FT9BDAGA - 7.789C ~759

Astron. Astrophys. 89, 259-263 (1980)

ASTRONOMY
AND
ASTROPHYSICS

Two Basis Sets for the g- and p-modes of Self Gravitating Fluids™

V. V. Dixit!, B. Sarath?, and Y. Sobouti!

! Department of Physics and Biruni Observatory,
2 Department of Mathematics, Shiraz University, Shiraz, Iran

Received November 5, accepted November 26, 1979

Summary. Completeness of the sets of trial functions used in the
numerical calculation of the eigenvalues and eigenvectors of the
g- and p-modes of convectively neutral fluids is explicitly shown.
Also, in the case of g-modes, it is proved that the eigenvectors
obtained by the Rayleigh-Ritz variational method do converge
to the actual eigenvectors.
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I. Introduction

Stability of a system in equilibrium could conveniently be studied
by inspecting the stability of the normal modes of the system.
The crucial question, however, arises whether one has knowledge
of all the modes and whether the set of the modes is complete.
In connection with self gravitating fluids this question has been
raised by some investigators (e. g., Lebovitz, 1965; Detweiler and
Ipser, 1973; Ipser, 1975) and partial answers have been provided
by some authors (e.g. Eisenfeld, 1969).

Completeness of the normal modes also occupies a central
role when one is dealing with perturbed systems. It is a common
practice to expand the eigenvalues and the eigenfunctions of a
perturbed system in terms of those of the corresponding unper-
turbed system. One of the basic assumptions of such a procedure
is the completeness of the eigenfunctions of the unperturbed
system. Without a completeness theorem, there will be no guar-
antee for convergence of the perturbation series to the proper
limits.

A closely related problem is the variational calculation of the
eigenvalues and eigenfunctions in a Rayleigh-Ritz approximation.
In this scheme, one approximates the eigenfunctions by a linear
combination of a set of given trial functions. To ensure that in
higher and higher approximations the results will approach the
exact values and one will be able to pick up all the modes, the set
of the trial functions must be complete. Among the recent astro-
nomical literature hinging on the problem of completeness we
wish to quote the following. Chandrasekhar (1964), and Chandra-
sekhar and Lebovitz (1964) have used a set of even powers of r
in their variational calculation of the eigenfrequencies of poly-
tropes. Their set is incomplete and gives no information on the
g-modes. Robe and Brandt (1966) have closely followed the former
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authors using the same set. Sobouti (1977a, hereafter referred to
as Paper I) and (1977b) has presented some variational calcula-
tions, by introducing two sets of trial functions. A proof of the
completeness of these sets will be given in this paper. Sobouti et al.
(1978) have used the trial functions of Paper I to calculate the
g-modes of white dwarfs. In the context of perturbation expan-
sions, Clement (1964) has considered some non-radial p-modes
of rotating polytropes. Simon (1969) has expanded the radial
oscillations of a rotating fluid in terms of those of the corre-
sponding non rotating fluid. Silverman and Sobouti (1978) and
Sobouti and Silverman (1978) have given the normal modes of a
fluid of arbitrary temperature gradient in terms of those of a
convectively neutral fluid (the polytrope 1.5). Sobouti (1978) and
(1980) has expanded the normal modes of a rotating fluid about
those of a convectively neutral and non-rotating fluid.

In this paper, first we give a proof of the completeness of the
sets proposed in Paper I. These sets are obtained by analyzing
the normal modes of oscillations of a convectively neutral fluid.
These sets of trial functions have been used to get the numerical
values for the approximate eigenfunctions and eigenvalues using
the Rayleigh-Ritz variational procedure. Quite general consider-
ations of variational principle show that the approximate eigen-
values thus calculated converge to the actual eigenvalues. Using
results of Eisenfeld (1969), we prove that the approximate eigen-
functions also converge to the actual eigenfunctions, at least in
the case of the g-modes. Thus, we hope to establish the usefulness
of this scheme in that it gives quickly converging numerical values
for both the eigenvalues and eigenfunctions of the normal modes
of oscillations.

