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Summary. Axisymmetric modes of a rotating self-
gravitating fluid are analyzed. In the limit of small
deviations from convective neutrality and slow rotation,
the following conclusions have been reached. The g-
modes of a rotating fluid are affected only by the Coriolis
forces. In a superadiabatic fluid, the g-modes with large
radial wave numbers and small non-radial wave numbers
are suppressed. The extent of suppression depends rather
critically on the ratio of a measure of rotation to a
measure of superadiabaticity of the fluid. The g-modes
with sufficiently small radial ‘wave numbers and suffici-
ently large non-radial wave numbers, however, remain
unstable. The criterion for stability of a rotating fluid
remains the same as the Schwarzschild criterion.
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I. Introduction

In a superadiabatic fluid, rotation inhibits part of the
unstable convective motions. Evidently, Randers’ dis-
placements (1942), primarily in radial directions, and
Walen’s displacements (1946), primarily perpendicular
to the axis of rotation, fall in this category. Cowling
(1951), however, argued that rotation cannot have an
absolute stabilizing effect on convection. Under certain
simplifying assumptions he showed that displacements of
sufficiently large horizontal wave number remain un-
stable.

Since Cowling’s work certain developments have
enhanced our understanding of the problem. Chandra-
sekhar and Lebovitz (1968) have shown that the axisym-
metric displacements of a rotating system are solutions of
an . ordinary eigenvalue problem. Eisenfeld (1969) has
demonstrated the completeness of the normal modes of
non-rotating fluids. Sobouti (1977a) has clarified the g-
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and p-classification of the modes. Sobouti and Silverman
(1977) have shown that the g- and p-modes of a convec-
tively neutral fluid are solutions of two independent
eigenvalue problems. Finally the last authors have
removed the degeneracy of the neutral convective
spectrum. In the light of these findings, a more systematic
analysis of Cowling’s problem under less stringent
assumptions seems possible.

This paper is concerned with linear axisymmetric
convection in rotating inviscid fluids. The problem is
treated as one of normal modes analysis. Equations of
motion and expansion of modes in terms of a basis set,
consisting of g-, p- and toroidal-components, are intro-
duced in Section II. This is done on the basis of Sobouti’s
definition of the g- and p-modes (1977a, hereafter referred
to as paper I). A double perturbation procedure, in
which the operators pertaining to a non-adiabatic
rotating system are expanded about those-of an adiabatic
non-rotating fluid, is discussed in Section III. This is done
as an extension of Silverman and Sobouti’s perturba-
tional-variational scheme (1978, hereafter referred to as
Paper II). Partitioning of modes and separation of their
g-component (the genesis of convective motions) is
carried out in Section IV. This is done according to
Sobouti and Silverman’s separation scheme (1978,
hereafter referred to as Paper III). Stability criterion is
discussed in Section V. Cutoff wave numbers, separating
the surviving convective modes from disrupted ones (by
rotation) are obtained in Section VI. The various matrices
appearing in the formalism are calculated in Appendix A.

I1. Equations of Motion

Let, p, p and U denote the pressure, the density, and the
gravitational potential of the fluid, respectively, and let
Q be its constant rotation vector about the z-axis. The
equilibrium state of the system is given by

Vp — pV[U + Q%% + y?)] = 0. )

For future reference, let us recall that, as rotation tends to
zero, the solutions p, p, and U of Equation (1) tend
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continuously to the corresponding solutions of the non-
rotating system. A perturbation expansion of these
quantities in power series of Q2 is possible.

Time-separated adiabatic Lagrangian displacements of
the fluid, E%(r) exp (iVe%t) (if they exist), are governed by
the following equations:

WE + 2R x B — e = 0, @
where

#E = V(op) — ; Vpbp—pV(3U), (2a)
op = —ypV-E — Vp-§, (2b)
5p = —pV-E — Vp-E, 20)
VI(SU) = —4nGSp. d)

In the absence of rotation, Equation (2) constitutes an
eigenvalue problem. The corresponding eigensolutions
have a simple discrete spectrum and form a complete
orthonormal set in a Hilbert space 5. The inner product
in %, is defined as f poCT* - &dv, where p, is the density of
the non-rotating system. With rotation present, Equation
(2) is no longer an eigenvalue equation in the conven-
tional sense of the word. It can be shown, however, that
solutions &, of Equation (2) belong to a vector space
in which the inner product is j pE™*-E%dv. One observes
that both p and p, are bounded and have bounded
domains. Also p has a convergent expansion about p,.
From these observations, one concludes that solutions &°
of Equation (2) belong to the Hilbert space 5, the span
of the normal modes of the non-rotating system. There-
fore, one will be allowed to expand & in terms of the
complete eigensolutions of the non-rotating fluid or in
terms of any other basis set for that space.

Thus, let {€"; r = 1,2,...} be a suitable basis set for
#, and let the displacement & of Equation (2) be
expanded in terms of this set:

gs — Z grzrs.

