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Summary. The g-eigenfrequencies of an adiabatic fluid
are identically zero; their growth rate with departure of
the fluid from the adiabatic limit and the subsequent
motions, however, are obtainable from an eigenvalue
equation. The p-modes of the adiabatic fluid are also
solutions of another eigenvalue equation. These two
eigenvalue problems are derived and solved. In a non-
adiabatic fluid, taking the departure of the fluid from
adiabaticity as a perturbation parameter and using a
perturbational-variational Rayleigh-Ritz technique, the
g- and p-modes are expanded about those of the adia-
batic limit mentioned above. The expressions for the
zeroth- and the first-order g- and p-eigenvalues and
eigenvectors, and the second-order g-eigenvalues are
analyzed and computed. With regard to convection, the
information on g-modes should be of particular interest :

In a slightly superadiabatic fluid, the first-order g-
eigenvalues and their corresponding eigenvectors give
the time rate of growth of the convective instabilities and
the patterns of convective motions, respectively.

Key words: generalized perturbed eigenvalue equation —
perturbational-variational Rayleigh-Ritz — self-
gravitating fluids: normal modes, convection, pulsation
— stellar interiors

I. Introduction

An immediate inference from the Schwarzschild stability
criterion is that adiabatic fluids in gravitational fields are
in neutral convective equilibrium. That, however, neutral
convective motions could exist in the fluid was ma-
thematically confirmed by Lebovitz (1965a, b and 1966).
Sobouti (1977a, b), identifying these motions of the
adiabatic fluid with its neutral g-modes, proposed a
definition and developed a mathematical expression for
the g-modes of self-gravitating fluids. The definition and
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the appropriate representation for the p-modes then
followed from the requirement that the p-modes should
be orthogonal to the g-modes. In the latter formalism,
adiabatic fluids prove to have a simpler structure of
normal modes than the non-adiabatic media. In fact, an
analytical separation of the space of normal modes of
adiabatic fluids into a g- and a p-subspace becomes
possible.

In the present analysis, we expand the normal modes
of a non-adiabatic fluid about those of an adiabatic
structure. A measure of departure from adiabaticity is
taken as the perturbation parameter and the procedure
of Silverman and Sobouti (1977, henceforth referred to as
Paper I) is employed to obtain a series expansion of the
eigenfrequencies and eigendisplacements. The analysis is
carried out within the framework of Sobouti’s definition
of the g- and p-modes and the identification of the g-
modes with convective oscillations. The latter work
(Sobouti, 1977a) will be referred to as Paper I11. Frequent
references to equations of Papers I and III will be
indicated by the roman numerals I or III, respectively,
before the equation number in question; for example,
Equation (1.7) will mean Equation (7) of Paper 1

In Section II, the equation of motion and its matrix
representation are introduced. In Section III, the per-

turbation parameter and the expansion of various oper-

ators and their equivalent matrices are discussed. In
Section IV, the procedure of Paper I is further extended
to incorporate the bispectral g- and p-character of the
normal modes into the formalism. In Section V, the
numerical procedure is analyzed, and in Section VI,
conclusions and numerical results are discussed.

II. Equation of Motion

Adiabatic Lagrangian displacements, &(r) exp(ic'/%t) of a
self-gravitating fluid satisfy the following generalized
eigenvalue equation,

WE=08; s=1,2,..., (1a)
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where while those of Equation (II1.3) depended on the structure
1 ofthe non-adiabatic fluid ; as a consequence, the use of the

WE=Vop) - E‘SQVP —e¥(oQ), (Ib)  former resultsina slightly different set of matrix elements
(cf. Appendix A) than those of Paper III. On the other

op=—yp¥V-§—¢-Vp, (22)  pand, this restriction of the g-basis vectors to the
do=—oV-E—E-Vp, (2b)  adiabatic fluid renders the matrix elements independent

, of the perturbation parameter, which will be taken to be a
V*(682)= —4nGde, (2¢)  measure of departure from adiabaticity, and is thus of

and g, p and Q denote the density, the pressure, and the
gravitational potential, respectively.

In the Rayleigh-Ritz approximation and in the
notation of Paper I, the eigendisplacements, &°, will be
expanded in terms of a finite set of basis vectors, {{*;
t=1,2,...,n}. Thus,

€s= thztsv. (3)
t

Equation (la) will be written in its equivalent but

approximate matrix form

WZ=SZE, (4a)

with the corresponding orthonormality condition [cf.
Eq. (I.7b)],

Z'SZ=1, (4b)

where the W-, S-, Z- and E-matrices are defined by
Equations (I.5) and (1.6). We note that W and S are real
symmetric and S is also positive definite.

Solutions of Equations (1a) or (4) fall into two distinct
classes of g- and p-modes. It was shown in Paper III that
there exist two sets of basis vectors, {{7} and {{}}, which
together span the Hilbert space of {£°}. In the case of an
adiabatic fluid, {{}} spans the g-subspace and {{}} spans
the p-subspace of the normal modes. The two sets, in the
sense of Equations (I.3b) or (IIL.6b), are orthogonal to
each other, and an analytical separation of the g- and p-
modes is possible. To be specific, {7} consists of those
displacements of the adiabatic fluid which leave the
pressure equilibrium undisturbed; it follows from
Equation (IIL.3) that they satisfy

—ypoV -8, — 8, Vpo=0, (52)

where the subscript zero indicates that the function in
question pertains to the adiabatic fluid. A single scalar
function, say V-, is sufficient to specify the vector field
L. The {{?} are those displacements of the fluid which are
orthogonal to {{}}; they satisfy Equation (IIL.7),

&H=re’, (5b)

where ¢, again a single arbitrary scalar, specifies the
vector field {¢7}. In what follows, the truncated basis
vectors {7;u=1,2,...,n} and {{};v=1,2,...,n,}, com-
bined together, will be used to expand the eigendisplace-
ments, £, of the non-adiabatic fluid, Equation (3). It
should be noted that the g-vectors of Equation (5a)

depend on the pressure distribution of the adiabatic fluid,

fundamental consequence to the
variational procedure of Section III.