I1. A Review of the g- and p-type Displacements

Let p, 0, and U denote the pressure, the density and the gravita-
tional potential of a self-gravitating fluid. The adiabatic Lagrang-
ian displacements of the fluid, &(r, r), will be governed by the
following equation

__ ¢
Wé_ Q atz» (1)
where the operator %" is defined as follows:
1
W§=V(6p)—55QVp—QV(5U), )
op=—ypV -&—-&-Vp, (2a)
Og=—gV -&—& Vo, (2b)
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V2 (6U)y= —4nGdg, (2¢c)
and where y is the ratio of the specific heats of the fluid. The
boundary condition for £ on the surface, R, of the fluid is

Ap=—ypV - €=0 onr. 3)
The vector £(r, t), defined over the volume of the fluid and for

— oo <t< oo belongs to a Hilbert space H in which the inner
product is defined as follows:

(&, 08)=[¢&* -oldv, &, ¢eH. @)

The domain of integration is the volume of the fluid and the
density g is positive definite. The norm of a displacement & will
be denoted by

[1E11=(&, e&)'. (42)

The operator # is real symmetric (Ledoux and Walraven, 1958;
Chandrasekhar, 1964) in the sense that

&, H#H=#¢,e), & &eH. %)

It is customary (e.g. Ledoux and Walraven, 1958) to expand
E(r, t) in terms of its spherical harmonic components. Thus,

g P(r, t) 1 X(r,1) 01T
N A T ES 00 °
1 X(rt) 1 8y
[(I+1) r sinf 6¢]’ ©®

where ¥ and X are two scalar functions to be determined from
Eq. (1). Hurley et al. (1965) have studied the behavior of V - &,
and the radial component of £, near the center (see also Smeyers,
1966). Their conclusion, in our notation, is as follows:

%—»a+brz+cr4+ L, =12,
r

S>drr e+ ..., [=0, (7a)
"”r;zx St Aty 1=0,1,2, ..., (7b)
asr—0, wherea, b, c,d, e, f, g, h, ...are constants. The equation

of motion (1), governing the time evolution of &,,, will preserve
the (I, m) symmetry of the displacement. These considerations
amount to saying the following. (a) Two displacements &,,, and
& with (I, m)#(I', m’) are orthogonal to each other, that is,
(Erme> 0€) =0, which follows immediately from the orthogo-
nality of Y,(0, ¢). (b) The Hilbert space H is divided into sub-
spaces H,, whose elements, &,,, have the given (/, m) symmetry.
(c) The operator of Eq. (2) defined over H,,, is an automorphism
transforming H,, onto itself. In what follows, we shall consider
only the subspace H,, with elements &,,. For brevity, however,
the subscripts (/, m) will be suppressed.

Of particular interest are the normal modes of Eq. (1). These
will be denoted by & (¥, X*) exp (i]/s_st), s=1,2, ..., where the
scalars P*(r) and X*(r), 0<r <R, define & according to Eq. (6)
and satisfy Eq. (7) near the center. These normal modes satisfy
the eigenvalue equation

W E=£598, s5=1,2, ... (8a)

Any two eigendisplacements, & and &', belonging to two distinct
eigenvalues, ¢° and ¢", are orthogonal in the sense that

(&%, 08)=0 (8b)

The discussion above is general and holds for any spherical
volume of fluid with any arbitrary internal distribution of tem-

e+¢.

perature. In a convectively neutral fluid there exists a simple
scheme of classification of the motion into a g- and a p-type.
This will be discussed below.

a) The g-type Displacements

The fluid under consideration is assumed to be convectively

neutral, thus,

dp (QD) P
—‘= — =_. 9
do \00/u © ®)

According to Paper I, a displacement of g-type &,(r), leaves
the pressure equilibrium of the fluid undisturbed, i.e.
o,p=—ypV - &,—Vp - £,=0. By virtue of Eq. (9), the density
change 6,0 and, as a consequence of Eq. (2c), 6,U will also vanish
simultaneously. Thus, &,(r) and &,(r)¢ will be exact solutions of
Egs. (1) and (5), and will belong to H,, a subspace of H. The
vanishing of J,p leads to a relation between the scalars ¥, and
¥, associated with &,. Thus,
= 'P;+f; Y, = 'p;+% ¥, (102)
where the second equality follows from Eq. (9). The factor ¢'/¢
in Eq. (10a) goes to infinity as (r—R) ™' near the surface of the
fluid. In order for X,(r) and hence the non-radial component of
&, to remain finite, one must have

¥, ()—(r—R) as (10b)

r—R.