T -

(€)

A matrix formalism will be followed throughout the

paper. Let Z be the matrix of the expansion coefficients
above and E and E'? be two diagonal matrices whose
elements are ¢ and V'e*; s = 1, 2, . . ., respectively. Thus,

Z=[Z";rs=12,..., (3a)
81
E= & , (3b)
Vel
EY2 = & (3c)
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Also, let the matrices representing the various operators
in Equation (2) be denoted as follows:

e = e = [ gy, (4a)
Cr = —C* = é f PE* (& x §)do

- _é pQ-(€* X C)do, (4b)
S5 = Srsk — f Pgs*.g"dv. (40)

Hermitian character of the # -operator and, therefore,
that of the W-matrix is established by Clement (1964) and
by Lynden-Bell and Ostriker (1967). The former author
generalizes a variational principle of Chandrasekhar
(1964), governing linear adiabatic oscillations of self-
gravitating fluids, to a uniformly rotating system. The
latter authors extend the principle further, to fluids
possessing steady internal motions in an inertial or in a
rotating reference system. Anti-Hermitian nature of the
Coriolis matrix C, and Hermitian and positive definite
character of the S-matrix are evident from their defining
Equations (4b) and (4c), respectively.

In terms of the matrices of Equations (3) and (4), the
matrix representation of Equation (2) becomes

WZ + 2iQCZEY? — SZE = 0. &)

To obtain the (rs) element of Equation (5), one substi-
tutes the expansion of Equation (3) for & in Equation (2),
premultiplies by £™* and integrates over the volume of the
fluid.

The normal modes of the non-rotating system are of
three types: the g-modes, the p-modes and the foroidal-
modes, of which the latter are neutral. Accordingly the
basis set {{"} employed in this paper consists of the g- and
p-subsets, {€7} and {}}, of Paper I, and a third toroidal-
subset {€i}. A spherical harmonic expansion of the basis
vectors ¢, and of the Lagrangian displacement vectors &*
of equations (2) and (3) will be considered below.
Because of the axial symmetry of the equilibrium con-
figuration, however, the Lagrangian displacements be-
longing to a given azimuthal harmonic number m, will
not be coupled to others and are dealt with independently.
In the remainder of this paper only axisymmetric dis-
placements, belonging to m = 0, will be considered. The
spherical harmonic expansions of these axisymmetric
basis vectors are

1 1 0%,

1 ,
g ('3 VAD €8 T+Dr X&' 28" 0)§ e=g,p, (6a)
rl
c;l: (0’ 0’ _%Lz %)9 (6b)

where each vector is now specified by a pair of super-
scripts (rl), of which the first index indicates the radial
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mode order and the second index denotes the horizontal
mode order of the vectors. The indices » and / will be
referred to as the radial wave number and the horizontal
or non-radial wave number of the vector in question,
respectively. The scalar functions ¢ and y for the g- and
p-basis vectors are related as follows (see Paper I, Section
II):

=+ By (7a)
YPo

. L,
X5 = 10+ 1) (7b)

where p, is the pressure. of the non-rotating and con-
vectively neutral fluid, henceforth used as the reference
system. By virtue of Equations (7), we observe that each
of the g-, p-, and toroidal-basis vectors depend on only
one single scalar function, say ,, ¢, and ,, respectively.

Let the set of basis vectors {€},-and the set of the eigen-
displacements {€} be partitioned into their non-toroidal
and toroidal components as follows:

& = {&I83
{& = &8}

where the subscript e stands for the g- and p-components
of the set, combined together. Equation (3), written out
explicitly, assumes the following form

(8a)
(8b)

=>8z: + 25z, (8c)
T q

&= > LZE + > Gz (8d)
T q .

Equations (8) entail a corresponding partitioning of all

the matrices entering Equation (5). Thus,

A—[A Ag

A=W,C,S,Z, EY% E. 9
A Att] ®)

Elementary arguments will reveal simpler structures of
the W-, C- and S-matrices. The Eulerian variations of the
pressure, the density, and the gravitational potential
generated by a toroidal vector, are identically zero.
Therefore, the W-matrix assumes the following form:

| W |0
AL

(10a)
A simplé geometrical reasoning shows that the diagonal
ee- and tr-blocks of the Coriolis matrix C vanish. Let us
consider the triple product -(£** x ¢’) in the defining
Equation (4b). If both basis vectors are of g- and/or p-
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type, then the three vectors , €** and ¢’ lie in the same
meridian plane. The triple product and consequently the
C:I elements vanish. If both &* and ¢ are of toroidal
type, then both are in the azimuthal direction. Their

. vector product and consequently the C;f elements vanish.

The C-matrix thus becomes:

— 0 Cst
c- [&t5]
The toroidal vectors of Equation (6b) are perpendicular
to the non-toroidal vectors of Equation (6a). This makes

the scalar product &¥-€, and consequently the non-diag-
onal blocks of the S-matrix vanish. Thus,

See | O
S - [ 0 Stt].