We now carry out the expansion of Equation (3) in
terms of the g- and p-basis vectors discussed above. From
Equation (IIL.8), this yields

perturbational-

&= 020+ Y07, (6a)
&= 2002+ 2002y, (6b)

This partitioning of the eigendisplacements, {CS‘}, and
of the basis-vectors, {¢}, into g- and p-vectors results in a
corresponding block-partitioning of all the matrices.
Thus,

{&y=(&¢, (7a)

Ey={0 0} u=1,...,n;
g’ °p ) (7b)
v=1,...,n,; s=1..,n; n=n+n,
and [cf. Eqs. (II1.9)HI11.12)]
A=[A“ A‘"’]; A=W,S,Z,E. (7c)
APH APP

By Equations (1.5), (IIl.11a) and (IIL.12a), the block
elements of W and S are as follows:

Wis=(GIWIE>;  ab=g,p, (8a)
S5 =(Clolly;  ab=g,p. (8b)

Explicit expressions for various elements of W and S are
developed in Appendix A.

III. Perturbational-variational (PV) Expansion

The unperturbed reference structure will be taken to be
the adiabatic fluid, and the quantities pertaining to it will
be indicated by a subscript zero. For the reference fluid,
one has

Olnp,

3Tne, =7, the ratio of specific heats; (9a)

the corresponding derivatives for a non-adiabatic fluid
will naturally be different. The perturbation parameter,
a, [i.e., the 1 of Paper I, cf. Egs. (I.2)] will be chosen
as follows:

a_alnp 6lnp0_1
" dlng/ dlng,

(©b)
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For superadiabatic, adiabatic, and subadiabatic fluids, a
assumes positive, zero, and negative values, respectively ;
the parameter a, a measure of departure of the fluid from
the adiabatic limit, is a Schwarzschild discriminant, and
determines whether or not convection takes place.
Furthermore, it was shown in Paper III that in the
neighborhood of the adiabatic limit, the g-frequencies are
proportional to a'/?, thus becoming stable or unstable
depending on whether a is positive or negative, re-
spectively. For a polytrope of index n, a has a constant
value,

1 1
== -] -1. 9
a . (1 + n) 9c¢)
Hereafter, the discussion will be confined to polytropes.

Assume that the structural parameters of a non-
adiabatic fluid have the following convergent series
expansions about the adiabatic limit:

o= Z o'Jaj; : oc=p,0,Vp,Vo,Q2, (10a)
j=o0
where
1 (do

In general, determination of g;, p;, etc., will require a
study of the equilibrium structure of the fluid. For the
present, assume the expansions of Equation (10a) are
known; insert the latter in Equations (1b) and (8) to
obtain corresponding expansions for the W- and S-
matrices. Thus,

A=Y Aa; A=W,,S,, ab=g,p, (11a)
j=0

Equation (11a), via the formalism of Paper I [cf. Egs. (1.9)

and (1.10)], yields the corresponding expansions for the

eigenvalues and eigenvectors,

B= .ZOBJaj; B=E,,Z,;

J

a,b=g,p. (11b)
Equations (10) provide a logical point of departure for
the formal development of the PV expansion. In our
numerical procedure, however, a simpler route will be
followed which does not require such a detailed know-
ledge of the equilibrium structure of the fluid. We will
return to this point in Section V.

IV. Determination of E; and Z;

A. The Zero-order Solutions

Equation (I.18a) for Z, and E, is

WoZo=S,ZE, (12)

where all matrices pertain to the adiabatic (a=0, p=p,,
0=0,) reference fluid. From Equations (II1.20), (IT1.15)-
(II1.17) and/or Equations (A6) and (A7), one observes the

following form of the W, and S, matrices:

0] o0
W, =
o= o ) (132)
S 0
S, = |=04g
o= Pt (13b)
where W, So,,, Sop, ar€ real symmetric, and Sy, So,,»

are in addition positive definite. Henceforth, most mat-
rices will carry a three-character subscript: The first
character, an arabic numeral, will indicate the per-
turbation order; the second and third characters, the
letters g and p, will indicate the block-specifications of the
matrix. Substitute Equations (13) in Equation (12) and
block-partition the resulting expression:
[ 0 | 0
WOppZ Opg | %ppzopp
= [SoyaZOaaEO So EZOGPEOPjI. (14)
S Oppz OpqEOg SOppZOppEOp

From the gg-, gp- and pg-blocks of Equation (14), one
obtains

E,,=0, (15)
Z4,,=0, (16a)
Zop=0, (16b)
respectively. The pp-block of Equation (14) gives
WorsZopp =SoppZ oppEop - (172)
Equation (17a) is an eigenvalue equation for Z,,, and

E,,. The eigenvalues are the roots of the secular de-
terminant [cf. Eq. (I1.18¢c)],

(17b)
and the orthonormality condition is [cf. Eq. (I.18b)]
ZI)”SO”ZOPP:I . (17¢)

Equations (17) give complete information on the zeroth-
order p-modes. For the g-modes, E,, vanishes because of
vanishing W, ; the Z,  remains undetermined at this
stage. We may summarize the results for E, and Z, as
follows:

WVOPP —80,80p5 =0,

0|0
E,= ; i
o [0 EoJ ;  E,p diagonal, (18a)
Zo, 0 .
Z,= 5 Zog, undetermined . (18b)
B. The First-order Solution
Equations (I.19) for Z, and E, are
WoZ,—SoZ,Ey—SoZyE,=—W,Z,+S,Z,E,, (19a)
ZYSoZ,+2Z180Zy=—2Z}8,Z,, (19b)

where, in the present problem, W, and S, are real
symmetric matrices; this property, however, is not re-
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quired in our formalism. Substitute Equations (13) and
(18) in Equations (19) and partition the resulting ex-
pressions. Thus,
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= SOggZOggE 1g | . _ SOgyzlipEop ] = [ — WlaaZ 0Ogg | — VVlng oppt s 1ypZ OPPEOP] , (20a)
i WOpPZ 1pg I VVOPPZ ipp ™~ SOppZ 1ppE op SOppZ OppE 1p - VVIMZ 0Ogg | - VVIPPZ opp T Slppz OppE op
and
Z I)gaS OgaZ 1g9 +Z 1 aaSOaaZ Ogg | Z I)ngOggZ 1gp +Z LmS 0ppZ Opp ] - _ [Z ggaS lagZ Ogg l Z I)ayS lypZ Opp ] : (20b)
1Z BPPS OppZ 1pg +Z LWS Oyaz Ogg l z I)ppS OPPZ 1pp +Z IppS OppZ Opp z BWS 1ng Ogg z ;r)pps lppz Opp
from Appendix B of Paper I, we recall that only the .
diagonal elements of Equation (20b) contain indepen- ~ (121), (1.24b), (1.23b) and (I23a), one obtains,
dent information to supplement Equation (20a). Let us  respectively:
discuss Equations (20) block-wise: E, =[Z} (W, Zo —S, Z, E,)]in! (25a)
i) The gg-block of Equation (20a) gives 10= 20 WipZopo = S15Z 0pobor
Z1pp=Z0ppQ21pp> (25b)

