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Summary. Linear perturbations of stellar systems with step-like
distributions of the form F(E)H(—E) is studied, where E is the
energy integral, and H is Heaviside’s step-function. If (a) dF/dE >0
and (b) F|dF/dE|~ '/2=0 at E=0, then the operator generating the
self gravitation term in Antonov’s equation is positive. Then the
system is stable against all infinitesimal perturbations of the
Boltzmann-Liouville equation. Polytropes with index 0.5<n<1.5
satisfy conditions a and b and are stable. If a is satisfied and b is not
satisfied, instability is possible. Polytropes with n<0.5 are
examples of such systems. If dF/dE < 0, the operator generating the
self gravitation term is negative and contributes negatively to the
stability of the system.

Antonov’s equation is cast into a form involving functions of
space coordinates only. In the first approximation the perturb-
ation equation is very much similar to the one governing linear
motions of a gaseous body. The first order equation is solved for
radial oscillations of polytropic stellar systems with n>0.5.
Volume and surface density perturbations associated with the first
few radial modes of some of the models are given.

Key words: stellar systems: stability, normal modes — Antonov’s
equation — Liouville’s equation — density waves

1. Introduction

To understand the stability of star clusters investigators have often
resorted to the linearized collisionless Boltzmann-Liouville equ-
ation for the answer. Antonov (1962) pioneered on the subject by
showing that the linear perturbations of this equation are
governed by a self adjoint operator on a six dimensional phase
space. Lynden-Bell (1966), Milder (1967), and Lynden-Bell and
Sanitt (1969) expanded on the analogy between a star cluster and a
corresponding barotropic gas sphere. Lynden-Bell and Milder
derived a sufficient condition for stability. The criterion, however,
did not prove to be powerful and presumably motivated Lynden-
Bell (1969) to develop his Hartree-Fock exchange-operator appro-
ach. Ipser and Thorne (1968), primarily interested in the stability of
general relativistic star clusters, generalized Antonov’s results to
the latter cases. All these stability investigations are of a formal
nature with few or no applications to specific models.

A French school has arrived at a number of concrete conclu-
sions. Dorémus et al. (1970, 1971) show that the isotropic phase
space densities that are constant or decreasing functions of energy
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are stable against radial perturbations. Dorémus and Feix (1973)
and Gillon et al. (1976b) conclude that anisotropic phase densities,
F, that are functions of the energy, E, and the magnitude of the
angular momentum, J, are stable against radial perturbations,
provided dF/0E <0. Gillon et al. (1976a) conclude stability against
non-radial perturbations, provided 0F/0E <0 and 0F/0J <0.In all
these papers the authors use the single or multiple or continuously
varying water-bag models.

All the works cited above deal with the question of stability.
Due to many-dimensionality of the phase space, practically no one
has attempted to solve the actual perturbed Liouville equation for
a realistic or semi-realistic stellar model. The author is aware of
Dorémus and Feix (1972) and of Dorémus and Baumann (1974)
who consider eigen-solutions of one dimensional double water-
bags.

In Sect. II the background material is summarized. It is shown
that the operator giving the perturbation of the self-gravitation is
the product of a positive operator and the sign of dF/dE, the
derivative of the equilibrium distribution function with respect to
the energy. In Sect. III some mathematical preparations are made
for the remainder of the paper. In Sect. IV perturbations of the
distribution function are expanded in powers of the velocity
variable, integrations over the velocity space are carried out, and
Antonov’s equation is expressed in terms of functions of space
coordinates only. In Sect. V the first order eigenvalue equation and
the radial eigenvalue equation are abstracted. In Sect. VI radial
oscillations of polytropic stellar systems are solved and the
corresponding volume and surface density perturbations are cal-
culated. The application to polytropes here is a sample application
to illustrate the usage of the formalism developed in this paper.
Radial oscillations of other cluster models, non-radial oscillations
of stellar systems, and oscillations in the second order of appro-
ximation will appear elsewhere.

II. Antonov’s equation

Let a stellar system consist of a finite number of stars of unit mass.
In a stationary state the system will be assumed to have a
distribution function F(E)H(—E), where

E=1?+U(x), U(x)=-G[F(x,v)x—x| 'dx'dv’,

and H(— E) is the Heaviside step function, H(— E)=1if E<0 and
H(—E)=0 if E>0. The step function ensures vanishing of the
distribution function beyond the escape velocity and confines the
integrations over the velocity space into a domain v <v,, where

v(x)=]/ —2U is the escape velocity from the point x. Let the
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system undergo an infinitesimal perturbation, F(E)—F(E)
+ é(x,v, t). It will be assumed that |@(x, v, t)] < F(E) for all x, v, and
t. This condition, in particular, implies that in the perturbed
configuration still v<uv,. The unperturbed distribution function
satisfies the time-independent Boltzmann-Liouville equation,
DF=0. The perturbed distribution satisfies the time-dependent
equation, o(F + ¢)/0t+ D(F + ¢)=0. The perturbation ¢ satisfies
the linearized Boltzmann-Liouville equation:

