalent but

approximate matrix form

WZ=SZE, (42)

with the corresponding orthonormality condition [cf.
Eq. (I.7b)],

Z'SZ=1, (4b)

where the W-, S-, Z- and E-matrices are defined by
Equations (I.5) and (1.6). We note that W and S are real
symmetric and S is also positive definite.

Solutions of Equations (1a) or (4) fall into two distinct
classes of g- and p-modes. It was shown in Paper III that
there exist two sets of basis vectors, {{7} and {{;}, which
together span the Hilbert space of {£°}. In the case of an
adiabatic fluid, {{}} spans the g-subspace and {{}} spans
the p-subspace of the normal modes. The two sets, in the
sense of Equations (I.3b) or (IIL6b), are orthogonal to
each other, and an analytical separation of the g- and p-
modes is possible. To be specific, {{}} consists of those
displacements of the adiabatic fluid which leave the
pressure equilibrium undisturbed; it follows from
Equation (IIL.3) that they satisfy

—7po¥ 85— 85V Po=0, (5a)

where the subscript zero indicates that the function in
question pertains to the adiabatic fluid. A single scalar
function, say -y, is sufficient to specify the vector field
£, The {C;} are those displacements of the fluid which are
orthogonal to {{}}; they satisfy Equation (IIL.7),

&G=re°, (5b)

where ¢’, again a single arbitrary scalar, specifies the
vector field {¢7}. In what follows, the truncated basis
vectors {{;;u=1,2,...,n}and {{};v=1,2,...,n,}, com-
bined together, will be used to expand the eigendisplace-
ments, &, of the non-adiabatic fluid, Equation (3). It
should be noted that the g-vectors of Equation (5a)
depend on the pressure distribution of the adiabatic fluid,

fundamental consequence to the perturbational-
variational procedure of Section III

We now carry out the expansion of Equation (3) in
terms of the g- and p-basis vectors discussed above. From
Equation (IIL.8), this yields

&= D0z + Y07, (62)
&= Y0z + Y07 (6b)

This partitioning of the eigendisplacements, {é“}, and
of the basis-vectors, {{’}, into g- and p-vectors resultsin a
corresponding block-partitioning of all the matrices.
Thus,

{&}={&.%}> (Ta)
=186} u=L..,n;
g’ °p ) (7b)
v=1,...,n,; s=1,..,n; n=n+n,
and [cf. Eqs. (IIL.9)~111.12)]
A= [A“ A”] . A=W,S,Z,E. (Tc)
APH APP

By Equations (1.5), (IIl.11a) and (IIL.12a), the block
elements of W and S are as follows:

WaE=(CWIEY;  ab=g.p, (8a)
S5 =(Cloll>;  ab=g,p. (8b)

Explicit expressions for various elements of W and S are
developed in Appendix A.

III. Perturbational-variational (PV) Expansion

The unperturbed reference structure will be taken to be
the adiabatic fluid, and the quantities pertaining to it will
be indicated by a subscript zero. For the reference fluid,
one has

Olnp,

3Tne, =7, the ratio of specific heats; (9a)

the corresponding derivatives for a non-adiabatic fluid
will naturally be different. The perturbation parameter,
a, [ie., the 1 of Paper I, cf. Egs. (I.2)] will be chosen
as follows:

. Olnp [0lnp,
" dlng/ dlng,

~1. (9b)
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For superadiabatic, adiabatic, and subadiabatic fluids, a
assumes positive, zero, and negative values, respectively ;
the parameter g, a measure of departure of the fluid from
the adiabatic limit, is a Schwarzschild discriminant, and
determines whether or not convection takes place.
Furthermore, it was shown in Paper III that in the
neighborhood of the adiabatic limit, the g-frequencies are
proportional to a'/?, thus becoming stable or unstable
depending on whether a is positive or negative, re-
spectively. For a polytrope of index n, a has a constant
value,

a=1(1+1>—1. ©c)

Y n

Herealfter, the discussion will be confined to polytropes.
Assume that the structural parameters of a non-

adiabatic fluid have the following convergent series

expansions about the adiabatic limit :

g= 3 od; 6=0,0,Vp,V0,2, (10a)
j=0

where
1 (do

O-j_j_!(ﬁ)a=0 ) (IOb)

In general, determination of g;, p;, etc., will require a
study of the equilibrium structure of the fluid. For the
present, assume the expansions of Equation (10a) are
known; insert the latter in Equations (1b) and (8) to
obtain corresponding expansions for the W- and S-
matrices. Thus,
A=) Aq; A=W,,S,, ab=g,p, (11a)
j=0
Equation (11a), via the formalism of Paper I [cf. Egs. (1.9)
and (I.10)], yields the corresponding expansions for the
eigenvalues and eigenvectors,

B= ) Bj@; B=E,Z,;

j=0

a,b=g,p. (11b)
Equations (10) provide a logical point of departure for
the formal development of the PV expansion. In our
numerical procedure, however, a simpler route will be
followed which does not require such a detailed know-
ledge of the equilibrium structure of the fluid. We will
return to this point in Section V.