Wi46Z 039 =S0gZ0gsE 14- (21a) where
Equation (21a) is an eigenvalue equation for Z,,, with diagonal _ _ 117t diagonal
E,, as its corresponding eigenvalues. The latter are the Qipy T _Z[Z°PPS1PPZ°“’] ’ (25¢)
root of the secular equation =€, — €0, " [Z,,W; wZopp
W46 814506 =0- (21b) -Z I)ppS 1pploppEopl™;  TFS. (25d)
The orthonormality condition is [cf. Eq. (1.18b)] Equations (21)«25) summarize all the information that

' one may extract from the first-order Equations (20); as
Z6468066Z 099 =1 - (21c) previously anticipated, Z,,, is not determined in this
Thus, the gg-block of Equation (20a) specifies Z,,, which order, and accordingly, the gg-block of the orthogonality

was undetermined in the zeroth order ; on the other hand,
as we shall see, Z, , will remain unspecified until the
second-order calculations.

ii) The gp-block of Equation (20a) is

Sos6Z 150E0p=Wi3pZ0pp—S14pZ 0ppEop > (22a)
which yields
Z150=S03lWiarZoprEor ~S1arZopp]- (22b)
iii) The pg-block of Equation (20a) is ‘
WornZ 1pg=—Wip5Z0gg (23a)
from which, via Equation (17a), one gets
Z106=~ZopEop Zb,pW1psZ 0ge - (23b)
iv) The pp-block of Equation (20a) is
WorrZ 150~ SoppZ 155E0p = SoppZ oppE 1
= ~WipsZopp+ 1502 0ppEop- (242)

Equation (24a) must be supplemented with the diagonal
elements of the pp-block of the orthonormality Equation
(20b):

[ ZI) op SOpp VA ]diagonal = %[ ZB o7 Slpp Zopp]fiiagonal . (2 4b)

1pp.

Equations (24) for E,, and Z,,, are identical with
Equations (I.19) and (1.22). Therefore, from Equations

Equation (20b) is not yet employed. The pattern of
emergence of solutions is the following: From the j-
order perturbation equation, E;, E;, Z;,,, Z;,,and Z;
are determined ; Z o however, must be determined from
the gg-block of the perturbation equation in the (j+ 1)
order and the gg-block of the orthonormality relation in
the j™ order. This is a consequence of the vanishing of
W, therefore, to determine E,; and Z, ,,, the second-

order perturbation equations are explored.

C. The Second-order Solutions

From Equations (I.17a), one has

WoZ,+W\Zy —SoZ,Eg—SoZoE; —S,Z,Ey—SoZ,E,
=—W,Z,+S,Z,Ey+S,Z,E, ; (26)

only E,, and Z, ,, will be determined from this equation.
The gg-block of Equation (26), after some rearrangement
of terms, yields

WiZiyo—S0,4Z

199”199 Ogg

=—WyZ

lyaE 197 SOyaZ
-m ng

E,,
ZoggE14- (27a)

Equation (27a) must be supplemented with the as yet
unused diagonal gg-elements of Equation (20b), the
orthonormality condition in the first order:

[Z? SOggZ ]diagonal= _ %[ZBWS Zogg]diasonal'

0Ogg

Ogg

+S

0gg 1pg 1gg

(27b)

Equations (27), except for the additional known in-
teraction term, W, ,Z, ,,, on the right side of Equation

1g9 1gg

1pg>
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(27a), are the same as Equations (I.17). Following the
procedure of Equations (I1.26)1.29), one gets

Ey= [z} (WZMZOgy +WigpZipg

Ogg
=S lggZ OggE 1 y)]dwgonal s (283)
Z145=Z03gQ 144> (28b)
where
Q?:ggonal —_ _%': ZB o6 S 1eg Zogg]diagonal , (280)
Tos=E1g—21,) [ZI)qa_(VVZyeZOgy + WigpZ 15
- SlngOggEl g)] "5 rEs. (284d)

We conclude this Section by a recapitulation of the
salient points: v

a) The p-modes in the zeroth order (i.e., Z,,,and E, )
are determined by the eigenvalue Equations (17).

b) For the g-modes in this order, E, is zero; Z,, is
obtained from the eigenvalue Equations (21) ; the matrix
entering the latter equation is W,,,, rather than W,
which has vanished identically. Therefore, the eigen-
values corresponding to Z,,, are E ; these first-order
quantities are the growth rate of the g-eigenvalues with
the non-adiabaticity, a; also, in view of vanishing E,
ak,, is the first non-vanishing term in the g-mode
perturbation expansion. Equations (21) are among the
main findings of this paper and, to the authors’ know-
ledge, have not been previously deduced.

c) The g- and p-modes are analytically separated in
the zeroth order, ie., Z,,, and Z,,, vanish. This is a
consequence of Sobouti’s definition of the g- and p-
modes (cf. the Propositions 1 and 2 of Paper III); the
definition leads to the two independent basis sets {{;} and
{¢;} of which the former spans the g-subspace and the
latter spans the p-subspace of the normal modes of the
adiabatic fluid.

d) The p-modes in the first order are determined
from Equations (25a), (22b) and (25b).

e) For the g-modes in this order, Z,,, and Z, ,, are
solutions of Equations (28b) and (23b), respectively; the
interaction between the two modes appears in the first
order. The second-order g-eigenvalue, E, , is obtained
from Equation (28a). We stress that the normal-mode
analysis of self-gravitating fluids has been reduced 1) to
solution of two ordinary uncoupled eigenvalue-
Equations (17) and (21) in the zeroth order; and 2) to
solution of a set of linear inhomogeneous algebraic
equations of the type of Equations (23)~+25) in the higher
orders.

Finally, let us recall that the energy denominator,
which always appears in the calculation of the first- and
higher-order perturbation expansions of eigenvectors, is
embedded in the Q-matrices of Equations (25d) and (28d)
and is also present in Z, , and Z, ,, of Equations (22b)
and (23b), respectively ; indeed,. the latter two equations
can be written in terms of Q-matrices which are simpler in
form due to the vanishing of E,,.