8¢ +D¢— [FE—lF(S(—E)]DéU:O, (1)
ot 2
where
0 oU o
D=Uia—xl—a;'b?l, (la)
dF 1 __dH(—E)
dU=—Gfg(x,v)x—x| v, dv'=dxdv. (1¢)

Antonov separates ¢ into symmetric and antisymmetric compo-
nents in v:

¢(x’ v, t)=¢+(x, v, t)+¢—(x’ v, t) . (2)
Noting that D is antisymmetric in v, Eq.(l) separates
correspondingly:

ag* +D¢_=0, (3a)
'3¢

— + D¢ _ +G|:FE— ~Fé(— E)]DM (x, v, )lx—x|"tdr’=0.
(3b)
Eliminating ¢, between the two equations gives:

%p_
ot

where a prime on an operator or a function means that the
operator or the function in question is to be evaluated at x’,v". We
have also made use of the fact that Dg(E)=0 for any arbitrary g.

Equation (4), when J-function is discarded and the remainder is
divided by Fpg, is Antonov’s equation; and in that form the
operations on ¢ _ are self adjoint. We shall, however, retain the
J-function and employ a slightly different form of the equation.
Furthermore, we will consider cases where Fy is either positive,
zero, or negative for all E. Let:

Fy=sign(Fp)|Fgl, sign(Fg)=+1, (5a)
¢—(x9 v, t) = lFE|1/2f(x’ v, t) - (Sb)

We note that f is antisymmetric in v, f(x,v,t)= —f(x, —v,1).
Substituting Eqs. (5) in Eq. (4) and dividing by |Fg['/? gives:

—D2%_ —G[FE— %F&(—E):I DID'¢ |x—x|"'dr'=0. (4)

?;f +Hf+ = G51gn(FE)F|FE| 12

-8(—E)D|F5|"*D’f|x —x|"'dv'=0, (©)
where

W =W,+sign(Fp)¥#>, (6a)
W.f=-D?, (6b)

W,f=—G|Fg|V*D [ |Fp/'?D'f |x — x|~ dv’. (60)

The operators #~, %, and #/, are all symmetric, in the sense that
{ g* W hdr ={ (W g*)hdx for any bounded functions g and h on the
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phase space. This in turn follows from the fact that D is real
antisymmetric, in the sense that { g*Dhdt = —f (Dg*)hdr.

The operation containing the §-function in Eq.(6) is not
symmetric. If, however, F|F |~ 12 =0 at E =0 (mild discontinuity),
this term vanishes and Eq. (6) becomes an eigenvalue problem for
the symmetric operator #". In the remainder of this paper we shall
mainly deal with mildly discontinuous distributions. For the
standing wave solutions of such systems, f=f(x,v)exp(iwt),
Eq. (6) becomes

*f=WYf. ™

The symmetry of # -operator ensures that the eigenvalues, w?, are
real and any two eigenfunctions f; and f; belonging to two dlstmct
eigenvalues are orthogonal, in the sense that | f;*fdt=0.

In the case of severe discontinuities, F|F|~1/?40 at E=0, the
operation on f in Eq. (6) contains the non-symmetric d-function
component. The possibility of complex eigenvalues and, therefore,
the possibility of (perhaps vibrational) instability is not ruled out.
Polytropes with index n<0.5 are examples of severe discontinu-
ities. Polytropes with 0.5<n<1.5and 1.5 <n are examples of mild
discontinuities. The intermediate polyirope n=1.5 has
F=constant and Fy;=0 (see Sect. VI). The transformation of
Eq. (5b) and, therefore, Eq. (6) are not valid for polytrope 1.5. We
shall come back to this shortly below.

One may obtain a variational expression for w? by left-
multiplying Eq. (7) by f* and integrating over the phase space.
Thus,

w?=[W,; +sign(F)W,]/S, ®
where
S={ f*fde>0, (8a)
—] f*W, fdr={ Df*Dfdr 20, (8b)
W, =[f*#, fdr=G [ |Fg|'*|Fg|'"?
-Df*D'f'|x —x'| " drdt'=0. (8¢)

The S-integral is positive definite for f+0. The W,-integral and
therefore the #;-operator is positive. They can be zero if and only
if Df =0 throughout the phase space. These properties are evident
from Egs. (8a) and (8b). That the W,-integral and, therefore, the
W ,-operator are also positive is shown below.

Theorem. The W,-integral and consequently the #7-operator are
positive.