IV. Determination of E; and Z;

A. The Zero-order Solutions

Equation (I.18a) for Z, and E, is

WoZo=S0Z,E, (12)

where all matrices pertain to the adiabatic (a=0, p=p,,
0=0,) reference fluid. From Equations (I11.20), (II1.15)-
(I11.17) and/or Equations (A6) and (A7), one observes the

following form of the W, and S, matrices:

0| O
W,=
o= o) (132)
S 0
S, = |=04¢
0 [+0 SOpp:l’ (13b)

where W, So,, So,, ar€ real symmetric, and Sy, So,p
are in addition positive definite. Henceforth, most mat-
rices will carry a three-character subscript: The first
character, an arabic numeral, will indicate the per-
turbation order; the second and third characters, the
letters g and p, will indicate the block-specifications of the
matrix. Substitute Equations (13) in Equation (12) and
block-partition the resulting expression:

[ 0 | 0
%ppZOpg | m)wz‘)pp

= [S OyaZ OaaE Og | S OLEZ OapE Op] . (14)
S OppZ 0pqE Og | S OppZ OppE Op

From the gg-, gp- and pg-blocks of Equation (14), one
obtains

E,,=0, (15)
Z04,=0, (16a)
Zypg=0, (16b)
respectively. The pp-block of Equation (14) gives
WopsZ opp =SoppZoppEop- (17a)

Equation (17a) is an eigenvalue equation for Z,,, and
E,,. The eigenvalues are the roots of the secular de-
terminant [cf. Eq. (1.18c)],

(17b)
and the orthonormality condition is [cf. Eq. (I.18b)]
ZI,”SOPPZ(,”:I . (17¢)

Equations (17) give complete information on the zeroth-
order p-modes. For the g-modes, E,, vanishes because of
vanishing W, ; the Z,  remains undetermined at this
stage. We may summarize the results for E, and Z as
follows:

I Wopp—€0pS0ppl =05

0]0
E,= ; i
0 [0 EoJ ; E,p diagonal, (18a)
Z
Zy= [ oz | 0 ] . Z,, undetermined. (18b)
B. The First-order Solution
Equations (I.19) for Z, and E, are
WoZy—SoZ Eg—SoZoEy=—W,Zo+8,Z,E,, (192)
ZYSoZ,+Z180Zy=—Z}8,Z,, (19b)

where, in the present problem, W, and S, are real
symmetric matrices; this property, however, is not re-
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quired in our formalism. Substitute Equations (13) and
(18) in Equations (19) and partition the resulting ex-
pressions. Thus,

—So0gZ0geE 14 | . —SogeZ 140F0p ] [ ~WisZogs | =WigpZoppt s 192 OppEop] , (20a)
i WOPPZ 1pg I VVOPPZ lpp ™~ Sops’ lppE op— S OppZ oprE1p - I/leyz 0Ogg | = WipZ opp T S 1002 0ppE op
and
Z BgaS OgaZ 169+ 4 1 aaS OaaZ Ogg | z qus OggZ 190+ Z IPQSOPPZ Opp ] = [Z I) aS lagz Ogg Z Bays lypZ Opp ] : (20b)
1Z lT)ppS OppZ ipg +Z LWS Oyaz Ogg l z ‘T)ppS OppZ 1pp +Z L’ps OppZ z I),,,,S lng Ogg z z)ppS lppZ Opp
from Appendix B of Paper I, we recall that only the -
diagonal elements of Equation (20b) contain indepen- ~ (121), (1.24b), (I.23b) and (I.23a), one obtains,
dent information to supplement Equation (20a). Let us  respectively:
discuss Equations (20) block-wise: E, =[Z} (W, . Zy —S, Zo E,)]tena! (25a)

i) The gg-block of Equation (20a) gives 0= 200 WiprZops = StarZomFor
Z150=Z0pp@1pp> (25b)

Wi46Z 039 =S 042 0gsF 14- (21a)
E ion (21a) i i 1 ion for Z ith where

quation (21a) is an eigenvalue equation for Z,,, wit diagonal __ _ 1r 7t diagonal
E,, as its corresponding eigenvalues. The latter are the Qirr T ?[ZOPPSIPPZ""'] ’ (25¢)
root of the secular equation =€, —0p) " [Z8,, W1 PPZ opp
Ivvlyg-equOygl =0. (21b) _ZSPPSIPPZOPPEOP]N; r¥s. (25d)
The orthonormality condition is [cf. Eq. (I1.18b)] Equations (21)~25) summarize all the information that

; one may extract from the first-order Equations (20); as
Z0ggS09gZ 0 =1 - (21c) previously anticipated, Z,,, is not determined in this
Thus, the gg-block of Equation (20a) specifies Z,,,, which order, and accordingly, the gg-block of the orthogonality

was undetermined in the zeroth order ; on the other hand,
as we shall see, Z,,, will remain unspecified until the
second-order calculations.

ii) The gp-block of Equation (20a) is

Sos6Z 150E00=Wi3pZ0pp—S14pZ 0ppEop» (22a)

which yields

Z1 00 =S00 W1 35 Z oprEocp —S140Z 0pp] - (22v)
iii) The pg-block of Equation (20a) is _

WoroZ1p6= — WipsZ0gg> (23a)

from which, via Equation (17a), one gets

Z,py=—ZoppEop ZbppW1pZ 0gs - (23b)
iv) The pp-block of Equation (20a) is

WorrZ 10— SopsZ 155E0p —SoppZoprE 15
=—~Wi,0Z0pp+S1ppZoppEop- (24a)

Equation (24a) must be supplemented with the diagonal
elements of the pp-block of the orthonormality Equation
(20b):

[ ZB op SOpp VA ]diagonal —_ %[ Z:() op Slpp ZOpp]éiagonal . (24b)

1pp.

Equations (24) for E,, and Z,,, are identical with
Equations (I.19) and (1.22). Therefore, from Equations

Equation (20b) is not yet employed. The pattern of
emergence of solutions is the following: From the j*-
order perturbation equation, E;, E;, Z;,,, Z;,,and Z;
are determined; Z,, , however, must be determined from
the gg-block of the perturbation equation in the (j+ 1)®
order and the gg-block of the orthonormality relation in
the j® order. This is a consequence of the vanishing of
Wo,, > therefore, to determine E,; and Z, ,,, the second-
order perturbation equations are explored.