Let us note in passing that Eq. (10b) is a requirement of the
boundary condition of Eq. (3). Near the center, ¥, and y, should
behave according to Egs. (7).

b) The p-type Displacements

The g-displacements satisfied Eqgs. (10) and were members of a
subspace H, of H. The p-displacements, &,(r, t) are defined to be
orthogonal to the g-displacements. Thus, all §,(r, ¢) will be in the
subspace H,= H— H,, complementary to H,. The orthogonality
condition is

(&, 08,)=0, ¢&eH,, §,eH,, H+H,=H.

(1
Equation (11) leads to the following relation between the scalars
¥,and X, deﬁning &,

(e, =1+1) 1'2% (12)
Derivation of Eq. (12) is given in Paper 1. There is no particular

restriction on ¥, and X, on the surface of the fluid. Near the
center, however, the conditions of Egs. (7) should be satisfied.

The g- and p-basis Sets

In conformity with the properties of g- and p-displacements and
the boundary conditions obeyed by them, Sobouti has proposed
two sets {{5}, s=1,2, ...and {{}}, =1, 2, ... to span the sub-
spaces H,and H,,, respectively. The elements {} and {j,, both have
the spherical polar coordinates of Eq. (6). The scalars ; and
¥, defining {§ are given by '
l//s 3 Iz rl+2$_2,

-_3 I=1,2, ... s=1,2, ... (i3
"= "41G o s (132)
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’ S/ p, S
Xo =V +— 5. (13b)
9 g ,YP g9
These scalars satisfy the basic properties of Egs. (10) and the
boundary conditions of Egs. (7). The factor ﬁ is a convenient

scaling factor and is of unimportant consequence.
The scalars ¥, and y,, defining {},, are given by

Yo=rtETl I=1,2, s =12, ..,
—PAL 120;  1=1,2, ..., (14a)
t
x;u=l(l+1);22=l(l+1)rl+2r—3. (14b)

Again, these scalars satisfy the basic property of Eq. (12) and the
boundary conditions of Egs. (7). Completeness of {¢5} and {{}}
is proved in the next section.

IIL. Completeness of {{3} and {{’}
(i) Criteria for Completeness

Let £=(Y, X) be an arbitrary displacement of the form as given
by Egs. (6) and (7). As before, the indices (/, m) will be suppressed.
We shall consider for the moment only /+0 cases; /=0 forms a
special case and will be discussed at the end of this section. Let
{&}={(", ¥} be either of the sets {{5} or {{5} whose com-
pleteness we wish to establish. Corresponding to any arbitrary &,

there should exist a linear combination &,= ) b5¢°, such that
Lim ||§—&,|/=0, (15)
where &,=(¥,, X,), ¥,= Z bBys, X, = Z bix*’, and b5 are con-

s=1 s=1

s=1

stant coefficients. The square of the norm, ||¢||?, as given by Eq.
(4), is the sum of two positive integrals. Thus,

e =e (7 + g 0] o

Therefore, the requirement of completeness reduces to a set of
two conditions

(16)

Lim jg('P 'P)z (17a)
and

R
Lim [ o(X'— XY dr=0. (17b)
n— o 0

In order to establish Egs. (17), the following theorem and lemma
will be used (see Rudin, 1964).

Stone-Weierstrass Theorem:

Let A be an algebra of real continuous functions on a compact set K.
If A separates points on K and if A vanishes at no point of K then
the uniform closure B of A consists of all real continuous functions
on K. For example, the algebra of even powers of r, {r*%, s=0, 1,

. .}, in the interval [0, R] satisfies the conditions of the Stone-
Weierstrass theorem. Thus, any continuous real-valued function
in the interval [0, R] can be approximated uniformly as a linear
combination of r**, s=0, 1,

261

In establishing Eq. (17), we will have to approximate functions
and their derivatives (say ¥ and ¥’) simultaneously. Ordinarily,
the derivative of a given approximation of a function does not
necessarily approximate the derivative of the function. The fol-
lowing lemma establishes the conditions under which this can be
done.