Proof. From Egs. (5b), (3a), and the exponential time dependence
of f one has | |Fg|'>Dfdv=iwde, where 9= | ¢, dv is the pertur-
bation in the mass density. Similarly,

—GIIFR"2Df lx—x]"dv

= —ioG | so(x)|x— x| tdx'=iwdU ,
where SU is the perturbation in the gravitational potential. It
satisfies the Poisson equation V28U =4nGég. In terms of dg and
6U, one now has

Wo=—|w* [ &0*6Udx

all space
__ el

P26U*5Udx .
4G allspace *

%a)

Extension of the domain of integration over all space is per-
missible, since o =0 outside the volume of the stellar system. On
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integrating Eq. (9a) by parts and letting the integrated part vanish
at infinity, one obtains:

Jeof?

W, = [ V(sU*F-(6U)dx>0,

4nG space

(9b)

where again we observe that W, =0 if and only if Df=0. Q.E.D.
An alternative and entirely different proof of the theorem is
given by Sobouti [1980, Eqgs. (9.10)]. There, the author gives a
spherical harmonic expansion of W, and shows that every term in
the expansion is positive.
We are now ready to announce the following:

Theorem. A system with the equilibrium distribution of the form
F(E)H(—E), in which F is an increasing function of
E[sign(F;)=1] and F|Fg '?=0 at E=0, is stable against
infinitesimal perturbations of the collisionless Boltzmann-
Liouville equation.

The proof is evident from Eq. (8) and the positive character of
the W;-, W,-, and S-integrals. Restriction to F|Fz|~¥?2=0at E=0
is to ensure that the negative -function singularities at E=0 can
be discarded.

It is remarkable that all the works cited in Sect. I consider
dF/dE <0 as a condition for stability. What the present analysis
shows is to the contrary. A positive energy gradient of F has a
stabilizing effect; and a negative gradient lowers the eigenfre-
quencies and makes the system less stable. Thus, the polytropes with
index 0.5 <n< 1.5 satisfy the conditions of the theorem above and
are stable to all infinitesimal perturbations (see Sect. VI). Henon’s
(1972) numerical experiments on polytropes 0.5<n<1.5 are in
complete agreement with the present conclusions.

Lynden-Bell (1967), discussing homogeneous media, uses
distribution functions of the type F+ M, where M is a constant
step function. He finds instability for certain range of the data.
Although there is no strict parallelism between Lynden-Bell’s
problem and the possibility of instability in our severely discon-
tinuous step-like distributions, there may be a kinship between
the two problems.

Constant step function distribution

For the polytrope 1.5, the distribution is H(— E) with the energy
derivative 15(—E). The transformation of Eq. (5b) and conse-
quently Egs. (6)(8) are not valid (for F;=0). However, multiplying
Eq. (4) by ¢* and integrating over the phase space yields:

w*[ ¢*¢_dv=[ D¢* D¢ _dr _
—3G{(DP_),=, dx [ D'¢"_|x—x|""dv.

The term D¢_ =0¢ . /0t vanishes at the escape velocity. What
remains is an eigenvalue equation with positive real 2. Thus,
constant step distributions are stable. This derivation is an
alternative to the derivation of Dorémus et al. (1971) who employ
their water bag technique. The numerical computations of Sect. VI
for n=1.5 are solutions of ¢ _ of the above equation (with the third
term omitted) rather than the solution f of Egs. (8).

II1. Moments of functions of energy

This section is devoted to certain preliminaries for manipulating
the eigenvalue Eq. (7). First we introduce a set of constant tensors
which have been found useful in the study of the moments of
functions which depend on the magnitude of the velocity but not
on its direction.

The a-symbols

A set of completely symmetric constant tensors of rankn, af® ;

n=0,2,4, ..., are defined by the following recursion relation
o) =00 Dt 0000 (10a)
a®=1, (10b)

where §;; is the Kronecker delta. Contraction of «” over a pair of
indices gives

oy, =(n+ Do 3. (11)
Examples of the a-symbols are:

=4, (12a)
A =00+ 040+ 6udj. (12b)

The a-symbols of odd rank are zero.

Integration over space directions

Let u be a unit vector in a (6, )-direction. Its direction-cosines are
u, =sinfcosg, u,=sinfsing, and u;=cosf. The integral of the
product of n such direction-cosines over space directions is given in
terms of the a-symbols. Thus,

4n

_”.uil...uinsinededq) —(_l.lja?ll) s n=0,2,...,
(13)
Examples of Eq. (13) are
. . 4n
[sin0d0dp=4r, [uu;sin6dfdeo= ?5,.,-,
etc. Note that the integral is non-zero if the indices iy, ..., 1, are

pairwise the same. Otherwise it vanishes.

Moments of functions of energy

Let H(E) be any function of E=
of H as follows

1v? + U(x). Define the n'® moment

HP . (U)=[{H(E)y,, ...v;, dv. 14
Let v, vu;, where v is the magnitude of the veloc1ty vector and u; is
its i direction-cosine. Substituting this in Eq.(14) and using

Eq. (13) gives:

HP , (U)=H"U)® .., (15a)

where

H™(U)= L—V:}ﬁH(E)v"”dv. (15b)
13...(n+1) o

The following recursion relation exists for H®(U):

dfg g , (15¢)

or |

VH"= —VUH®"?, (15d)

Equation (15c) can be verified by direct differentiation of the
defining Eq. (15b).