V. Numerical Procedure

Recall that in Section III, we regarded the expansions of
9, p, and their derivatives in powers of the non-
adiabaticity parameter a, Equations (10), as the logical
starting point for the subsequent development of the PV
expansions. Despite this possibility, we note that we have
actually only required the perturbation expansions of the
W-and S-matrices in the preceeding analysis. Thus in our
numerical procedure, we have directly obtained the
expansions of the matrices from Equations (A6) and (A7)
of Appendix A: The W- and S-elements given in these
equations were calculated for seven polytropes of indices
no=1.5and n,;=ny+idn,i=1,2, 3 (note that the polyt-
rope 1.5 is the adiabatic fluid corresponding to the ratio
of specific heats 5/3). The resulting expressions were then
substituted in the following finite-difference equations to
obtain the desired expansions:

(%) [y o=~ f-)

no

+45(f, — f_1)1/604n+ O[(4n)"], (29a)
d? 27
(d_”];)no=[(fs +f_3)— 3‘(fz+f—2)

+135(f, + f_ ) —245£,1/904n+ O[(4n)®],

(29b)
where f is any element of the W- and S-matrices, and the
indices in f indicate the polytropic index at which f is
evaluated. The derivatives with respect to n were then
transformed to those with respect to a by the defining
Equation (9¢) and the Taylor expansions of W and S,
Equations (11a), were constructed.

The polytropic data were generated directly. For
£=<0.3¢,, where £ and &, are the polytropic radius
variable and its surface value, respectively, a Taylor
expansion about the origin was employed ; the expansion
contained six terms. For 0.3¢, <& <&, an extrapolation
formula, containing seven terms, was used. The second
and higher derivatives of the polytropic temperature
were obtained from the Lane-Emden equation and from
successive differentiation of the latter. The numerical
results were compared with the values of the British
Association Tables (1932). In the overlapping region, the
two results agreed up to eight figures, the accuracy of the
aforementioned Tables. After the polytropic tempera-
ture, density, and pressure were obtained, the matrix
elements were integrated by Simpson’s rule.

VI. Conclusions and Numerical Results

Strictly speaking, eigenvalues and eigenvectors are so-
lutions of secular equations, e.g., E,, Zo,, and E, ;, Z,,,,
of Equations (17) and (21), respectively. As a matter of
convenience, however, in this Section we shall loosely
refer to any j®-order expansion term of these quantities
as the j®-order eigenvalue and eigenvector.
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Tables 1 and 2. The eigenvalues E,,and E,, are displayed in lines marked by one asterisk ; the matrix following this line is the eigenvector matrix, Z,,
which is block diagonal. The eigenvalues E,, and E, , are displayed in lines marked by two asterisks ; the matrix following this line is the first-order
matrix Z,. The g- and p-rows and columns of all matrices are marked on the left of the rows and on the bottom of the columns, respectively. The
eigenvalues are in units of 1.6Gg,,, where g, is the central density of polytrope 1.5, and the eigenvectors are normalized in accordance with Equation
(4b). Computations are in various Rayleigh-Ritz approximations, ranging from 1 to 5 parameters for each of the g- and p-modes. The number of rows
in each matrix indicates the order of the RR-approximation. For the sake of economy, the g5 and ps columns of the fifth RR-computations are
omitted

Table 1.
£-1 * -0,21086898+0 0.0
g, 0.81680017+
P, 0.31984365+0
**0,12272025+1 0.0
g, -0.13529341+1
P 0.5189224440  -0.73981981+0
*  -0.92913876-1 -0.21960626+0 0.0 0.99001863+0
g, -0.96216156+0 0.58464593+0
g, 0.47975295+1 0.13057125+1
p. 0.31984365+0 -0.34044656+0
p: 0.19967548+1
**  0,67165501+0 -0.17417056+1 0.0 -0.22133758+1
g, -0.61460956+1 -0,12805894+2 -0.24449338+0
g, —0.29896497+2 0.54304384+2 0.50015491+1
P, 0.46495249+40 0.11688828+1 ~0.73981981+0  0.60018031+0
p; -0.12720490+1 -0.33053942+1 ~0.74132092+1
*  -0.49988364~1 -0.92942062-1 -0.22042874+0 0.0 0.92245095+0  0.28758772+1
g, 0.90432954+0 -0.93967481+0 0.64676472+0 '
g, -0.10324702+2  0.45339609+L 0.60105297+0
3 0.21095926+2  0.54013833+0 0.14696540+1
P, 0.31984365+0 ~0.25546322+0  0.48090868+0
p; 0.85865683+0 -0.61999473+1
B 0.17397381+1  0.91911299+1
**  0,31436610+0 0.58378450+0 -0.21031201+1 0.0 ~0.13231038+1 -0.25854538+1
gy 0.93772023+1  0.49487327+41 -0.95662936+1 0.41733799+0  0.20738074+0
g, =0.36925678+2 -0.15058834+3  0.22495329+2 ~0.33850794+1 ~0.18255809+1
g3-0.88040985+2  0.24732092+43  0.55645361+2 0.17101165+2 ~0.50688830+0
P, 0.20511984+0  0.4235062540 0.12852222+1 -0.73981981+0 -0.86330895-1 -0.97327845+0
Pl 0.46114990+0 -0.46447316+0 =-0.49761318+1 0.32379709+1  0.19142435+2
Py —0.21311461+1 -0.14799224+1  0.28878932+1 ~0.17869215+2 ~0.34759550+2
*  -0.29115717-1 -0.51401766-1 =-0.93102989-1 =-0.22044628+0 0.0 0,92005418+0  0,25469256+1 0,56521990+1

g, -0.74122760+0 0.11210865+1 -0.99790272+0  0.63619948+0
gz 0.14149306+2 -0.14316947+2  0,54893892+1 0,77422918+0
g3 -0.64643230+2 0.38611337+2 -0,32860318+1  0,76723182+0
g, 0.77365287+2 -0.20118493+2  0.40813703+1  0.77011332+0