C. The Second-order Solutions

From Equations (I.17a), one has

VVOZZ + VV121 - Sozon - SoZoEz - S1Z1Eo - SoZ1E1
=—-W,Z,+S,Z,E,+S,Z,E, ; (26)

only E,, and Z, ,, will be determined from this equation.
The gg-block of Equation (26), after some rearrangement
of terms, yields

W, Zlqg - SOgngyaElg - SOyaZanEZa

1gg
= ~WasZosa™ WigrZ1ps+ S146Z 056E14-

249

(27a)

Equation (27a) must be supplemented with the as yet
unused diagonal gg-elements of Equation (20b), the
orthonormality condition in the first order:

[Z ngs OggZ ]diagonal =- %[Z ngslggz

1pg

]diagonal . (27b)

199 0Ogg

Equations (27), except for the additional known in-

teraction term, W, ,Z, ., on the right side of Equation
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(27a), are the same as Equations (I.17). Following the
procedure of Equations (1.26)+1.29), one gets

E sy =[Z80fWasZ ogg+ WigpZ 159

Ogg
-8 lgyZ OggE 1 y)]diagonal ) (288.)
Z145=Z0ggQ144> (28b)
where
Qci?ggonal — _%[ ZB o S 1eg Zogg]diagonal , (280)
oa=(E1,— 1) [qua_(VVZyeZOgy Wi
—81420gE117;  TES. (28d)

We conclude this Section by a recapitulation of the
salient points: v

a) The p-modes in the zeroth order (i.e., Z,,,and E, )
are determined by the eigenvalue Equations (17).

b) For the g-modes in this order, E, is zero; Z,,, is
obtained from the eigenvalue Equations (21) ; the matrix
entering the latter equation is W,,,, rather than W,
which has vanished identically. Therefore, the eigen-
values corresponding to Z,,, are E, ; these first-order
quantities are the growth rate of the g-eigenvalues with
the non-adiabaticity, a; also, in view of vanishing E,
ak,, is the first non-vanishing term in the g-mode
perturbation expansion. Equations (21) are among the
main findings of this paper and, to the authors’ know-
ledge, have not been previously deduced.

¢) The g- and p-modes are analytically separated in
the zeroth order, ie., Z,,, and Z,,, vanish. This is a
consequence of Sobouti’s definition of the g- and p-
modes (cf. the Propositions 1 and 2 of Paper III); the
definition leads to the two independent basis sets {{}} and
{¢;} of which the former spans the g-subspace and the
latter spans the p-subspace of the normal modes of the
adiabatic fluid.

d) The p-modes in the first order are determined
from Equations (252), (22b) and (25b).

e) For the g-modes in this order, Z,,, and Z, ,, are
solutions of Equations (28b) and (23b), respectively ; the
interaction between the two modes appears in the first
order. The second-order g-eigenvalue, E, , is obtained
from Equation (28a). We stress that the normal-mode
analysis of self-gravitating fluids has been reduced 1) to
solution of two ordinary uncoupled -eigenvalue-
Equations (17) and (21) in the zeroth order; and 2) to
solution of a set of linear inhomogeneous algebraic
equations of the type of Equations (23)~(25) in the higher
orders.

Finally, let us recall that the energy denominator,
which always appears in the calculation of the first- and
higher-order perturbation expansions of eigenvectors, is
embedded in the Q-matrices of Equations (25d) and (28d)
and is also present in Z, , and Z, ,, of Equations (22b)
and (23b), respectively ; indeed,. the latter two equations
can be written in terms of Q-matrices which are simpler in
form due to the vanishing of E,.

V. Numerical Procedure

Recall that in Section III, we regarded the expansions of
o, p, and their derivatives in powers of the non-
adiabaticity parameter a, Equations (10), as the logical
starting point for the subsequent development of the PV
expansions. Despite this possibility, we note that we have
actually only required the perturbation expansions of the
W-and S-matrices in the preceeding analysis. Thus in our
numerical procedure, we have directly obtained the
expansions of the matrices from Equations (A6) and (A7)
of Appendix A: The W- and S-elements given in these
equations were calculated for seven polytropes of indices
no=1.5and ny;=nytidn,i=1,2, 3 (note that the polyt-
rope 1.5 is the adiabatic fluid corresponding to the ratio
of specific heats 5/3). The resulting expressions were then
substituted in the following finite-difference equations to
obtain the desired expansions:

+45(f, — f_)1/604n+ O[(4n)"], (292)

d? 27
(Goz) =T+ £ =5 s+ 12
+135(f, + f_ 1) —245£,1/904n + O[(4n)?],
(29b)

where f is any element of the W- and S-matrices, and the
indices in f indicate the polytropic index at which f is
evaluated. The derivatives with respect to n were then
transformed to those with respect to a by the defining
Equation (9¢) and the Taylor expansions of W and S,
Equations (11a), were constructed.

The polytropic data were generated directly. For
£=<0.3¢,, where £ and &, are the polytropic radius
variable and its surface value, respectively, a Taylor
expansion about the origin was employed ; the expansion
contained six terms. For 0.3¢,<¢< ¢, an extrapolation
formula, containing seven terms, was used. The second
and higher derivatives of the polytropic temperature
were obtained from the Lane-Emden equation and from
successive differentiation of the latter. The numerical
results were compared with the values of the British
Association Tables (1932). In the overlapping region, the
two results agreed up to eight figures, the accuracy of the
aforementioned Tables. After the polytropic tempera-
ture, density, and pressure were obtained, the matrix
elements were integrated by Simpson’s rule.