Substitution of Equations (10a)-(10c) in Equation (5) and
block-multiplication of the various terms gives

[Wsszse + ZiQCetZtsEélz — SssZssEe l
2iQCtsZ£eEsl:/2 - SttZtsEe I

SssZstEt] = 0
- SttzttEt )

(10b)

(10c)

Wgsth + 2iQngZth:tl/2 -
2iQC, Z4E}"*

an

This equation will be studied blockwise:
(i) The tz-block of Equation (11), in view of the fact
that S, is positive definite and Z,, cannot be zero, gives

= E}? = 0. Z,, remains undetermined. (12a)

(ii) The et-block, complemented with Equation (12a),
gives

Zy = 0. (12b)

(iii) The te-block can be considered as a relation
between Z,, and Z,,.. Provided that E, is non-singular, one
may solve this relation for Z,,. Thus,
Z, = ZiQSt;ICteZseE;m' (13)

If E, contains a zero eigenvalue of multiplicity m, then the

m columns of Equation (11), belonging to this vanishing

eigenvalue, remain undetermined. Equation (13) and the
subsequent developments based on this equation still
remain valid, provided that the zero elements of E, and
the corresponding m columns and/or rows of Z,, and C;,
are eliminated from these matrices.

(iv) Substitution of Equation (13) in the ee-block of
Equation (11) gives
(Wss - 4chstSt?1Cts)Zss -

SssZssEs = 0. (14)

In Appendix B we use the closure property of the toroidal
basis set {€;} to show that the Coriolis term 4Q2C,, Sz 'C;,
is independent of this {§;} set. The elements of the
Coriolis term are completely specified by a pair of
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poloidal vectors from the {{.} set. Thus, Equation (14)
becomes:

(Wee + 4Q2Ree)Zse - SesZssEs = Oa (143')

where R, denotes the Coriolis term C,S;'C,. Its
elements are given by Equation (B7) of Appendix B:

Q2RY = Q?R®* = — Q¥ CyySit'Cye)™ =

= [ o x @@ x tyab. (B7)
The matrix W,, + 4Q2R,, in Equation (B7) is Hermitian.
The matrix S,, is Hermitian and positive definite. There-
fore, Equation (14a) is an eigenvalue problem for Z,, and
E,. The eigenvalues are real and are the roots of the
secular determinant:

[Wee + 4Q%R,, — &S, = 0. (14b)

The eigenvectors, that is, the columns of the Z,.-matrix,
form an orthonormal set in the following sense.

ZZsSssZss =L (14C)

An immediate conclusion from the real-valuedness of the
eigenvalues (the squares of the eigenfrequencies) is that
the stability or instability of inviscid rotating fluids is of
dynamical nature. No secular instability, associated with
axisymmetric displacements, develops on account of
rotation of the fluid.

In Appendix B we also reduce Equation (13) and
show that the toroidal component of Equation (8¢) is
completely determined by the poloidal component of this
same vector. Thus Equations (8c), (13) and (B10) give

2i

g= 1+ —=Q ) fze,
¢ ( Ve *

where &, is the poloidal component of €, and is given by

te = ngszz;es- (153.)

(15)

To summarize the conclusions of this section we con-
struct the E- and Z-matrices from Equations (12)-(14):

E 0] .

E= T)‘i_o,’ E, diagonal, (16a)
Z.10

Z= +| 16b
1z 1z, (166)

where E, and Z,, are solutions of Equations (14a)—(14c)
and Z,, remains indeterminate.

Equations (14a) and (15) are respectively equivalent to
Equations (24) and (16) of Chandrasekhar and Lebovitz
(1968). In the present approach, however, the problem of
the normal modes of a rotating system is looked into as
one in the theory of linear vector spaces. The expansion
in terms of basis sets is emphasized. The full spectrum of
the modes, its possible partitioning into g-, p- and
toroidal-components, and their subsequent interactions
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are studied systematically. The main reason for the
present derivation, however, has been to arrive at the
general Equation (5). For non-axisymmetric displace-
ments, the simplifications of Equations (10)—(15) do not
hold. The toroidal modes are likely to be excited by the
g- and p-modes and develop into a non-neutral non-
degenerate spectrum. Equation (5) and the expansions of
Equations (8) will then serve as a logical starting point.

II1. A Procedure for the Analysis of Equations (14)

It was shown in Paper III that, in the limit of small
deviations from convective neutrality, the eigenvalue
equation for the non-rotating fluid can be partitioned
into two independent equations, one for each of the g-
and p-modes. This was accomplished by considering a
perturbation expansion of the normal modes of the non-
adiabatic system about those of the adiabatic one. In
rotating fluids a similar separation of modes is possible
and considerably simplifies the problem.

The reference fluid about which the perturbation
expansion is carried out is the non-rotating and con-
vectively neutral fluid. The quantities pertaining to this
reference system will be denoted by a subscript zero. One
of the perturbation parameters will indicate deviation of
the actual fluid from the adiabatic limit and will be
chosen as follows:

o= dlnp [dlnp,
~ dIlnp/ 2lnp,

(17a)

We shall only be concerned with systems for which a is
constant throughout the fluid. For example, this is the
case for a polytrope of index n and of constant ratio of
specific heats y:

a=l(1+l)—1.
y n

The second perturbation parameter will be a measure of
the uniform rotation of the fluid:

(17b)

b___492(‘)’—1)

X 17c
4nGp.oy (17¢)

where p,, is the central density of the reference fluid. In
this description, the pressure and the density of the
fluid at any point r will further depend on a and b. For
example, p = p(r, a, b). Next, the structural parameters
of the fluid will be Taylor-expanded in terms of a and b.
Up to the first order terms one obtains

a(l', a, b) = ‘70(1') + aaa(r) + bab(r); g =D,p, (183)

where

ou(r) = [:—a ofr, a, 0)]a=°, o) = [535 ofr, 0, b)]b=°.
(18b)
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Note that r, @ and b are treated as independent variables.
The operators V, 8/6a and 9/0b commute with each other.