The moments of |Fg|*/2 and 1 will be encountered frequently in
the remainder of this paper. The following notation is reserved for
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these moments:

4 V20
Y""’:m i |F g0 2dy, (16a)
4r V-2U
() _ Lant2
M =3 gy ) LT
- (=20)r (16b)
13...(n+3) ‘

Of particular interest are the moments of the equilibrium
distribution function, F(E). Let

4n
(n) S
™) 13...(n+1)

Examples of I'™ are

I'©=g=4n{ F(Eysdv

and

I'®=p=(4n/3)| F(Eyv*dv,

where ¢ and p are the conventional density and pressure of the
stellar configuration, respectively. According to Eq.(15d) they
satisfy the following:

Vp=—oVU. (18)

Thus, the celebrated equation of hydrostatic equilibrium emerges
as a special case of a far more general relation, Eq. (15d).

V-2U
[ F(Ey"*2dv. a7
0

IV. Expansion of functions in terms of the moments
of their Fourier transforms

The perturbation distribution function f(x, v) is antisymmetric in
v. Let &(x, k) be its Fourier transform with respect to v,

fx,0)=] &x, k) sin(kv;)dk .
One has the expansion
sin(kp;)- 3 (— D™ V2(kp,)"/n!
="2(— =Dk, kv, v /0t

where the summation is over odd values of n. Substituting this
expansion in Eq. (19a) and carrying out the integration over the
k-space gives:

(192)

(=10
fx,0)= Z—é‘"’ D0, m=odd, (19b)
where &7 _; (x) is the n'® moment of &(x, k) in the k-space:
&Y. () =1 &x, bk, ...k dk, n=odd. (19¢)

Equation (19b) is an expansion of f(x,v) as a power series in v;.
Dependence on x now appears in &7 ;. the moments of the
Fourier transform of f(x,v). From the inverse Fourier transfor-
mation one has:

E(x, k)= % § f(x,v)sin(k;v)dv,

(20a)

(m—1)/2
&, k)——gzi%Lﬁl K, .. (20b)
0@ =0f(x,0)v; ...0; dv, m=odd. (20c)

We observe that &(x, k)is ant1symmetric in k. Corresponding to the

limiting velocity, v,=]/(—2U), there is a limiting value for
k,k,=m/v,, which is the first zero of sin(k,v,)=0.
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One may go one step further and express ™ in terms £™ and
vice versa. Substituting Eq. (19a) in Eq. (20c) and carrying out
integration over v by means of Egs. (14), (15), and (16b) gives

( -V .
i %)= Z—a}'f‘...'}’mil...h&? 27U (21a)
Inversely:
&Y. ()= —32—06‘”1311 35,00 (=7 20),
(21b)

where ®U(U) is given by Eq. (16b). With the aid of Eqgs. (19)«21)
the other quantities can now be expanded.

Expansion of Df

0
Letting D=v;,— ox, ™ > operate on Eq. (19b) gives:
(_1)(n—1)/2 aEM
Df= m
f % n! 536,,,“ U vx a ;,_.,_16“ win
[0y Vi oo Vi F e +055,, Uiy - Ui,._l]}- 22)

The S-integral

Substituting Eq. (19a) in Eq. (8a), integrating over the directions of
the velocity vector by Eq. (13), and using Eq. (16b) gives:
( _ 1)(m +n)/2

(m+n)
iy eiimjteeejn

S=-%

e j (p(mﬂ)i(m) ;mé(")
m,n ‘n.

J1 .ln

m,n=odd integers. (23)

The W-integral

The expression for this integral is lengthy, but straightforward to
obtain. Substituting Eq. (22) in Eq. (8b) and integrating over the
velocity space, as in S, gives:

j'aé(m L oEm

11--tm “3J1.e-Jn -Jn ¢(m+n+2)dx

0x; 0x;

Jn+1

W, =3 {Ai1~~-im+1yj1---jn+l

n,m Im+1

'l
a Jl -Jn
wim ox;,,

(M) (n)
+C11 cim+ 15 J1-- ]n+l".€ 11 Jn

aU Q(m+n)d

(m)
+Bll cdm+ tad1e. ]n+l".é ame.l

. 3_U B_U Pim+n— z)dx} , (24)
axim“ 6x.in+1
(_1)(m+n)/2 m+ 2
—_ m +
Ail...i,,.ﬂ,jl...j,.ﬁ— - m—!n! ail...?,,.“jx...j,.“’ (24a)
(_ 1)(m+n)/2
Bil it Gt dnt 1 W
-[6;,,, ,08m*® ., . +permutations of i; to i,], (24b)
(_ )(m+n)/2
Ci1~~~im+1-j1...jn+1= - min!
. (m+n—2)
[5im+ liléjn+1jiai’2n~~~;lrni2-~~jn
+ permutations of i, to i, and of j; to j,,,]. (24c)
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The W,-integral