Py 0,31984365+0 -0,26226459+0  0.292247664+0 0,63813683+0
o>y 0.10951790+1 -0.17707518+1 -0.13940856+2
P 0.71370168+0 ~0.63205420+1 0.46555672+2
Pi 0,10068971+1  0,13271203+2 -0.38573318+2
** 0.13131122+0 0.4533391240 0.51137963+0 -0.21315996+1 0.0 -0,13056715+1  0,48344465-1 -0.27978555+1
g, -0.11143028+2 0.18703712+1  0.66738552+1 -~0.10574491+2 -0.46486591-1  0.63205735<2 0.27297034+0
g, 0.12786061+3 0.12007017+3 -0,17639408+3 0,42602916+2 0,46386600+1  0.14826921+1 -0,19836329+1
g3 =-0.25958570+3 -0.83625692+3  0,35087613+3 -0.32166528+2 -0.16146904+2 <~0.12673118+2 0..33697305+0
g4 -0.87531797+2 0.92332730+3 -0.10670700+3  0.95580305+2 0.36680122+2  0,11925040+2 0.32570554+1
Py 0.15054268+0 0.17440518+0  0.37934401+0  0.13128009+1  -0.73981981+0 -0.76066471-1  0.63280306-2 -0.11731975+1
p; -0.38104587+0 0.61589618+0  0.85700102+0 =-0.57162030+1 0.19926224+1 -0.84974770+1 0.36418989+2
P; 0.18543789+1 -0.28738592+1 -0.67647165+1 0.58611533+1 -0.10522621+2  0.74481637+2 —0.14954860+3
P, =0.34248083+1 0.10628607+1 0.49877492+1 -0.28457581+1 ~0.84251221+1 -0.10197817+3 0.14362034+3
*  ~0,32054673-1 -0.51792273-1 -0.93105820-1 -0.22044633+0 0.0 0.92002674+0  0.25206428+1  0,48527158+1

9 -0.11013064+1 0.12694769+1 -0.10063279+1 0.63677804+0
9, 0.23844849+2 -0.17780250+2  0.56777839+1  0,76097031+0
g~ -0.13409272+3 0.60484372+2 -0,44533029+1 0,85138498+0
g3 0.25007094+3 ~0.68710438+2  0.66837732+1  0.57869639+0
g -0.13357458+3 0,33922141+2 -0.18597799+1  0,13878688+0

P 0.31984364+0 -~0.26137936+0 0.30996547+0 -0.34064253+0
p% 0.10588172+1 +0,28574340+1 0.31316474+1
Pa 0,96041157+0  0.20507956+1 0.17813471+2
Py 0.47778775+0 -0,55027482+1 -0,84256772+2
Pg 0.34566366+0 0.12435059+2  0.72613590+2
**  0,2725435140 0,47645867+0 0,49109588+0 -0,21332180+1 0.0 ~0,13042240+1 0.25698706+0 0.20582605+1
g =0.10071347+2 ~0.4£022359+1 0,83382805+1 -0.10059816+2 0.22215345+0  0.17984288+0 ~0,12509431+0
gl  0.36537270+2 0,27101751+3 ~0.21694351+3 0.31863956+2 ~0,16218876+1 +0,27929215+1 -0.54634858+0
gg 0.72325174+3 ~0,18229788+4  0.61944027+3  0,33436640+2 0.24053955+2  0.15043966+2  0,11668020+2
g -0.31207772+4 0,31631345+4 =-0,72296022+3 ~0,52385429+2 -0.55540471+2 +0.51006888+2 -0.23909048+2
95 0.26931307+4 -0.15690480+4 0.43946902+3 0,10730341+3 0,67289288+2  0.45284643+2  0.11964626+2
P 0.13694283+0 0.19153941+0 0.35549760+0 0,13191303+1 -0.73981976+0 -0,99272046-1 -0.12753629-1 0.88021928-2
p% -0.83897578+0 ~0.70065668-1  0,18365742+1 -0.59789380+1 0.30033675+1 -0.28097996+1 0.16379907+2
P3 0.55569990+1 0.16354171+1 +0,13344007+2 0.76266982+1 -0.17706728+2  0.15990213+2 -0.21201938+3
P, 4 -0.12441001+2 ~0.82764861+1 0.18902171+2 -0,65808955+1 0.75477347+1 0.49457314+2 0.61702779+3
ps 0.68416570+1 0.59043904+1 =0.89700471+1  0.24094162+1 ~0.10735050+2 -0 .10996196+3 ~0.48387703+3
9 93 9 9 Py P, Py Py
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The zeroth-order g-eigenvalues vanish identically,
Equation (15); the zeroth- and the first-order g- and p-
eigenvectors, the zeroth- and the first-order p-
eigenvalues, and the first- and the second-order g-
eigenvalues for the harmonic numbers /=1 and /=2 are
calculated and presented in Tables 1 and 2. The zeroth-

Table 2.
d=2 *  -0.40387258+0  0.3108045140
g, 0.26580849+1
Y 0.63245553+0

*%  0.27138940+1  ~0.72262062+0

order quantities, pertaining to p-modes, reproduce those
of Sobouti (1977a, Table 1). The remaining values are
new and, as previously mentioned, have not been ob-
tained before.

The zeroth-order g-eigenvectors are solutions of the
eigenvalue Equation (21); in this equation, the negative

g1 -0.58092618+1 0.90993720+1

p -0.12342419+1 -0.20794638+1
*  -0.20289962+0 -0.40950434+0 0.29503047+0  0.15726793+1
g, -0.38904719+1  0.20438089+1
9, 0.14719516+2  0.24640345+1
P 0.51178850+0 -0.11145043+1
P, 0.38104326+0  0.34080892+1

**  0.13964927+1 0.63467466+0 —0.60972645+0 -0.18283075+1

g; -0.17211390+2 -0.4979829%+2

g, =0.77165425+2 0.16204347+3 0.42009541+2

0.29843523+0 ~0.30094123+1
0.78315649+1

P, 0.39177228-1 -0.52777628+0 -0.13685849+1  0.31947937+1
p; -0.24966242+1 -0.36381567+1 -0.27449217+1 -0.13848205+2

*  -0.1149311240 -0.20364871+0 -0.41021434+0

g, 0.42621222+1 -0.42961191+1 0.22819367+1
g, =0.36631814+2  0.18165341+2  0.56245199+0
g3 0.61583230+2 -0.56799093+1  0.30417426+1

0.29481442+0  0.14374304+1  0.37669445+1

P, 0.52175439+40 -0.68152944+0  0.18878831+1
by 0.28648951+0  0.22505965+0 -0.13232703+2
Py 0.13424251+0  0.38771514+1  0.15617731+2