The expansion of Equations (18) is different from that
of Simon (1969). In the present scheme one expands the
pressure and density of the actual fluid at point r about
the pressure and density of the reference system at the same
point r. Simon expands the pressure and density of an
element of the actual fluid about the pressure and density
of a corresponding element in the reference fluid. The
distinction between the present expansion and that of
Simon is analogous to the distinction between the
Eulerian time derivative 0/0¢ and the Lagrangian time
derivative d/dt in fluid dynamics.

The double expansion of Equations (18), via the de-
fining Equations (4) and (B7), results in a corresponding
expansion of the W-, R-, and S-matrices:

A(a, b) = Ay + ad, + bAb; A = Wee, Ry, See- (19)

A double perturbation expansion of the W-, R- and S-
matrices can at most imply similar expansions for the p-
modes. The non-existence of the perturbation expansion
for the g-modes can be seen in two ways. (1) The neutral
g-state of the unperturbed fluid is infinitely degenerate.
Each of the perturbing forces arising from non-adiabatic-
ity and from rotation of the fluid are capable of removing
the degeneracy. But each force generates its own set of
orthogonal normal modes which are incompatible with
‘those of the other force. See for example Hirschfelder et
al. (1964) for an exposition of this issue. (2) Let the non-
adiabaticity parameter a be fixed and consider rotation as
the only perturbing force. The g-eigenvalues of the non-
rotating and non-adiabatic fluid, which now serves as the
reference system, all tend to zero with increasing radial
wave numbers. Among the g-modes of the reference
system, with assorted radial and non-radial wave num-
bers, one can find an infinite number of pairs of eigen-
values which are arbitrarily close to each other. Since the
inverse of the difference of such pairs of eigenvalues enter
the perturbation series, convergence of the expansion
series is not guaranteed. With these remarks in mind let
us write

Zee = Zoee + Zaee (203)
and
E, = Eo; + Ei, (20b)

where Z,,.. and E,, are the eigensolutions of the reference
fluid:

WoeeZoss — SossZoseEoe = 0. (21)

It is shown in Paper III and it will be recapitulated in
Section IV that Equation (21) is an eigenvalue equation
for the p-modes alone. Equation (21) does not contain
information on the g-modes and accordingly does not
impose restrictions on the g-components of Z,,, and E,,,.

669

We are thus at liberty to consider Z,,, and F;.. in Equa-
tions (20) as first order quantities. With regards to their
p-components, this follows from the existence of pertur-
bation series. With regards to their g-components, this is
an option. The option exists because no restrictions on the
g-components of Z,,, and E,,, are as yet imposed. Note
that no attempt is made, and with regard to the g-modes
it is not allowed, to decompose Z,,, and E,,, into terms
proportional to a and b.

Next we substitute Equations (19) and (20) in Equation
(14a) and separate the zeroth and the first order terms.
In the zeroth order one recovers Equation (21). In the
first order one obtains

(aWa + bWb + bRo)Zo + WOZI - SOZOEl - SOZIEO
— (@S, + bSy)Z.Eo = 0. (22)

For brevity, the subscripts ¢ on all the matrices of
Equation (22) are suppressed. An analysis of Equations
(21) and (22) is carried out in Section IV.

IV. Partitioning of Equations (21) and (22) According to
the g- and p-Classification of the Modes

We recall that the basis set {§.} responsible for generation
of the matrix Equations (14a), (21) and (22) consists of
two g- and p-subsets. The g-subset {{,} is given by
Equations (6a) and (7a), and spans the g-subspace of the
normal modes of the reference fluid. The p-subset {€,} is
given by Equation (6a) and (7b), and spans the p-subspace
of the normal modes of the reference fluid. This parti-
tioning of the basis set results in a  corresponding
partitioning of the vectors and matrices appearing in
Equations (14)-(22). For the matrices one obtains

Ay | A
A — 99 917] ;
[A rg APP

(i) The Zeroth Order Solutions

A = W, R, etc. (23)

A review of Paper III, Section IV. From Equations (13)
of paper III one has

0 0
Woee = [(ﬂm], (242)
_ |Sos | O
Sose = [ 0 1So.| (24b)

This form of the W- and S-matrices in turn leads to the
following solutions for E, and Z, [cf. Egs. (18) of Paper
1]

0] 0 .
E, = [0 Eop]’ E,, diagonal, (25a)
_ | Zogs | 0
ZOee - [ 0 ZOpp ’ (25b)
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where Z,,, remains indeterminate in the zeroth order, and
Z,,p and Ey, are solutions of

WOppZOzm = SOPPZOPPEOD‘ (26)

(it) The first Order Solutions

Solutions of Equation (22), among other information,
provide the first order corrections to the p-eigenvalues
arising from non-adiabaticity and rotation of the fluid.
By the assumption of small deviation from convective
neutrality and slow rotation, however, these are first
order corrections aE,, and bE,, to the non-vanishing E,,.
They will not in any case change the positive sign of the
p-eigenvalues. Therefore, none of the p-modes can be
expected to become unstable. Perturbations of the p-
modes will not be pursued in this paper. The situation
for the g-modes, however, is different. The zeroth order
g-eigenvalues E,, are all zero [cf. Equations (25a)]. The
first order quantities E,, are the first nonvanishing terms
in Equation (20b). Their negative or positive signs will
decide whether or not convection should take place. The
matrix E;, along with Z,,, are solutions of the gg-block
of Equation (22). This block will be analyzed in detail.