The integral | |Fg|*/2Df dv=iwde appears in Eq. (8c). Substituting
Eq. (22) in this integral, and using Egs. (13), (10a), and (16b) gives:

iwdo ={ |Fg|\*Df dv

—)m-1)/2
e L 0 U -
Substituting Eq. (5) in Eq. (8c) gives:
(m-+m)/2
——ox EOT Dot gty
dxdx’
. T(m+ 1) g(m) [I/(n+ 1) ’ 26
ol .m]a;m[ Gui ey @9

im+1

where the “prime” on the bracket indicates that it is to be evaluated
at x.

The main features of the formalism are outlined. The next step
is to attempt solution of Egs.(8) and (23)24) in successive
approximations. Equations (23)26) involve integrations over the
x-space, only. Difficulties of dealing with the full six dimensional
phase-space, and along with it some of the conceptual obscurities
are removed. In the first approximation close similarities with the
linear oscillations of gas spheres have been detected. Some of these
similarities will be pointed out and utilized below when we discuss
radial oscillations.

Remarks on truncated series and operators

The perturbations f(x,v) of Egs. (6)«8) belong to a Hilbert space
H = H,QH, where #, and 5#, denote the two components of #
in the configuration variable x and the velocity variable v,
respectively. The operator #° of Eqs.(6) defined on 3# is
Hermitian. Therefore, its eigenfunctions form a complete set and
can serve as a basis for »#. Truncation of the series of Eq. (19b) and
the subsequent equations at the n'® term is equivalent to confining
oneself to a subspace #'(n)=#,@#,(n) of the fuller space #,
where #,(n) is the vector space of the n'® order polynomials in v,
and is a n-dimensional subspace of #,. Let the #  operator
defined on s#(n) be denoted by #'(n). This last operator is
Hermitian on #(n) and therefore its eigenfunctions form a
complete set in s#(n). One further observation: It was found in
Sect. IT that the S-integral was positive definite and W, and
W,-integrals, or their corresponding operators % and %, were
positive. Any n'® order truncation of these integrals and operators
will have the same positive character as the original integrals and
operators.

V. The first order eigenvalue problem

Let us repeat Eq. (8) here:

vt +Sig;1(FE)VVZ ' ®

Keeping only the first m=n=1 terms in Eqs. (24)-(26) gives

S=[ D¢ dx, @7
0¢&; Bé 0&; 08, 9¢; 0&;
(4) i U6i
m=fe [6 6x +6xj6xj+[‘)x 0x:|dx
(4)
w22 fiaé #0020 2 e
Ox; ~Ox; 0x; 0x

0&; 0¢; & 0¢;
I¢(4)|:a ax +2a—a—]d +.‘.¢(2)6 5€dx (28)
Wz—Gf [Y’(Z’CJ [Y"Z’C 11x—x/|"tdxdx’, (29)

where the superscript in 551) is suppressed. The second form of W,
is obtained from the first form by integrating the first and the last
terms by parts. The &(x) is a vector field defined over the volume of
the stellar system. In fact, it is an indicator of the macroscopic
velocity of the perturbed configuration. From Eq. (21b), keeping
only the first term, one has

Pf(x),

32n3
&ilx)= 1757: -

where fi(x)=] f(x, v)v,dv is the macroscopic velocity. As pointed
out at the end of the last section, the first order S is positive definite,
and the first order W, and W, are positive. These conclusions
follow from the corresponding characters of Egs. (8), which hold
for any arbitrary f(x,v). In Egs. (27)~29) it is assumed that f(x, v)
=¢(x)v;, which is the first term of Eq. (19b).

A differential form of Eqgs. (8) and (27)+29) can also be obtained
by requiring w? to be stationary with respect to arbitrary varia-
tions 6&(x) of £(x) which vanish at the boundary of the configura-
tion. We skip the derivation and give the final result. Thus,

0? @D = [ +sign(F)W,1E; » (30)
where s p
=™ (@) 5k
"///16, z]k a I:Q Bx,]
oM 9t 0 [ o™
k-2
Ox; 0x; 0x;| Ox;
00? oU
~ o a i (30a)
0
- _GP® w2 . 0
Wity =GP0 Ak i (30)

The operators #; and ‘//fz are self adjoint. This, which can be
verified easily, is a consequence of the self adjoint character of the
main operators of Egs. (6¢) and (6d).

The first order density waves

Should perturbations of the type considered here have any
relevance to actual stellar systems, then the best candidates for
observation is the density perturbation, ¢ ={ ¢, dv. Integrating
Eq. (3a) over the velocity space, substituting Eq.(25) in the
resulting expression, and retaining only the first term of the
expansion gives
i 0
o= w 0x;

—[PP&]. (1)
A wave-like behavior of this quantity is termed a density wave here.
Associated with ¢ is the surface density perturbation. Both
volume and surface density perturbations will be calculated for the
models considered here.