*%  0.62787822+40  0.15559223+1  0.25535373+0 -0.60683770+0 -0.63588692+0  -0.21324853+1

9, 0.40830941+2  0.33377153+2 =~0.42580086+2
g? -0.17853323+3  0.73464199+3  0.71001076+2

0.69285010+1  0.36733505+0
-0.12806022+3 -0.50755339+3  0.11100940+3 -0.11863990+2 -0.19886186+2 —0.55524089+1
0.87698766+2  0.42718790+2  -0.27497165+1

0.20714947+1

p; —0.26915241+0 =-0.73190010-1 -0.12267863+0 -0.14417759+1  0.36159976+0  -0.48786550+1

P, 0.14186114+1 ~0.14599724+1 =0.72009865+1 =-0.18272331+1  0.10242784+2
p? -0.43071253+1 -0.12508672+1 0.48557908+1  ~0.15001799+1 ~0.32296715+2  -0.62345043+2

3
*  -0.69328242-1 =-0.12111724+0 ~0.20420278+0 =-0.41021760+0

q, 0.40471627+1  0.59725092+1 ~0.47494536+1  0.22613560+1
gi ~0.57529014+2 -0.59945655+2  0.23638288+2  0.80945152+0
95 0.21402002+3  0.14425899+3 ~0.23158007+2  0.22423912+1
9, ~0.22020855+3 —0.80998879+2  0.15622595+2  0.73602490+0

0.29481389+0  0.14310807+1

0.44790021+2

0.33146231+1 0.68766116+1

P, 0.52117318+0 -0.73752502+0 0.91397471+0 0.29397185+1
P, 0.2950085040  0.1199R364+1  ~0.85236319+0 -0.34937410+2
P, 0.10771621+0  0.65039733+0  -0.18513746+2 0.92245758+2

*%  0.26626026+0 0.10542647+1 0.15021262+1 0.20579654+0 -0.60685721+0 -0.57728776+0

9 0.53131239+2  0.66437058+1  0.53958922+2 -0.48202395+2
9, -0.47753203+3  0.45027504+3 =0.75453642+3  0.18903758+3

P, 0.21759036-1  0.27073438+1

0.31859065+1 ~0.25646507+1
0.34438782+2  Q.17150647+2

0.25327914+2 ~0.66482254+2

0.89622435+0 ~0.22130374+1

0.43188631+0 0.21645204+1
0.11833897+2 ~0.87845081+1

95 0.85241089+3 -0.25111756+4 0.15257102+4 =0.19703612+3 ~0.65450261+2 ~0.79913532+2 -0.51389082+2 ~0.15114769+1

g 0.71605173+2  0.25087141+4 =0.69357020+3  0.24613067+3

0.14311122+3  0.11396273+3
p, 0.65267650-1 —0.3114497840 -0.31662862+0 0.48391270-1 -0.14518554+1  0,61694786+0

0.39506493+2 0.14088729+2
0.62098683-1 ~0.66418443+1

p; 0.10702382+1  0.25820925+1 0.20486999+1 —0.07085543+1 -0.16926818+1  0.33061566+1 ~0.29145580+2 0.10127041+3

Py ~0.47666389+1 ~0.85174926+1 ~0.12015269+2 0.12617375+2 -0.18873748+1 -0.47697162+1

P, 0.71128161+1  0.43768444+1  0.86748427+1 -0.63341993+1

*  <0.78370533-1 ~0.12278382+0 -0.20424094+0 -0.41021761+0

0.29481389+0  0.14309739+1

0.16479139+3 ~-0.31591669+3

0.29693750+0 -0.25711374+2 -0.18243984+3 0.25793672+3

0.32726943+1 0.58976080+1

g, -0 .66231284+1  0.72969078+1 =-0.48924682+1  0.22628981+1
@  0.10936624+3 0. 83040293+2 0.25998332+2  0.78341378+0
g -0.51648881+3 0. 26298415+3 -0.34924189+2  0.23755338+1
g, 0.86530894+3 -0.30700098+3 0.37862480+2  0.47860088+0
g5 —0.44276169+3 0. 13988046+3 ~0.13961846+2  0.16436585+0
0.52112456+0 —0.72798226+0 0.10628150+1 -0.12186658+1
é 0.29606585+0  0.99349192+0  -0.50330727+1 0.17029688+1
P, 0.10226522+0  0.17259454+1 0.53583152+1 0.61525269+2
g: 0.31574519-1  0.74421883+0 —0.19683180+2 -0.18547477+3
B ~0.56652380~2  0.11471259+1 0.26533598+2 0.13403793+3
*x  0,6230442240 0.11747279+1  0.14704932+1 O. 2012416740 ~0.60685775+0 ~0.57529626+0 0.12331192+1 0.31266701+1
o -0.53587498+2 -0.37010243+2  0.71244969+2 -0.45942320+2 0.53401700+1 -0.42129503+0 0.19187377+1 ~0.85441692+0
g 0.18531056+3  0.12755215+4 =-0.10484749+4  0.15556009+3  -0. 26126257+1 -0.19804882+2  ~0.14834077+42 —0.72317138+1
gy  0.21614661+4 ~0.70049111+4  0.30281888+4 ~0.35466087+2 0.12672558+3  0.11187801+3 0.86615070+2 0.60280786+2
g, -—0.85799937+4 0.11383464+5 —0.356335224+4 -0.62022910+2  -0.23257005+3 -0.26090376+3  ~0.22596407+3 -0.97764217+2
9 0.60337083+4 =~0.55998809+4  0.17997848+4 0. 19694682+3 0.24198525+3  0.24134987+3 0.16798867+3 0.41494082+2
0.35059998-1 ~0.22484273+0 =0.49125965+0 0.10695236+0 —0.14571570+1  0.51937636+0 ~0.47108835+0 -0.44259455+0
g‘ -0. 3312954&1 0.80827762+40  0.58495610+1 -0.10980291+2 -0.15786080+1 0. 56725863+  ~0.34835040+1 0.63049346+2
p§ 0.17726953+2  0.1684802240 -0.31525697+2 = 0.19154472+2 -0.24697937+1 -0.18279978+2  -0.13033108+2 -0. 540252§+3
B, -0.34012621+2 =-0.10497001+2 0.43667112+2 -0. 18072215+2 0.13372209+1  0.74172855+0 0.19223526+3 0.1269931144
p  0.18031650+2 0.82076524+1 ~0. 20100100+2 0.67582085+1  -0.59639278+0 -0.16 33273742  ~0.23837384+3 ~0.86804994+3
5 P, B,

% 9 9% 9 B

3 4
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of the W, ,,-matrix is positive definite; therefore all the
corresponding eigenvalues, E,,, are negative. As the
mode number increases, the increasing sequence of the
negative eigenvalues accumulates at zero; thus, the
spectrum of E, , closely resembles the energy spectrum of
the hydrogen atom. An inspection of Tables 1 and 2 in
various RR-approximations reveals that the E,, eigen-
values obey the minimum principle; as the approxima-
tion order increases, the eigenvalues approach their exact
limits from above and strictly obey the interleaving rule of
Equation (I.8). Note the rapidity of the variational
convergence of the lower-order g-modes.