Lemma:
Let {f,(r), n=1,2, ...} and f(r) be real functions in the domain
O<r<R.If
(a) Limit £, () =/"(r) (18a)
uniformly, and -
(b) Limit £,(0)=/(0), (18b)
then

Limit f,(r)=£(r). (18¢)

(ii) Completeness of {{5}

Let &, =(¥,, X,) be the arbitrary g-displacement. Let the sequence
approximating &, be given by
( g,n> g,n)’ Tg,n': Z bfl ; = Zl bf.X;',
s=1 s=

where the basis vectors {;=(y;, x;) are given by Egs.(13). Eq.
(17a) becomes

fotr,-v,2% = ZB% P2 0) 0P (192)
where

f(r)—pp—r . (19b)
h=3 b (19)

Similarly, Eq. (17b), after some integrations by parts becomes
R R pzplz .

jQ(X;—X;’")z(b‘:j Q3 r2 (f/—j:,’)zdr

0 )

et

212
+@ - 00 - r“}(f—ﬁ.)zdr- (20)
According to our discussion of Sect. II, §,, &, ,, {5 and the defining
scaler ¥, ¥, ., 5, Xy, X, ., and y; satisfy the basic properties of
Egs. (7) and (10). A simple check then shows that f(r) as derived
from Eq. (19b) is a continuous function in [0, R]. Hence, by the
Stone-Weierstrass theorem, we can approximate it uniformly by
J» of Eq. (19¢). On the other hand, at =0, £,(0)=constant for all
n. Thus, by the Lemma above f(r) will also be approximated by
£ (r). Therefore, as n— 0, f,(r)—f(r) uniformly and the right

. hand sides of Egs. (19a) and (20) will tend to zero. This proves

the completeness of {{5}.

© European Southern Observatory * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980A%26A....89..259D

FT9BDAGA - 7.789C ~759

262
(iii) Completeness of {C3}

As in the case of the g-modes, let £,=(¥,, X,) be the arbitrary
p-displacement. Let the sequence approximating &, be given by

n n

Eon=(Cns Xpn)s W= ¥, X, .= Y. Coxs, where the basis

s=1 s=1
vectors {,=(¥,, 1) are given by Eqgs. (14). The integral in Eq.
(17a) becomes

0 s dr % 1y 4 7 (V12

‘EQ_('PP—‘I’,,,..) 7=£ o' Lf (N —f (N dr, (21a)
where

[ —%%, (21b)
(= X": csr?sT2, (21c)

Equation (7a) shows that f”(r) is continuous and finite in [0, R].
Therefore, f, could be constructed in such a way that Lim £/ (r)

—f"(r). Thus, Eq. (17a) is satisfied. As for Eq. (17b), we note that

Xy =I1(+1) l}pi’ =l0+0)r (), =12, ...

(22a)
1 =10+ 1) L35 = 10+ Dr £ ),

Since Lim f, (r)=f"(r), it also follows that Lim X, ,=X,. On the

other hand, from Egs. (7), which hold for any displacement of
p-type, X,(0)=X, ,(0)=0 for all »n. Hence, by the Lemma above,
%_{1};1 X, .()=X,(r), and Eq. (17b) will also be satisfied. This

proves the completeness of {5}.

(iv) The Case [=0

Only the p-modes are defined for the case /=0 and they are radial
displacements of the form €p=(g‘—’, 0, 0> . By the boundary con-
r

dition ¥ - £, —»constant as r— 0, we see that ¥, is a well-defined
r
function in 0 <r < R. Hence, by the Stone-Weierstrass theorem,

it could be approximated by the sequence £,(r) 1 Y, .= 3 By
r s=0

This establishes the completeness of {5} for /=0.