VI. Conclusions and Numerical Results

Strictly speaking, eigenvalues and eigenvectors are so-
lutions of secular equations, e.g., E,,, Z,,,and E, ;, Z,,,,
of Equations (17) and (21), respectively. As a matter of
convenience, however, in this Section we shall loosely
refer to any j"-order expansion term of these quantities
as the j™-order eigenvalue and eigenvector.
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Tables 1 and 2. The eigenvalues E,,and E,, are displayed in lines marked by one asterisk ; the matrix following this line is the eigenvector matrix, Z,,
which is block diagonal. The eigenvalues E,, and E, , are displayed in lines marked by two asterisks ; the matrix following this line is the first-order
matrix Z,. The g- and p-rows and columns of all matrices are marked on the left of the rows and on the bottom of the columns, respectively. The
eigenvalues are in units of 1.6Gg,,, where g, is the central density of polytrope 1.5, and the eigenvectors are normalized in accordance with Equation
(4b). Computations are in various Rayleigh-Ritz approximations, ranging from 1 to 5 parameters for each of the g- and p-modes. The number of rows
in each matrix indicates the order of the RR-approximation. For the sake of economy, the g5 and ps columns of the fifth RR-computations are
omitted

Table 1.
£ -1 * -0,21086898+0 0.0
g, 0.81680017+0
P, 0.31984365+0
**0,12272025+1 0.0
g, -0.13529341+1
P 0.5189224440  -0.73981981+0
*  -0.92913876-1 -0.21960626+0 0.0 0.99001863+0
g, -0.96216156+0 0.58464593+0
g, 0.47975295+1 0.13057125+1
p. 0.31984365+0 -0.34044656+0
p: 0.19967548+1
**  0,67165501+0 -0.17417056+1 0.0 -0.22133758+1
g, -0.61460956+1 -0,12805894+2 -0.24449338+0
g, —0.29896497+2 0.54304384+2 0.50015491+1
P, 0.46495249+40 0.11688828+1 ~0.73981981+0  0.60018031+0
p; -0.12720490+1 -0.33053942+1 ~0.74132092+1
*  -0.49988364~1 -0.92942062-1 -0.22042874+0 0.0 0.92245095+0  0.28758772+1
g, 0.90432954+0 -0.93967481+0 0.64676472+0 '
g, -0.10324702+2  0.45339609+L 0.60105297+0
3 0.21095926+2  0.54013833+0 0.14696540+1
P, 0.31984365+0 ~0.25546322+0  0.48090868+0
p; 0.85865683+0 -0.61999473+1
B 0.17397381+1  0.91911299+1
**  0,31436610+0 0.58378450+0 -0.21031201+1 0.0 ~0.13231038+1 -0.25854538+1
g1 0.93772023+1  0.49487327+41 -0.95662936+1 0.41733799+0  0.20738074+0
g, =0.36925678+2 -0.15058834+3  0.22495329+2 ~0.33850794+1 ~0.18255809+1
g3-0.88040985+2  0.24732092+43  0.55645361+2 0.17101165+2 ~0.50688830+0
P, 0.20511984+0  0.4235062540 0.12852222+1 -0.73981981+0 -0.86330895-1 -0.97327845+0
Pl 0.46114990+0 -0.46447316+0 =-0.49761318+1 0.32379709+1  0.19142435+2
Py —0.21311461+1 -0.14799224+1  0.28878932+1 ~0.17869215+2 ~0.34759550+2
*  -0.29115717-1 -0.51401766-1 =-0.93102989-1 =-0.22044628+0 0.0 0,92005418+0  0,25469256+1 0,56521990+1

g, -0.74122760+0 0.11210865+1 -0.99790272+0  0.63619948+0
gz 0.14149306+2 -0.14316947+2  0,54893892+1 0,77422918+0
g3 -0.64643230+2 0.38611337+2 -0,32860318+1  0,76723182+0
g, 0.77365287+2 -0.20118493+2  0.40813703+1  0.77011332+0

Py 0,31984365+0 -0.26226459+0  0.29224766+0 0.63813683+0
o>y 0.10951790+1 -0.17707518+1 -0.13940856+2
P 0,71370168+0 ~0.63205420+1 0.46555672+2
Pi 0,10068971+1  0,13271203+2 -0.38573318+2
**  0.13131122+0 0.4533391240  0.51137963+0 -0.21315996+1 0.0 -0,13056715+1  0.48344465-1 -0.27978555+1
g; -0.11143028+2 0.18703712+1  0.66738552+1 ~0.10574491+2 -0.46486591-1  0.63205735<2 0.27297034+0
g, 0.12786061+3 0.12007017+3 -0,17639408+3  0.42602916+2 0,46386600+1  0.14826921+1 -0,19836329+1
g3 =0.25958570+3 -0.83625692+3  0,35087613+3 -0,32166528+2 -0.16146904+2 <~0.12673118+2 0..33697305+0
g4 -0.87531797+2 0.92332730+3 -0.10670700+3  0.95580305+2 0.36680122+2  0,11925040+2 0.32570554+1
Py 0.15054268+0 0.17440518+0  0.37934401+0  0.13128009+1 -0.73981981+0 -0.76066471-1  0.63280306-2 -0.11731975+1
p; -0.38104587+0 0.61589618+0  0.85700102+0 =-0.57162030+1 0.19926224+1 -0.84974770+1 0.36418989+2
P3 0.18543789+1 -0.28738592+1 -0.67647165+1 0.58611533+1 =0.10522621+2  0.74481637+2 —0.14954860+3
P, =0.34248083+1 0.10628607+1 0.49877492+1 -0.28457581+1 ~0.84251221+1 -0.10197817+3 0.14362034+3
*  ~0,32054673-1 -0.51792273-1 -0.93105820-1 -0.22044633+0 0.0 0.92002674+0  0.25206428+1  0,48527158+1

9 -0.11013064+1 0.12694769+1 -0.10063279+1 0.63677804+0
9, 0.23844849+2 -0.17780250+2  0.56777839+1  0,76097031+0
g~ -0.13409272+3 0.60484372+2 -0.44533029+1 0,85138498+0
g3 0.25007094+3 ~0.68710438+2  0.66837732+1  0.57869639+0
g4 -0.13357458+3 0.33922141+2 -0.18597799+1  0,13878688+0