The zeroth-order p-eigenvectors are solutions of the
eigenvalue Equation (17a); Wj,,, the matrix entering this
equation, is positive definite; therefore all the eigen-
values, E,,, are positive. As the mode order increases,
the increasing sequence of the positive eigenvalues
accumulates at infinity ; the spectrum of E,, is thus like
the energy spectrum of a harmonic oscillator. Again one
can see from Tables 1 and 2 that E,, obeys the minimum
principle ; as the RR-approximation order increases, the
p-eigenvalues approach their limits from above and satisfy
the interleaving rule of Equation (I.8). Also, note the
rapidity of variational convergence of the lower-order p-
modes.

In a non-adiabatic fluid, where an analytical sepa-
ration of the two modes is not available, such clear-cut
behavior of the eigenvalues, that is, whether or not they
approach the limits monotonically from above, is not
observed: In the adiabatic case, the unambiguous con-
vergence of one mode-type can be examined inde-
pendently of the other; in the non-adiabatic case, how-
ever, the provision for examining such independent
convergence is lost due to the loss of the orthogonality of
the two trial sets, {{,} and {{,}. Nevertheless, even in the
non-adiabatic case, both modes, when combined to-
gether, still satisfy the minimum principle in that a) the
smallest eigenvahie of a given RR-approximation is
smaller than the smallest eigenvalue of the preceeding
approximation, and b) when arranged in an ascending
sequence, the eigenvalues of two successive RR-
approximations interleave in compliance with Equation
(1.8). To demonstrate this behavior, we have compiled
Table 3 from Sobouti’s (1977b) data ; the Table contains
both the g- and p-cigenvalues of polytropes 1 and 2 for
I1=2 in three RR-approximations with 6, 7 and 8
variational parameters. The columns of Table 3 are
arranged in such a way that the largest eigenvalue of a
given sequence is at the top. Interleaving of the eigen-
values is evident. It is interesting to note, however, that
in no case do g-eigenvalues interleave p-eigenvalues, and
vice-versa. This last feature is attributable to the fact that
the trial basis sets, {¢,} and {{,}, bear a fair resemblance
to the exact eigenvectors, even in the non-adiabatic case,
and remain a flexible tool for investigating their further
properties (see Paper 111, Section VIII). These comments
should throw some light on the long-standing question of

Table 3. A demonstration of the variational principle as obeyed by
the g- and p-eigenvalues of polytropes 1 and 2 for I=2: a) Lowest
eigenvalue in a given RR-approximation is lower than the lowest
eigenvalue of the preceding approximation; and b) the eigenvalues
in two successive approximations interleave. Data are taken from
Sobouti (1977b)

RR-approximation order

(6) ™ ®

Superadiabatic fluid: n=1, [=2

n | 9.402720
Ps 5053224 2093237 4773653
P2 1.888032 1888047 1.885822
P 0.3035501 03035303 0.3035496
o ~0.0097782 —0.0100069
. —0.0158273 00161557 00161594
. ~00278728 —0.0279221 00280226
9 —00e137L7 —00613774 —0.0613814

Subadiabatic fluid: n=2, =2

n 4906920
Ps 2750171 2730247 2.183195
P2 1027453 HozTast 1013811
N 02730481 0.2730486 02730481
0.0495145
9 0.0495142 0.0494278
. v 0.0261176 0.0260695
. 0013960 0.0154700 0.0153509
. 0.0078844 0.0078387

the variational behavior of the g- and p-modes; see, for
example, Ledoux (1974) and Sobouti (1977a). '
In connection with convection in stellar interiors, E, ,
and Z,,, are of particular importance; from the former,
one deduces the time rate of growth of the convective
instabilities, while from the latter, via Equation (6a), one
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obtains the patterns of the convective motions. With
regard to the stability of the fluid against small depar-
tures from equilibrium, following Sobouti (Paper III,
Section IX), let us argue that the fluid will be stable if and
only if all of its normal modes are stable: The p-modes
are always stable; the g-modes will be stable if the
eigenvalues, aE, ;, are all positive. This condition, in view
of the negative values of E, ;, reduces to a being negative,
that is, to the fluid being superadiabatic ; this is, of course,
Schwarzschild’s criterion for convective stability. For
further discussion of this issue, see Equation (II1.26) and
accompanying remarks.

A comment on the notation is appropriate: Because
of the vanishing of the zeroth-order g-eigenvalues, E,,
and E,, bear the same relation to Z,,, and Z,,,
respectively, as E,, and E, , to their respective eigenvec-
tors; this may suggest relabelling E, ; and E,, as E,, and
E, ,, respectively, to indicate their parental relation to the
corresponding eigenvectors. We have refrained from
doing this, however, because it would divest the whole
PV formalism of its symmetry by setting up two different
ways of ordering the perturbation terms for the g- and p-
eigenvalues ; this is reflected physically by the necessity of
forming aE,, and a’E,, to evaluate the perturbation
expansions, Equation (11b).

We .conclude this Section by noting that many
features discussed above, e.g., separation of the two types
of modes, their variational behavior in the zeroth order,
and their subsequent interaction in the higher per-
turbation orders, would not have been revealed without a
PV expansion procedure such as we have adopted ; the
facility of computation, developed formally in Paper I,
and extended and utilized in the present paper, is worthy
of attention.

Acknowledgements. We wish to thank Mrs. J. N. Silverman for her
valuable assistance in the preparation of the manuscripts. Numerical
calculations of this paper were carried out in the Computing Center of
Pahlavi University.