The matrices W, Rogss Sass, and Sy, have no vanish-
ing blocks. We shall see in Appendix A, Equation (A13),
that W,,, has the following simplified structure:

0 |W,
W e = byp] .
° [ Wbpg Wbyp

Substituting Equations (24), (25) and (27) in Equation (22)
(note the subscript « in all the matrices of this last equation
was suppressed) and separating the gg-block of the
resulting equation gives

(a Wagg + bROgg)ZOgg = SOyyZOggElg- (28)

Equation (28) is a generalization of Equation (21a) of
Paper III to include the effects of rotation, the b-term.
This is an eigenvalue equation for Z,,, with E;, as the
corresponding eigenvalue matrix. Equation (28) will be
analyzed to the extent of finding answers to two questions:
(a) what is the criterion for convective stability of a
rotating fluid? and (b) what are the convective modes
which survive the stabilizing influence of rotation? To
achieve this goal explicit expressions for the elements of
W and Ry, are needed. These quantities are discussed
in Appendix A. The questions (a) and (b) above, are
pursued in Sections V and VI, respectively.

@7

V. Stability Criterion

The question of stability of the fluid is narrowed down to
the question of positive-definiteness of the total matrix
aW,gs + bRy, of Equation (28). From Equations (A14)
and (A15) we see that — W,,, is positive definite and R,,,
is non-negative. Therefore, for a subadiabatic fluid (a <
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0), the total matrix will be positive definite and the fluid
will be stable for g- or convective motions. Ordinarily,
completeness of the eigensolutions and of the basis
vectors is required to ascertain that all possible dis-
placements of the fluid are exhausted as linear combina-
tion of the eigendisplacements, and to conclude stability.
We note, however, that the positive definiteness of the
matrices in question is inferred from positive definiteness
of their generating operators. Lebovitz (1966) employs a
theorem by Laval et al. (1965) to show that the Schwarzs-
child criterion can be obtained from the positive definite
nature of the operator alone. One can in fact use his
reasoning in the present problem. In doing so, one will
not have to appeal to basis vectors or to the eigendis-
placements. The question of completeness will not arise.

For a superadiabatic fluid (@ > 0), the total matrix
aW,,, + bRy, can never be positive definite. We demon-
strate this by showing that, for any value of a (> 0) and
b, some of the diagonal elements of the total matrix are
negative. (We recall that a matrix is positive definite if
and only if all of its principal minors are positive. The
diagonal elements of a matrix are among its principal
minors. They all should be positive for positive definite-
ness.) The expression pgpo/po, in the integrand of
Equation (A14b), decreases to zero at the surface more
slowly than p, in the integrand of Equation (A19). This
can easily be verified by expressing p, and p, in terms of
the polytropic variable 0, and recalling that at the surface
of polytrope, 8 is zero and its derivative is finite. Apart
from the two factors mentioned, the remainder of the
integrands in Equations (A14b) and (A19) are the same.
On the other hand, the function ¢** in the integrands con-
tain the power r* [see Eq. (Al18)]. Consequently, the
larger the k grows, the more the surface layers contribute
to the integrals. Because of these two factors [i.e. (a) the
slower decrease of the integrand of W than the inte-
grand of R¥:* and (b) the larger contribution of the
surface layers at large horizontal wave numbers k] one
concludes the following:

For any finite values of a (>0), b and s one can always
find a number K such that, if k > K, the expression
aWi + R < 0.

This completes the demonstration of the non-positive
nature of the total matrix, aW,,, + bRo,,. The essence
of the argument has been to show that, at large horizontal
wave numbers, the destabilizing matrix aW,,, is more
dominant than the stabilizing Coriolis term bR,,. The
opposite is true for large radial wave numbers. Because
of the factor s in the asymptotic Equation (A20), the
Coriolis term becomes dominant at large radial wave
numbers s. Completeness of the eigenvectors of Equation
(28) is not required to draw the last conclusion. The
argument merely is that, among the convective displace-
ments of Equations (6a) and (7a) one finds unstable
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disturbances which cannot be suppressed by the Coriolis
forces. At this stage, again one can abandon the matrix
formalism and arrive at the stability criterion by looking
into the nature of the operator giving rise to Equation
(28) or, equivalently, (14a). This operator is # —
4pQ x Q x. For a partially or totally superadiabatic
fluid, this is not positive definite: The scalar product
j CF*-[# — 4pQ x Q x J¢¥dv corresponding to large
k’s is negative. The proof is already given; the prescribed
integral is no more than a diagonal element of the total
matrix aW,gy + bRog,.