The first order radial oscillation

In (r, 0, ¢) coordinates let &;=[&(r), 0,0]. To obtain the appropri-
ate S-, W;-, and W,-integrals, we found it convenient to write
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Egs. (27)+29) in a covariant form, and then to work out various
covariant derivatives in the spherical coordinates. In this way, for
three of the terms in the W, integral of Eq. (28) we found

0&;/0x;=d&/dr +2¢/r,
(aéi/axj) (aéi/axj) = (aéi/axj) (afj/axi) = (df/d")2 ‘|‘2CZ/T2 .
Equation (27) reduces to:

R
S=4zn { DDE%2r, (32)

where R is the boundary radius of the system. Equation (28) gives:

{8220 o8] S

R @(4) R (2)
2jd [dé 25] (I,dfr dUéz Zd} (33a)

Integrating by parts to eliminate d¢/dr terms and d&®/dr, and
using the Poisson equation r~2d(r?dU/dr)/dr=4nGg, and
Eq. (15d) reduces Eq. (33a) to the following:

R 2
aefslan(%) ra
0 dr

R Ao
+2f [3@‘4) tr——+ 2nGQd§mr2] fzdr} . (33b)
0
Equation (29) reduces to:
W= Gl o g o Ly B (342)
dr |x —x|

Expanding |x—x'|~! in Legendre polynomials and carrying out
the angular integration gives:
R
=1612G | [P@12E%r%dr. (34b)
1]
Equation (34b) can also be obtained directly from Eq. (9b). From
Eq. (25) and the Poisson equation one has

V28U = —4nG(i/w)V - [PPE].

For radial perturbations both V56U and P® ¢ vanish at the surface.
Therefore, V6U = —4nG(i/w)P®E. Substituting this in Eq. (9b)
gives Eq. (34b).

Again a differential equation for radial eigenfunctions can be
obtained from Egs. (32), (34b), and (34a) by a variational tech-
nique. Thus,

W*PIE=W E+sign(FW,E, 33
where
L df 5pwds
Wié =-3 d |: 4 E
3 @)
42 [ B 4 + 2nGg<D‘2’] g, (352)
Wyl = — GPD dj [’2 @Y ——
2 ar’v? dar’ Ix x|
- 167Z2G[q’(2)]2r26 A (35b)

Again the operators # and #, for these radial oscillations are self
adjoint.
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The corresponding density perturbation is
1
509 =~ - 2 4 pryengy. 36a)

In a cylindrical coordinate (w, ¢, z), let r>=w?+ z2. Integrating
Eq. (36a) over the z values gives the surface density perturbations.
Thus,

(R? — @2)1/2

do(@)=2 | dodz. (36b)
0

The surface density waves will be directly calculated from
Eq. (36b).

VI. Application to polytropes

The distribution function for a polytrope of index n can be written
as follows (Eddington, 1916):

Xy . 1
F,(E)= (—Ey"32 — 2
871]/5 for E 2v +U<0

-0 for E>0 (37

where a,, is a constant. The corresponding density, g, ={ F,dv, is:
o= anﬂn( - U)" > (38)

where B, is a definite integral which emerges in the course of
integration over the velocity space. Thus,

u=f =y L2 LD (39)

2 I'(n+1)’
where I'(m) is a I'-function. We shall restrict our analysis to n>1%,
since B, as given by Eq. (39) is not defined. In Egs. (37) and (38) the

2
potential U is chosen zero at the surface of the stellar configura-

tion. Therefore, the velocity of escape defined as v,=]/(—2U)
means escape to the boundary of the system rather than to infinity.
To obtain the Lane-Emden equation, let

2= chn ’ U=— (Qc/anﬂn)llne s

where g, is the cnetral density and o~ 2 = 4nGg (0, 8,/0.)*'". In terms
of the polytropic variables, 6 and {, the Poisson equation becomes:

cz i (Cz d@) -7

For details of polytropes see Chandrasekhar (1939).
The functions @ and ¥ which enter Eqgs. (32)+34) can be easily
calculated. From the defining Eq. (16b) one has:

r=al,

(40)

16 5/2n
= 15 5 ; 052, (41a)
o= 2 n( ; )l o (@ib)
From Egs. (16b), (37) and (39) one gets:

3 1/2
Yj(o)z <81/§7[ n— 5 a,,) ﬁ(2"+ 1)/4
0 (2n+1)/4n
’<a l; ) ganT 14 (42a)
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From Egs. (42a) and (15¢) one obtains:

1/2 8
[ 4RES (2]/§7r n—% oz,,)