P 0.31984364+0 -~0.26137936+0 0.30996547+0 =-0.34064253+0
p% 0.10588172+1 +-0,28574340+1 0.31316474+1
Pa 0,96041157+0  0.20507956+1 0.17813471+2
Py 0.47778775+0 -0,55027482+1 -0.84256772+2
Pg 0.34566366+0 0.12435059+2  0.72613590+2
**  0,2725435140 0,47645867+0 0,49109588+0 -0,21332180+1 0.0 ~0,13042240+1 0.25698706+0 0.20582605+1
g =0.10071347+2 -0.4£022359+1 0,83382805+1 -0.10059816+2 0.22215345+0  0.17984288+0 ~0,12509431+0
gl  0.36537270+2 0,27101751+3 ~0.21694351+3 0.31863956+2 ~0,16218876+1 +0,27929215+1 -0.54634858+0
gg 0.72325174+3 ~0.18229788+4  0.61944027+3  0,33436640+2 0.24053955+2  0.15043966+2  0,11668020+2
g -0.31207772+4 0,31631345+4 =-0,72296022+3 -0,52385429+2 -0.55540471+2 +0.51006888+2 -0.23909048+2
95 0.26931307+4 -0.15690480+4 0.43946902+3 0.10730341+3 0.67289288+2  0.45284643+2  0.11964626+2
P 0.13694283+0 0.19153941+0 0.35549760+0 0,13191303+1 -0.73981976+0 =-0,99272046-1 -0.12753629-1 0.88021928-2
p% ~0.83897578+0 ~0.70065668-1  0,18365742+1 -0.59789380+1 0.30033675+1 -0.28097996+1 0.16379907+2
P3 0.55569990+1 0.16354171+1 +0,13344007+2 0.76266982+1 -0.17706728+2  0.15990213+2 -0.21201938+3
P, 4 -0.12441001+2 ~0.82764861+1 0.18902171+2 -0.65808955+1 0.75477347+1 0.49457314+2 0.61702779+3
ps 0.68416570+1 0.59043904+1 =0.89700471+1  0.24094162+1 ~0.10735050+2 -0 .10996196+3 ~0.48387703+3
9 93 9 9 Py P, Py Py
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The zeroth-order g-cigenvalues vanish identically,
Equation (15); the zeroth- and the first-order g- and p-
eigenvectors, the zeroth- and the first-order p-
eigenvalues, and the first- and the second-order g-
eigenvalues for the harmonic numbers /=1 and /=2 are
calculated and presented in Tables 1 and 2. The zeroth-

Table 2.
d=2 *  -0.40387258+0  0.3108045140
g, 0.26580849+1
Y 0.63245553+0

*%  0.27138940+1  ~0.72262062+0

order quantities, pertaining to p-modes, reproduce those
of Sobouti (1977a, Table 1). The remaining values are
new and, as previously mentioned, have not been ob-
tained before.

The zeroth-order g-eigenvectors are solutions of the
eigenvalue Equation (21); in this equation, the negative

g1 -0.58092618+1 0.90993720+1

p -0.12342419+1 -0.20794638+1
*  -0.20289962+0 -0.40950434+0 0.29503047+0  0.15726793+1
g, =0.38904719+1  0.20438089+1
9, 0.14719516+2  0,24640345+1
P 0.51178850+0 -0.11145043+1
P, 0.38104326+0  0.34080892+1

**  0.13964927+1 0.63467466+0 —0.60972645+0 -0.18283075+1

g, -0.17211390+2 -0.4979829%+2
g, =0.77165425+2 0.16204347+3 0.42009541+2

0.39177228-1 -0.52777628+0  -0.13685849+1

0.29843523+0 ~0.30094123+1
0.78315649+1

0.31947937+1

P,
p; -0.24966242+1 -0.36381567+1 -0.27449217+1 -0.13848205+2

*  =0.1149311240 -0.20364871+0 -0.41021434+0

g, 0.42621222+1 -0.42961191+1  0.22819367+1
g, =0.36631814+2  0.18165341+2  0.56245199+0
g3 0.61583230+2 -0.56799093+1  0.30417426+1

0.29481442+0  0.14374304+1  0.37669445+1

P, 0.52175439+0 -0.68152944+0  0.18878831+1
by 0.28648951+0  0.22505965+0 -0.13232703+2
Py 0.13424251+0  0.38771514+1  0.15617731+2

*%  0.62787822+40  0.15559223+1  0.25535373+0 -0.60683770+0 -0.63588692+0  -0.21324853+1

9, 0.40830941+2  0.33377153+2 =~0.42580086+2
g? -0.17853323+3  0.73464199+3  0.71001076+2

0.69285010+1  0.36733505+0
~0.12806022+3 —0.50755339+3  0.11100940+3 -0.11863990+2 -0.19886186+2 —0.55524089+1
0.87698766+2  0.42718790+2  -0.27497165+1

0.20714947+1

p; —0.26915241+0 -0.73190010-1 -0.12267863+0  -0.14417759+1  0.36159976+0  -0.48786550+1

P, 0.14186114+1 ~0.14599724+1 =0.72009865+1 ~-0.18272331+1  0.10242784+2
p? -0.43071253+1 -0.12508672+1 0.48557908+1  ~0.15001799+1 ~0.32296715+2  -0.62345043+2

3
*  -0.69328242-1 =-0.12111724+0 ~0.20420278+0 =-0.41021760+0

q, 0.40471627+1  0.59725092+1 ~0.47494536+1  0.22613560+1
gi ~0.57529014+2 -0.59945655+2  0.23638288+2  0.80945152+0
95 0.21402002+3  0.14425899+3 ~0.23158007+2  0.22423912+1
9, -0.22020855+3 —0.80998879+2  0.15622595+2  0.73602490+0