Figures 1 and 2 are intended to serve as an alternative
numerical and graphical verification of the statements of
this section. For various values of s and k, the diagonal
elements, Wik* and R have been computed from the
original Equations (A14b) and (A17b), respectively. In
Figure 1, these elements are plotted as function of k while
s is kept constant. The slopes of the W-curves are less
steep than the slopes of the corresponding R-curves.
Therefore, the destabilizing W-term dominates at large
horizontal wave numbers. In Figure 2, the elements are
plotted as functions of s while k is kept constant. Here,
the slopes of the R-curves are gentler than the slopes of
the W-curves, indicating that the stabilizing Coriolis
forces dominate at large radial wave numbers. Let us
conclude this section by recapitulating that:

Rotation does not, in the mathematical sense of the
word, stabilize a totally or partially superadiabatic fluid.
The criterion for absolute stability of the fluid remains the
same as in the absence of rotation; that is, the Schwarzs-
child criterion.

The conclusion is the same as that of Cowling. The
mode of argument, however, is substantially different and
the assumptions are considerably less stringent.

1

F T T T T T T T

02

1074

6 8
radial wave number, s

Fig. 1. Diagonal elements of W,,, and Ry, are plotted as functions
of the radial wave number. At large radial wave numbers, W,
decreases more rapidly than Ry,
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. Wogg™
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~
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non-radial wave number,k

Fig. 2. Diagonal elements of W,,, and R,,, are plotted as functions
of the non-radial wave number. At large non-radial wave numbers,
Ry, decreases more rapidly than W,

VI. Cutoff Wave Numbers

Consider a plane of wave numbers (s, k), Figure 3. Each
eigensolution £ of Equation (28) is represented by a
point in this plane. From Figures 1 and 2 one learns that,
in the region of large s and small &, Coriolis forces
dominate the forces arising from superadiabaticity, and
vice versa. Thus, in a superadiabatic fluid convective
motions of small radial extent and of large horizontal
dimensions are disrupted by the Coriolis forces and are
replaced by stable displacements. These stable models will
have no resemblance to convective motions. Remaining
unstable motions will, more or less, keep their convective
nature. Corresponding eigenvalues (square of time rates
of exponential growth), however, will diminish.

For a given ratio of b/a [divide Equation (28) by a to
see the emergence of this ratio] and a given number s, on
the s-axis one can always find a corresponding k. on the
k-axis such that the modes %, with s < s.and k > k,are
of unstable type, while those corresponding to s > s, and
k < k., have become stabilized. Let us call the pair
(., k.) the cutoff wave numbers. The collection of these
cutoff number pairs will divide the (s, k) plane into two
regions of stable and unstable modes. To obtain the pair
of cutoff numbers one should solve Equation (28) for a
given value of b/a and then sort out the combinations of
smallest k and largest s for which the eigenvalues are
negative. In the present work, however, the cutoff pairs
are obtained by a much simpler but approximate method.
For a given ratio b/a and a given s,, the diagonal elements
[Wease + (b/@)RogeFe**>* are computed for an increasing
sequence of k’s until the sum becomes negative. The
value of k in the sequence, for which the diagonal element
just becomes negative, is approximately k.. The argu-
ment in support of this procedure is the following:
suppose the set of the actual eigendisplacements {€5*} is
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Fig. 3. In the wave number plane (s, k), each mode is represented
by a point (with integer coordinates). The collection of cutoff
numbers (s, k.), for a given ratio b/a, divide the (s, k) plane into
two regions. The points to the left of the cutoff lines are unstable
convective modes. The points to the right of and on the cutoff
lines represent the stabilized modes. As the ratio b/a increases, the
cutoff line moves to the left and more connective modes are
suppressed

used as the basis set. The matrix W,,, + (b/a)R,,, would
then be the diagonal matrix F; and the process just
described to obtain (s, k) would be exact. Instead, the
{€s¥} of Equations (6a), (7a), and (A 18) is used as the basis
set. This set, however, has proved to be a good approxi-
mation to eigendisplacements of the reference system
{Eoo} (see Paper I and Sobouti, 1977b). The latter set, in
turn, is the asymptotic limit of the convective branch of
{&53

Figure 3 shows sample plots of (s, k,) for three values
of b/a. The region to the left of each curve is the unstable
zone. The modes falling in this zone are of convective
type and, evidently, are burdened with the task of heat
transfer in the star. In agreement with Tayler (1973) we
see that the extent of suppression of convective modes
grows as the ratio b/a increases.
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Appendix A: The W- and R-Matrices

Only the gg-block of W, R, and their derivatives with
respect to a and b are needed in Equation (28). To
calculate these, one in turn requires perturbation expan-
sion of the Eulerian changes in pressure and density.
From proposition I of Paper I, we recall that €,’s are
those displacements of the reference fluid which leave the
pressure equilibrium undisturbed. That is

8o = =PV & — Vpo-§, =0 (Ala)
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(for the time being the superscripts on the basis vectors €,
are suppressed). Via Equation (Ala), we further find that
the Eulerian variations of the density and of the gravita-
tional potential of the reference fluid also vanish (see
Paper III, Appendix A):

syPO = poV-§ — VPO‘CO =0,

3,Us = G f It — 1| 18,po()d’ = 0.