IV. Convergence of Eigenfunctions

In previous papers (Sobouti, 1977a, 1977b) a Rayleigh-Ritz vari-
ational method was used to obtain numerical estimates for the
eigenvalues and eigenvectors. Briefly, the method consists in
transforming the operator Eq. (8a) into an n x n matrix equation
with the help of a suitable expansion of the eigenfunctions in
terms of linear variational parameters. Thus, the n'" approxima-

tion of the eigenvector &° will be given by 5= ) ("Z;°. One is
r=1

then simply left with the solving of the eigenvalue problem for

the matrix equation

w,Zz,=S,Z,E,, (23)

where
Wi=[ (™ - # Pdv, 1=r,s<0, (23a)
SE=[¢™* - ol*dv, 1Zr,s=n, (23b)

Z, is the matrix of the variational parameters Z'* and E, is
the diagonal matrix of the approximate eigenvalues, & .

On the basis of very general considerations of variational
principles (see, for example, Gelfand and Fomin, 1963), it can be
shown that the approximate eigenvalues & tend to the exact
values &' as n—o0. Whether &’s also tend to the exact & is, how-
ever, an open question. Depending on the nature of the operator
it may or may not. The operator #~ of this paper has a countably
infinite number of non-degenerate eigenvalues. Furthermore, in
the case of g-modes, #"/¢ is bounded. We show that for the g-
modes, £’s do indeed tend to &’s. In the case of the p-modes,
#/g is not bounded and the question remains unsettled.

Eisenfeld (1969) has shown that {&/} form a complete set for
the Hilbert space spanned by &(r, ¢) of Eq. (1). So we can expand
the approximate &, in terms of the exact {&'}:
E=2a'd.

j

@9
Let the projection of & on the complementrary subspace of & be
denoted by . Thus,
=y ard,

JjekK

(24a)

where K is the set of indices for which &/ +&". We shall prove that
|lui]|>0 as n—oo. Using the orthonormality of {&}, one has

linl? =Y |adi. @5
JjeK

The eigenvalues of #7, both in the case of g-modes and of p-
modes, satisfy infle'—¢/|=d;>0, e'+¢/. Let the eigenvalues be
arranged in a monotone fashion. Then

o1 o
T lalP <z ¥, lafP I =
JjekK i jeK
1 Ji|12 (od i 2 Ji12 a0 J 26
=d~IZ lan P (& &)+ = Y layPlet—ell. (26)
i jeK 1,<K;
Jei

For the first term on the right hand side of Eq. (26), one has
Lim | |a? (e —&)| = Lim (&, [# & — ! o&i))
Jjek

=Lim el —&'| =0. 27
The first equality in Eq. (27) follows from Egs. (24) and (8a).
The second equality is a consequence of Egs. (23). The third
equality follows from the variational principle. As for the second
term on the right hand side of Eq. (26), first we define a vector

vi= ) C*such that for large enough n, ||vi —&|| is arbitrarily
k=1

small for every j<i. This is possible in principle because { C"} isa
complete set in the Hilbert space. From the choice of & and v},
one has (v}, [# & —&l0€l])=0, j<i. Hence,

Y Pl == Y ladlle’ —&'l= ). (&, [# &—e'ed.))

j<i J<i Jj<i

= Z ‘([éj_vin]’ [’W‘én——algén])l—‘_ |8:.|_£i| Z ‘(Vﬁn Qén)'

jsi jsi

(28)

Using the fact that in the case of the g-modes, # /¢ is bounded
(the proof breaks down here for the p-modes), we get

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1980A%26A....89..259D

FTOBDAGA: - 7.789C ~Z59D

V. V. Dixit et al.: Two Basis Sets for the g- and p-modes
Lim Y |a)Ple/—é'|=0. (29)
T i

Substituting Eqs. (27) and (29) in (26) and noting that d;>0, we
have

Lim ) |gl'F=0.

"7 ek

Thus, we have proved that in the case of g-modes, the & calcu-
lgted by a Rayleigh-Ritz scheme converge to the exact eigenvectors
&'. The proof does not hold for the p-modes as #7/g in p-sub-
space of the Hilbert space is not a bounded operator.
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