0.29481389+0  0.14310807+1

0.44790021+2

0.33146231+1 0.68766116+1

P, 0.52117318+0 -0.73752502+0 0.91397471+0 0.29397185+1
P, 0.29500850+40  0.1199R364+1  ~0.85236319+0 -0.34937410+2
P, 0.10771621+0  0.65039733+0  -0.18513746+2 0.92245758+2

*%  0.26626026+0 0.10542647+1 0.15021262+1 0.20579654+0 -0.60685721+0 -0.57728776+0

9 0.53131239+2  0.66437058+1  0.53958922+2 -0,48202395+2
9, -0.47753203+3  0.45027504+3 =0.75453642+3  0.18903758+3

P, 0.21759036~1  0.27073438+1

0.31859065+1 ~0.25646507+1
0.34438782+2  Q.17150647+2

0.25327914+2 ~0.66482254+2

0.89622435+0 ~0.22130374+1

0.43188631+0 0.21645204+1
0.11833897+2 ~0.87845081+1

95 0.85241089+3 -0.25111756+4 0.15257102+4 =0.19703612+3 ~0.65450261+2 ~0.79913532+2 -0.51389082+2 ~0.15114769+1

g 0.71605173+2  0.25087141+4 =0.69357020+3  0.24613067+3

0.14311122+3  0.11396273+3
p, 0.65267650-1 —0.31144978+40 -0.31662862+0 0.48391270-1 -0.14518554+1  0,61694786+0

0.39506493+2 0.14088729+2
0.62098683-1 —0.66418443+1

p; 0.10702382+1  0.25820925+1 0.20486999+1 -0.07085543+1 -0.16926818+1  0.33061566+1 ~0.29145580+2 0.10127041+3

Py ~0.47666389+1 ~0.85174926+1 ~0.12015269+2 0.12617375+2 -0.18873748+1 -0.47697162+1

P, 0.71128161+1  0.43768444+1  0.86748427+1 =~0.63341993+1

*  <0.78370533-1 ~0.12278382+0 -0.20424094+0 =0.41021761+0

0.29481389+0  0.14309739+1

0.16479139+3 ~-0.31591669+3

0.29693750+0 -0.25711374+2 -0.18243984+3 0.25793672+3

0.32726943+1 0.58976080+1

g, -0 .66231284+1  0.72069078+1 =-0.48924682+1  0.22628981+1
@  0.10936624+3 0. 83040293+2 0.25998332+2  0.78341378+0
g; +0.51648881+3 0. 26298415+3 -0.34924189+2  0.23755338+1
g, 0.86530894+3 -0.30700098+3 0.37862480+2  0.47860088+0
g5 —0.44276169+3 0. 13988046+3 ~0.13961846+2  0.16436585+0
0.52112456+0 —0.72798226+0 0.10628150+1 ~0.12186658+1
é 0.29606585+0  0.99349192+0  -0.50330727+1 0.17029688+1
P, 0.10226522+0  0.17259454+1 0.53583152+1 0.61525269+2
g: 0.31574519-1  0.74421883+0 —0.19683180+2 -0.18547477+3
B ~0.56652380~2  0.11471259+1 0.26533598+2 0.13403793+3
*x  0,6230442240 0.11747279+1  0.14704932+1 O. 2012416740 ~0.60685775+0 =~0.57529626+0 0.12331192+1 0.31266701+1
o -0.53587498+2 -0.37010243+2  0.71244969+2 -0.45942320+2 0.53401700+1 -0.42129503+0 0.19187377+1 ~0.85441692+0
il 0.18531056+3  0.12755215+4 =-0.10484749+4  0.15556009+3  -0. 26126257+1 -0.10804882+2  ~0.14834077+42 —0.72317138+1
gy  0.21614661+4 ~0.70049111+4  0.30281888+4 ~0.35466087+2 0.12672558+3  0.11187801+3 0.86615070+2 0.60280786+2
g, -—0.85799937+4 0.11383464+5 —0.356335224+4 —0.62022910+2  -0.23257005+3 -0.26090376+3  ~0.22596407+3 -0.97764217+2
9 0.60337083+4 ~0.55998809+4  0.17997848+4 0. 19694682+3 0.24198525+3  0.24134987+3 0.16798867+3 0.41494082+2
0.35059998-1 ~0.22484273+0 =0.49125965+0 0.10695236+0 —0.14571570+1  0.51937636+0 ~0.47108835+0 ~0.44259455+0
g‘ -0. 3312954&1 0.80827762+40  0.58495610+1 ~0.10980291+2 -0.15786080+1 0. 56725863+1  ~0.34835040+1 0.63049346+2
p§ 0.17726953+2  0.1684802240 -0.31525697+2 = 0.19154472+2 ~0.24697937+41 -0.18279978+2  -0.13033108+2 -0. 540252§+3
B, -0.34012621+2 =-0.10497001+2  0.43667112+2 -0. 18072215+2 0.13372209+1  0.74172855+0 0.19223526+3 0.1269931144
p  0.18031650+2 0.82076524+1 ~0. 20100100+2 0.67582085+1  -0.59639278+0 -0.16 33273742  ~0.23837384+3 ~0.86804994+3
5 P, B,

% 9 9% 9 B

3 4
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of the W, ,,-matrix is positive definite; therefore all the
corresponding eigenvalues, E,,, are negative. As the
mode number increases, the increasing sequence of the
negative eigenvalues accumulates at zero; thus, the
spectrum of E, ; closely resembles the energy spectrum of
the hydrogen atom. An inspection of Tables 1 and 2 in
various RR-approximations reveals that the E,, eigen-
values obey the minimum principle; as the approxima-
tion order increases, the eigenvalues approach their exact
limits from above and strictly obey the interleaving rule of
Equation (I.8). Note the rapidity of the variational
convergence of the lower-order g-modes.