(Alb)
(Alc)

The first order @ and b terms of Eulerian variations are:

8gpc = —'ypcv'gg - Vpc'cg’ (A2a)
8yPc = —p.V-§& — Vp.- L, (A2b)
8,U. = G [ It = r| 28,00 (A20)

where the subscript ¢ is either a or b. In both the actual
and the reference fluid, the equilibrium pressure is a
function of the density. This, in turn, results in correspon-
ding relations between the first order Eulerian variations
of p and p. These relations are obtained below.

(i) The Relation between 8,p, and 3,p,
Let us write the pressure-density relation as follows:

p=p); p=rpFabd). (A3a)
Similarly, for the reference fluid
Po = Kpj; Po = po(r). (A3b)
From Equations (18b) and (A3) one obtains

_ | _ (%2 — 2o
Dy = [ab]a=b=0 - [dp ab]a=b=0 - po Po- (A4)

Substitution of Equation (A4) in Equation (A2a) for
8,p, and repeated use of Equation (Ala) to eliminate the
term Vp,-&,, wherever occurring, gives

(A9)

8Py = e 9Pb-
Po

(ii) The Relation between 8,p, and 8,p,

To understand the distinction between the two cases for
a and b, let us consider the example of polytropes:

p = Kpt*am = Kpr@*; p = p(r, a, b), (A6)
where we have used Equation (17b) to eliminate » in
favor of a. Equation (A6) states that p, in addition to
being function of p, is also an explicit function of a.

Thus, a more general equation of state than Equation
(A3a) is

p=panp); p=pab). (A7)

On differentiating Equation (A7) with respect to a, one
obtains

—|(%) % , (2
ba = [(ap)a oa + (3a pla=b=0.

(A8a)
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Note the second term on the right hand side of Equation
(A8a). There is no counterpart to this term in Equation
(A4) for p,. For polytropes, Equation (A8a) becomes

YPo

Pa = Po. Pa + ¥Po In po. (A8b)

Substitution of Equation (A8b) in Equation (A2a) gives

Sope = 22 8p0 + 1po¥ L (A9)
Equation (A9), though derived for polytropes, is, how-
ever, general and holds for any fluid structure. A simple
derivation of Equation (A9) in the general case is obtained
by expressing §,p of Equation (A2) of Paper III in terms
of §,p of Equation (A3) of the same paper and then
differentiating the result with respect to a.

We are now ready to compute the matrix elements.
The pair of superscripts which designated a basis vector
will be restored; thus, & [cf. Eq. (6a)]. The Eulerian
variation of Equations (Al) and (A2) will also be
specified by the superscripts of their corresponding vector.
For example, 8%p, will denote the first order pressure
change (with respect to @) induced by &¥. Correspon-
dingly, a typical matrix element W will be designated
by two pairs of superscripts of its generating vectors &%
and .

a) The W-Matrix

After some integrations by parts, the defining Equations
(4a) and (2a-d) give

Wiisk — _ j V8% pdy — f g Upssepdo

- f 88p85Ud. (A10)
A perturbation expansion of Equation (A10) is obtained
by substituting the expansions of Equations (18) for p
and p and the expansions of Equations (A1) and (A2) for
various Eulerian variations and separating the zeroth and
the first order terms. The zeroth order matrix vanishes:

Wessk = 0. (A1)
The first order matrices become
Wi = [ g (y2 o, — o), (A12)

where ¢ = aor b. In deriving Equation (A12), Equation
(A1) is used to eliminate &% - Vp, from the second term in
the integrand. The self-gravitation term, the third integral
in Equation (A10), has no contribution to the first order
matrices W, This is because of the product 8,p §,U in
the third integral, which vanishes in both the zeroth and
the first order. This provides a justification for the com-

673

mon belief that, at least in the course of convective
processes, the effects of self-gravitation are negligible.
Substitution of Equation (A5) in Equation (A12)
gives
Wiksk = (. (A13)
Werecall that W,,, arises from rotation because of the fact
that the pressure and the density of the rotating fluid are
different from those of the non-rotating one. That is,
W, 1s the contribution of the centrifugal forces. This,
however, vanishes in the first order. 'Therefore, we con-
clude that the Coriolis forces alone affect the convective
motions (a) by assigning a toroidal component to each
convective motion [see Equation (15)], and (b) by altering
the eigenfrequencies and eigendisplacements of the con-
vective modes [see the R-matrix in Equation (28)].
Substitution of Equation (A9) in Equation (A12) gives

Wi = — [ V-GV G (Al4a)
Employing the spherical harmonic expansion of &,
Equation (6a), and using Equation (7a) to eliminate the
non-radial component of €, and integrating over the
solid angles, reduces Equation (A14a) to the following

Wi = - 8 [ 220 e & (A14b)

0

The integral in Equation (A 14a) becomes positive for any
arbitrary £ substituted simultaneously for & and .