Appendix A: The Matrix Elements of Equations (6) and
Q)

The W-matrix. After some integrations by parts and the
use of Equation (2b), Equations (8) and (1b) reduce to

We=— (V.06 pdv—f ¢ -Vpsiody

— [6L065Qdv ; (A1)

The p-basis vectors of Equation (5b) are the same as those
of Paper III; therefore, the pp-elements of W- and S-
matrices will remain as in the latter paper. The g-basis
vectors, however, are somewhat different and result in
different expressions for W, and S,,, a=g, p. Substitute

a’b=g’p'

{; of Equation (5a) in Equations (2a) and (2b) to obtain

dlnp/dr

=10V 53 g 1), (a2
0

s <[ dIng/dr

0=V & |Tng jar ] (43

We note that as the fluid tends to the adiabatic limit (i.e.,
as p, 0—Po, 0o), 9;p and 6,0, and consequently W,,, W,,
and W,, all tend to zero.

Let the basis vectors {{}} and {{7} have the following
spherical harmonic expansions [cf. Eqs. (IIL.5) and
(IIL7)]:

(1 1 goy 1 x 1 oy
C ( 2‘P 1l s == = )
a1 u04 1) r 00 *UI+1) r sinf o0
(+1)r (I+1) (Ad)
a=g,p.

The constraints of Equations (5) enable one to eliminate
one of the two scalars y} or x; in favor of the other (see
Paper III). Thus,

0

=+ Q" ¥, (Ad2)

& =10+ 1)%. (Adb)

Also note that

y. g;' % 1:’29 ", (A5a)
1 ; ;

V-io= (v, —0)Y" (ASb)

Substitution of Equations (A2)+A5) in Equation (A1)
and reductions parallel to those of Paper III lead to the
following matrix elements:

s_pm_ (% [P p’o] sdr
W = ar
- I [p o | P2
. R ’ ’ . R .
+{r [9— - 9—°]w;w;"-§ —4nG{¥Ydr,  (AGD)
o e Qo r 0
, R [ ,
s P dr
Wi =Wsi=— gp[p p"]wg(w,, )7
R / 0 d R .
+ fp’[ °}wgtpp—— —4nG [ Y;Y3dr,  (A6b)
o L@ 0o
and from Equations (ITI.15c),
s . R ¢ s ;. dr
Wes =Wy = Lptw, =)~ 15) 2
R ’ ’ ) ’ ’
+ 58 |wwr )+ 1)
o , Jar B oros
— =iy r—2—4nG£ Y;Ysdr, (A6c)
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where matrix block generated by a g-vector and a p-vector other
R [y i than the first p-vector. The blocks of the S-matrix have a
Y=-— r j Q[ Qo} v, +r 1> (A64) similar interpretation. Correspondingly, the E and Z
rle e r matrices assume the following form:
and from Equations (II1.16b) and (IIL.16c), 01 0
Ey,= 0T EE ], E§,=diagonal, (B3a)
=% —rfol0+ 0% ] (A6e) o
[z | ZiR
. Zopy= |—222 (B3b)
The S-matrix. From Equations (7b) and (A4), one obtains L Zﬁfp
. . R 1 . 1 .
Sw=Su=1e [r_szwZJf 'z(z'+'1)%3xg dr, (ATa)  Zip=[01Zi5l, (B3c)
ZI
: Z, 0= |22 |- (B34d)
In Equatlons (B3b) and (B3c), Z§;, and Z] , have,
st 1 L1 respectively, vanished because the solid-body motion of
s _ Qst _ T gt aneS t' ., ) )
So0="So { e[z V¥t Ia+1) XpXp ] r, (ATc) Equation (B1) is an exact solution of the problem and is

where Equations (A7a) and (A7c) are the same as
Equations (III. 17a) and (III.17c). This completes de-
termination of the W- and S-matrices.

Appendix B: Special Provision for the Solid-body
Translation of the Fluid

From Section VII of Paper III, we recall that the lowest p-
mode for =1 is a neutral Kelvin mode and represents a
solid-body translation of the fluid ; this mode, denoted by
a superscript I, has the exact solution,

yi=p=r* I=1. (B1)

This vector has been chosen to be the first member of the
p-basis vectors of Equations (A4b), and being a neutral
mode, renders the first column and first row of the W, , -
matrix zero. Thus, W,,,, and consequently E, ,, become
singular, and Equations (22b) and (23b) will no longer be
adequate to calculate Z,,, and Z,,,. To obtain these
quantities in this special case, the following direct
analysis of Equations (22a) and (23a) is carried out:
Where applicable, separate the first p-column and/or the
first p-row of any matrix, and in the notation of Equation
(B1), denote them by a superscript I; denote the re-
mainder of the matrix in question by a superscript R. One
obtains

0| 0 }
Wopp= ; (B2a)
o o
VVIgp - ( g)T [0 I lgp] (sz)
S SIR
S 9pp |~ Qpp ] (B2¢)
ore ™ S gzl’p Soo Opp
S, =(S, )t 81 Zipg 2
lpg_( lgp) = SR s (B d)
1pg
where W'y is the matrix block generated from the p-bas1s

vectors other than the first p-vector, and Wf;, is the

thus orthogonal to the other modes.

a) Determination of Z,,,: Substitute Equations (B2)
and (B3) in Equation (22a) and partition the result; one
gets
S Ogg lapEgp VVII;I’ZRR (S

Opp

ZIR SR ZRR )Eg,, (B4)

1gp 0pp lap Opp

Since both So4y and Eop are non-singular, one readily
obtains
lgp_(SOgg) 1[ llznggp(E )—
— 81662050~ S1apZ0pp] - (BS)

This equation, together with Equation (B3c), completes
the solution for Z, ,,

b) Determination of Z, ,,: The orthogonality relation
governing Z, , and Z, , provides a simple derivation of
the former in terms of the latter. From the pg-block of
Equation (20b), one has

OPPSOPPZ 1pg= —Z lgpS Oggz 0gg ™~ ~Z} 0ppS lpgz Ogg * (B6)

Reduction of Equation (B6) by Equation (17c) gives
Zipg= Opp(z 15059+ 2 I)pps 100)Z 0gg (B7)

Alternatively, a direct partitioning of Equation (23a)

could lead to Z, ,,, but the above procedure is simpler.

1pg>
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