The zeroth-order p-eigenvectors are solutions of the
eigenvalue Equation (17a); W ,,, the matrix entering this
equation, is positive definite; therefore all the eigen-
values, E,,, are positive. As the mode order increases,
the increasing sequence of the positive eigenvalues
accumulates at infinity ; the spectrum of E, is thus like
the energy spectrum of a harmonic oscillator. Again one
can see from Tables 1 and 2 that E,, obeys the minimum
principle ; as the RR-approximation order increases, the
p-eigenvalues approach their limits from above and satisfy
the interleaving rule of Equation (L8). Also, note the
rapidity of variational convergence of the lower-order p-
modes.

In a non-adiabatic fluid, where an analytical sepa-
ration of the two modes is not available, such clear-cut
behavior of the eigenvalues, that is, whether or not they
approach the limits monotonically from above, is not
observed: In the adiabatic case, the unambiguous con-
vergence of one mode-type can be examined inde-
pendently of the other; in the non-adiabatic case, how-
ever, the provision for examining such independent
convergence is lost due to the loss of the orthogonality of
the two trial sets, {{ } and {{,}. Nevertheless, even in the
non-adiabatic case, both modes, when combined to-
gether, still satisfy the minimum principle in that a) the
smallest eigenvalie of a given RR-approximation is
smaller than the smallest eigenvalue of the preceeding
approximation, and b) when arranged in an ascending
sequence, the eigenvalues of two successive RR-
approximations interleave in compliance with Equation
(L.8). To demonstrate this behavior, we have compiled
Table 3 from Sobouti’s (1977b) data ; the Table contains
both the g- and p-eigenvalues of polytropes 1 and 2 for
I=2 in three RR-approximations with 6, 7 and 8
variational parameters. The columns of Table 3 are
arranged in such a way that the largest eigenvalue of a
given sequence is at the top. Interleaving of the eigen-
values is evident. It is interesting to note, however, that
in no case do g-eigenvalues interleave p-eigenvalues, and
vice-versa. This last feature is attributable to the fact that
the trial basis sets, {¢,} and {{,}, bear a fair resemblance
to the exact eigenvectors, even in the non-adiabatic case,
and remain a flexible tool for investigating their further
properties (see Paper 111, Section VIII). These comments
should throw some light on the long-standing question of

Table 3. A demonstration of the variational principle as obeyed by
the g- and p-eigenvalues of polytropes 1 and 2 for [=2: a) Lowest
eigenvalue in a given RR-approximation is lower than the lowest
eigenvalue of the preceding approximation; and b) the eigenvalues
in two successive approximations interleave. Data are taken from
Sobouti (1977b)

RR-approximation order

©) ™ ®

Superadiabatic fluid: n=1, I=2

N | 9.402720
Ps 5.053224 2093237 4773653
P2 1.888032 Rl 1.885822
» 03035501 03035303 0.3035496
9a —0.0097782 —00100069
gs 00138273 —00161557 —0.0161594
. ~00278728 002791 00280226
o 0013 —0.0613774 ~00613814

Subadiabatic fluid: n=2, [=2

” 4906920
2750247

Py 2750171 2.183195
1.027481

P, 1.027453 1.013811
0.2730486

P 0.2730481 02730481
0.0495145

g, 0.0495142 0.0494278
0.0261176

92 0.0259738 00260693
0.0154700

. S 0.0153509

o 0.0078844 0.0078387

the variational behavior of the g- and p-modes; see, for
example, Ledoux (1974) and Sobouti (1977a). '
In connection with convection in stellar interiors, E, ,
and Z,,, are of particular importance; from the former,
one deduces the time rate of growth of the convective
instabilities, while from the latter, via Equation (6a), one

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1978A%26A....62..355S

rIO7BAGA T I 62 0 T3555!

Y. Sobouti and J. N. Silverman: Ndrmal Modes of Self-gravitating Fluids: II. PV Expansion of g- and p-Modes 373

obtains the patterns of the convective motions. With
regard to the stability of the fluid against small depar-
tures from equilibrium, following Sobouti (Paper III,
Section IX), let us argue that the fluid will be stable if and
only if all of its normal modes are stable: The p-modes
are always stable; the g-modes will be stable if the
eigenvalues, aE, ;, are all positive. This condition, in view
of the negative values of E, ;, reduces to a being negative,
that is, to the fluid being superadiabatic ; this is, of course,
Schwarzschild’s criterion for convective stability. For
further discussion of this issue, see Equation (II1.26) and
accompanying remarks.

A comment on the notation is appropriate: Because
of the vanishing of the zeroth-order g-eigenvalues, E,,
and E,, bear the same relation to Z,,, and Z,,,
respectively, as E,, and E, , to their respective eigenvec-
tors; this may suggest relabelling E, , and E,, as E,, and
E, ;, respectively, to indicate their parental relation to the
corresponding eigenvectors. We have refrained from
doing this, however, because it would divest the whole
PV formalism of its symmetry by setting up two different
ways of ordering the perturbation terms for the g- and p-
eigenvalues ; this is reflected physically by the necessity of
forming aE,, and a’E,, to evaluate the perturbation
expansions, Equation (11b).

We .conclude this Section by noting that many
features discussed above, e.g., separation of the two types
of modes, their variational behavior in the zeroth order,
and their subsequent interaction in the higher per-
turbation orders, would not have been revealed without a
PV expansion procedure such as we have adopted ; the
facility of computation, developed formally in Paper I,
and extended and utilized in the present paper, is worthy
of attention.
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Appendix A: The Matrix Elements of Equations (6) and
Y]

The W-matrix. After some integrations by parts and the
use of Equation (2b), Equations (8) and (1b) reduce to

s — — [V -L\5ipdo— j%cg- Vp&iody

— [6L0630dv ; (A1)

The p-basis vectors of Equation (5b) are the same as those
of Paper III; therefore, the pp-elements of W- and S-
matrices will remain as in the latter paper. The g-basis
vectors, however, are somewhat different and result in
different expressions for W, and S,,, a=g, p. Substitute

a,b=g,p.