2n+5

(2n+ 5)/4n

: ﬂ(z +1)/4 <—Qc gen* 4

" .
amBn

Substitution of Egs. (41)~(42) in Egs. (32)34), and changing the
variable of integration to x=r/R={/{,, where {, is the Lane-
Emden radius of the polytrope, gives:

(42b)

S=AR? i 0%2(x)EX(x)x*dx ,

(43)
0
_ e \'"f61 7/2 ¢y 2
Wl‘“(oznﬂn) {75’6 ax) ¥
1 12 7/2 52d0 2..20n+5/2 2
+ J| =072 +2x0%2 — 4+ (Zx20" 52 | E2(x)dx ¢, (44)
ol 7 dx
Q 1/n 1
WZ=CAR<;"7> I onse(x)xtdx, (45)
'ni-n. o
where the constants 4 and C are
64]/2n% ( o, \*"
-GG e
_ 120(n—31 Blon+ 14 (46b)

@43 B

Note that C is dimensionless and vanishes for n=3. The integrals
in Egs. (43){45) are also dimensionless. This leaves

dim (W, + W,)/S = (0c/2,B,) " ""/R* =4nGo L5 .

The factor 4nGg, is chosen to be the unit of the eigenvalues w?.

Numerical results

The eigenvalue equation w?=[W, +sign(Fp)W,1/S, for poly-
tropes is solved by a Rayleigh-Ritz variational procedure. A brief
description of the method along with a short account of the trial
functions is given in Appendix A. The eigenvalues corresponding
to from one to eight variational parameters, and for polytropes
n=1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 are given in Table 1. The
eigenvalues are in units of 4nGg,. The seventh and eigth eigen-
values in Table 1 indicate orders of magnitude only. They are,
however, included to help to appraise the convergence of the
variational results. The rapid convergence of the eigenvalues
should be credited to the completeness of the set of the trial
functions of Eq.(A.6) below. No negative eigenvalue, i.e., no
instability is detected at this stage.

Polytropes of high index have high central condensations and
are physically extended systems. In Table 1 as the polytropic index
increases the eigenvalues decrease monotonically. We have found
that both W, and W, integrals decrease to zero with n increasing to
5. The W,-term, however, decreases much faster than the W;-term.
This behavior is shown in Table 2, where w?, W,, and W, for the
first radial modes are calculated for various polytropes. The
W,-term expresses the effects of the self-gravitation perturbations.
For 0.5<n<1.5 it contributes to the stability of the system. For
n=1.5 it is zero, and for n>1.5 it decreases the eigenvalues.

By the theorem of Sect. II the polytropes 0.5<n<1.5 are
stable; for sign(Fz) = +1and F|Fz|~/2=0at E=0. By the work of
Dorémus et al. (1971) the polytropes n> 1.5 are also stable, for

Table 1. Radial eigenvalues of polytropic stellar systems, using one
to eight variational parameters. Eigenvalues are in units of 4nGg,.
N is the polytropic index. A number a x 10*? is written as a +b

0.3250+1

0.2592+1 0.5291+1

0.2438+1 0.4368+1 0.7722+1 N=1.0
0.2415+1 0.4121+1 0.6492+1 0.1070+]

0.2413+1 0.4077+1 0.6143+1 0.9104+1 0.1428+2

0.2413+1 0.4073+1 0.6075+1 0.8622+1 0.1225+2 0.1846+2

0.2413+1 0.4073+1 0.6067+1 0.8518+1 0.1160+2 0.1595+2 0.2325+2
0.2413+1 0.4073+1 0.6067+1 0.8505+1 0.1145+2 0.1509+2 0.2021+2 0.2867+2
0.5467

0.4900  0.1662+1

0.4875  0.1400+1 0.3219+1 N=1.5
0.4875  0.1372+1 0.2641+1 0.5228+1

0.4875  0.1371+1 0.2546+1 0.4250+1 0.7686+1

0.4875  0.1371+1 0.2538+1 0.4034+1 0.6239+1 0.1060+2

0.4875  0.1371+1 0.2537+1 0.4005+1 0.5847+1 0.8620+1 0.1396+2

0.4875  0.1371+1 0.2537+1 0.4003+1 0.5774+1 0.7997+1 0.1140+2 0.1778+2
0.1733

0.1635  0.8243

0.1633  0.6761 0.1784+1 N=2.0
0.1633  0.6630  0.1371+1 0.3079+1

0.1633  0.6626  0.1308+1 0.2307+1 0.4702+]

0.1633  0.6626  0.1303+1 0.2140+1 0.3500+1 0.66L7+]

0.1633 0.6626  0.1303+] 0.2118+1 0.3173+! 0.4961+1 0.8913+]

0.1633  0.6626  0.1303+1 0.2117+1 0.3109+1 0.L4421+] 0.6695+1 0.1150+2
0.1019

0.9384-1 0.4479

0.9360-1 0.3388  0.1008+1 N=2.5
0.9360-1 0.3294  0.6982  0.1790+1

0.9360-1 0.3291 0.6522  0.1201+1 0.2791+]