Therefore, — W,,, is positive definite. The same can be
inferred from Equation (A14b).

b) The R-Matrix
From the defining equation (B7) one has

Rt = | ot Gaa, (ALS)
where {,, is the component of &, normal to the axis of
rotation. From Equation (6a)

11 t,,@Y,

T+ Dr* a6 6.

o= 2¢:§,Y,s1n0+ (A16)
We note that po, ¥’s and x’s are functions of r only. From
the symmetries of the spherical harmonic functions and
the particular form of the angular integrals appearing in
Equation (A15), it follows that all elements of the
R-matrix, for which / is different from k or k + 2,
vanish:

tl ks —
099 -

I#k or k+2. (Al7a)

For the non-vanishing elements, on substituting Equation
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(A16) in Equation (AlS5) and carrying out the angular
integrations, one obtains

1
Ck — D@k + 3)

tie, sk _
Ro3s* =

sk,tk
ROQO -

{2(k2 k=0 [ puior s

- f poldexe” + %"xé"']
2K + 2%k — 3 .
(_k(TIT_) PoXe X5* dr}, (A17b)
Rtk Sk+2 Rsk+2tk [(2k + 1)(2k + 5)]112

@k + Dk + 32k + 5)

{ e+ 0+ 2) [ pobter

+ [ pol =G + D + e+ Do 2

+ Jpxtk'xsk+2/dr} (Al7C)

The elements corresponding to / = k — 2 are obtained
from Equation (A17c) by replacing k with k — 2.

Asymptotic Behavior of the Elements of R-matrix at
Large Wave Numbers. The scalar functions, y,, appearing
in Equations (A17), are given by Equation (7a):
X =+ 2

g (7a)
A possible ansatz for i, is suggested in Section V of
Paper 1:

Y = — 3 POPO pl+2t-2

4G o2 (A18)

This is actually a crude solution to the differential
equation governing the g-type Lagrangian displacements.
The ansatz has the proper behavior, required by the
differential equation, at the center and satisfies the proper
boundary conditions at the surface of the fluid. Numerical
computations of Sobouti (1977b) also confirm that the
ansatz of Equation (A18) is capable of locating the g-
modes systematically and in a rapidly convergent manner.

On using Equations (7a), (A18), (A3b), and the
Lane-Emden equation governing p, (to eliminate the
second derivative of p,, wherever occurring), the follow-
ing asymptotic behaviors of the diagonal elements of R
have been found:

R > j ool & (A19)
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as k — oo, but s and ¢ remain finite;

42k + 2k — 3)ts e dr
@k — D@k + dk(k + 1) o

ik, sk _y
R099

(A20)

as ¢t and s — oo, but k remains finite. Reductions leading
to Equations (A19) and (A20) are straightforward but
elaborate.

Appendix B: Reduction of Equations (8c) and (14)

a) Closure Relation

The inner product of two displacements § and &' of the
fluid is suggested by Equation (14c)

& o) = f pE*-E'db. (®B1)

Let {&*} be a complete orthonormal set in some subspace
of the Hilbert space to which the Lagrangian displace-
ments of the fluid belong. Thus,

(', %) = 3.

To obtain the closure relation for {€'}, expand an arbitrary
€ in terms of this basis set

@ = > T, pH),

(B2)

(B3)

where s could be a discrete and/or continuous label. The
inner products, (¢%, pE) are the expansion constants.
Expressing these constants in their explicit form of
Equation (Bl) and requiring that Equation (B3) should
be anidentity for each three-dimensional space component
of § and at all points r leads to the closure relation

>, LmpE) ) = 8,3 — 1),

where i,j = 1,2,3 denote space components of the
vectors in some coordinate system.

(B4)

b) Reduction of Equation (14)

Let the basis set {€}, for the toroidal subspace of the
Lagrangian displacements, be orthonormal. The (pq)
element of the Coriolis term in Equation (14) becomes

Q(CouSi eyt = Q> CHCR. (BS)
With the assumption of orthonormality, S, is a unit
matrix. Substituting for the C-matrix from Equation (4b),

and rearranging the order of integrations over the space
coordinates and the summation gives

Q2 Z CHClE = 3ijkelmngjgm

[ [ peorzz [z ACYC (r')]cz,,(r')dv &, (B
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where ¢, is Levi-Civita symbols. Equation (B6) with the
closure relation (B4) reduces to

Q2% cy
r

v = j PR x T%)-(& x Ldb

= — Q2R (B7)

Equation (B7) is employed in the reduction of Equation
(14) to (14a).

¢) Reduction of Equation (8c)

From Equations (8c) and (13), the ith space-component
of the toroidal term of an eigendisplacement &2, is

2iQ
> Lz = ’ 75 2 BTz (BY)
q
By the orthonormahty of {€,}, Equation (B2), S; is a unit
matrix. Substituting for C,, from Equation (4a) and
interchanging the order of integration over the space
coordinates and the summation over g, gives

2, Bz

2
eﬂlek
e

J [Z L))y )] () ZE5dv'

2i
= 8ithstzzf§

== (B9)

or

Zzz w——sz x > {2z
b4

Equation (B10) reduces Equation (8¢) to (15).

(B10)
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