¢ of Equation (5a) in Equations (2a) and (2b) to obtain

dInp/dr

o=V G| gt -1, (82
s <[ dIng/dr
5gQ=QV'Cg W_ ] (A3)

We note that as the fluid tends to the adiabatic limit (i.e.,
as p, @—Po, Qo), 9;p and &,0, and consequently W, W,,
and W, all tend to zero.

Let the basis vectors {{} and {{} have the following
spherical harmonic expansions [cf. Eqgs. (IIL.5) and
(IIL7)]:

e 1 goy 1z 1 oy
2 VXS 30 2 1i+1) r sind 00

a=g,p.
The constraints of Equations (5) enable one to eliminate

one of the two scalars yj, or x; in favor of the other (see
Paper III). Thus,

(A4)

[

=y + °w;, (Ada)

x§'=l(l+1)%. (Adb)

Also note that

pp=—% ‘fgy,m, (AS5a)
-1 ; ;

P-Gy= (o — )Y (ASb)

Substitution of Equations (A2)}{AS) in Equation (Al)
and reductions parallel to those of Paper 111 lead to the
following matrix elements:

s. . Q p’ p’ 'dr
==~ Lo [p po]w Vor
' , Q, Qo T YS
+ j' = wgtpg——— —4nG j' dr, (A6a)
) Qo )
R / ; r
W’ - g p[ ]wg(% X;)r_z
’ Q, QO t s.d T s,
s 1o|L - Ol ano v, (a0
o e 0o r o
and from Equations (ITL.15c),
s ;_® v (S Nis
Wes, =Wy = Lptw, =), —15) 7
R P P
+ § 8 |wwr -0+ -1
Ql s, dr R .
— Ew;wp] r—2—4ﬂ:G E‘.) Y;Ypdr, (A6c)
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where matrix block generated by a g-vector and a p-vector other
R 1y i than the first p-vector. The blocks of the S-matrix have a
Y=— r j Q[ QO} v, +r 1> (A6d) similar interpretation. Correspondingly, the E and Z
r Lo o r matrices assume the following form:
and from Equations (II1.16b) and (IIL.16c), 01 0
" . Ey,= o EE ], E§,=diagonal, (B3a)
Y= Q———r’fg(l+1) P Xt?]r‘“ (Aée) Op
ZII ZIR
. VA Opp |~ Opp (B3b)
The S-matrix. From Equations (7b) and (A4), one obtains opp ™ | 0 ngp
. . R 1 . 1 -
Su=Si=1e [TZ"’Z"’;J“ TES (ATa)  Z1p=[01Z%,], (B3c)
ZI
. VA “iesf (B3d)
==~ 1(l+1)f [_ — 2l ytyzar, (am) 17,
In Equations (B3b) and (B3c), Z§;, and Z],, have,

S8 =S = jg (ATc)

1 1
ZVh+ 0+ l)xpxp dr,

where Equations (A7a) and (A7c) are the same as
Equations (ITI. 17a) and (ITL.17c). This completes de-
termination of the W- and S-matrices.

Appendix B: Special Provision for the Solid-body
Translation of the Fluid

From Section VII of Paper I1I, we recall that the lowest p-
mode for /=1 is a neutral Kelvin mode and represents a
solid-body translation of the fluid ; this mode, denoted by
a superscript I, has the exact solution,

yi=pn=r* I=1. (B1)

This vector has been chosen to be the first member of the
p-basis vectors of Equations (A4b), and being a neutral
mode, renders the first column and first row of the W, -
matrix zero. Thus, W,,,, and consequently E,, become
singular, and Equations (22b) and (23b) will no longer be
adequate to calculate Z,,, and Z, . To obtain these
quantities in this special case, the following direct
analysis of Equations (22a) and (23a) is carried out:
Where applicable, separate the first p-column and/or the
first p-row of any matrix, and in the notation of Equation
(B1), denote them by a superscript I; denote the re-
mainder of the matrix in question by a superscript R. One

obtains
'0 0
pp
VVIgp - (vvlpg)* [0 | lgp] (sz)
S SIR
S ep 0"} (B2c)
o™ S gp{p Sopy Opp
=(s -S—lea (B2d)
lpy lgp = Slpg ’

where WY op R is the matrix block generated from the p-bas1s
vectors other than the first p-vector, and Wf;, is the

respectively, vanished because the solid-body motion of
Equation (B1) is an exact solution of the problem and is
thus orthogonal to the other modes.

a) Determination of Z,,,: Substitute Equations (B2)
and (B3) in Equation (22a) and partition the result; one
gets ’
= W, 258~ (St

Opp

ZIR R ZRR ) Egp (B 4)

SOog lgp 1gp 0pp lap Opp

Since both Sogg and E§, are non-singular, one readily
obtains

lyp_(SOyy) 1[ lznggp(E )—

—St,,ZIR — SR ZER (BS)

Opp 1gp“~ Opp:

This equation, together with Equation (B3c), completes
the solution for Z, ,

b) Determination of Z, ,,: The orthogonality relation
governing Z, ,, and Z, , provides a simple derivation of
the former in terms of the latter. From the pg-block of
Equation (20b), one has

4! OppS OppZ 1pg= — Z 1 ypSOyyZ Ogg -Z OppS lpyz Ogg * (B6)

Reduction of Equation (B6) by Equation (17c) gives
Z 1pg ™= Opp(Z lgpS Ogg +Z BppS 1 py)Z Ogg * (B7)

Alternatively, a direct partitioning of Equation (23a)

could lead to Z, ,, but the above procedure is simpler.

1pg>
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