0.9360-1 0.3291 0.6486  0.1077+1 0.1860+1 0.4008+1

0.9360-1 0.3291 0.6485  0.1060+1 0.1616+1 0.2587+1 0.5437+1

0.9360-1 0.3291 0.6485  0.1059+1 0.1566+1 0.2279+1 0.3685+1 0.7078+1
0.7173-1

0.5838-1 0.2390

0.5779-1 0.1588  0.5310 N = 3.0
0.5779-1 0.1519  0.3216  0.9527

0.5779-1 0.1517  0.2925 0.5574  0.1505+]

0.5779-1 0.1517  0.2902 0.4820 0.8761 0.2187+1

0.5779-1 0.1517  0.2901 0.4712  0.7267  0.1285+1 0.2997+]

0.5779-1 0.1517  0.2901 0.4705 0.6959  0.1034+1 0.1788+1 0.3936+1
0.4452-1

0.2746-1 0.1197

0.2656-1 0.6502-1 0.2477 N = 3.5
0.2655-1 0.6024-1 0.1258  0.4358

0.2655-1 0.6001-1 0.1103  0.2155 0.6875

0.2655-1 0.6001-1 0.1089 ©0.1789 0.3392  0.1005+}

0.2655-1 0.6001-1 0.1088 0.1733 0.2688 0.5011 0.1388+1
0.2655-1 0.6001-1 0.1088 0.1729  0.2541 0.3835  0.7048+0 0.1838+1
0.2040-1

0.7857-2 0.4950-1

0.7366-2 0.1876-1 0.9342-1 N = 4.0
0.7353-2 0.1649-1 0.3573-1 0.1555

0.7353-2 0.1634-1 0.2956-1 0.6022-1 0.2382

0.7353-2 0.1634-1 0.2884-1 0.4725-1 0.9375-1 0.3435

0.7353-2 0.1634-1 0.2880-1 0.4504-1 0.7044-1 0.1378  0.4726

0.7353-2 0.1634-1 0.2880-1 0.4483-1 0.6528-1 0.1001 0.1936  0.6266
0.4603-2

0.8400-3 0.1096-1

0.7734-3 0.2086-2 0.1964-1 N =45
0.7711-3 0.1754-2 0.4085-2 0.3094-1

0.7711-3 0.1728-2 0.3171-2 0.7002-2 0.4511-1

0.7711-3 0.1728-2 0.3052-2 0.5109-2 0.1099-1 0.6257-1

0.;;1]-% 0.1;28-2 0.%036-2 0.2762-2 0.7622-2 0.|6gé-l 0.8347-1
0-7711-3 0.1728-2 0.3045-2 0.4727-2 0.6902-2 0.1094-1 0.2278-1 0.1081

their sufficient condition, F; <0, is fulfilled. That Table 1 contains
no negative eigenvalue for any of the polytropes is in agreement
with these stability theorems.

Table 3 contains a sample of eigenvectors. Eigenvalues are
displayed in lines marked by an asterisk. The column following an
eigenvalue is its corresponding eigenvector. Computations are for
eight variational parameters. To illustrate the use of the table we
give an example. For n=1.5 the first eigenfunction corresponding
to w?2=04875 is &(x)=0.6063x+0.7985x>+0.5507x° + ...,
where x=r/R, and the numerical constants are taken from the
first column of the data for n=1.5.

More important then &, however, are the density perturbations
of Egs. (36). Sample calculations are plotted in Figs. 1 and 2. In
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Y. Sobouti: Linear oscillations of isotropic stellar systems. I

Fig. 1. Radial volume density waves of polytropes 1,1.5,and 3 as functions of the
radius, Numbers 1-4 on the curves indicate the mode order. The radius is
normalized to 1. The amplitude of the first mode is normalized to 1

Table 2. Contributions of W, and W, to the first eigenvalue. The
W,-term arises from perturbation in the self-gravitation and is
much smaller than the W,-term. A number a x 10*? is written as
atb

2
N w W, sign(FE)w2
1.0 0.2413+1 0.1154+1 0.1259+1
1.5 0.4875 0.4875 0.0
2.0 0.1633 0.3337 -0.1703
2.5 0.9360-1 0.2022 -0.1086
3.0 0.5779-1 0.9465-1 -0.3686-1
3.5 0.2655-1 0.3230-1 =-0.5749-2
4,0 0.7353-2 0.7713-2 -0.3597-3
4.5 0.7711-3 0.7763-3 ~-0.5140-5

89

Fig. 2. Radial surface density waves of polytropes 1, 1.5, and 3. See the legend for
Fig. 1 for further specifications

polytrope 1 both volume and surface densities extend outward
and cover considerable fractions of the radius. In the centrally
condensed polytrope 3, both perturbations are very much local-
ized near the center and have negligible amplitudes after their first
nodes. All density perturbations have a node at the surface and an
antinode at the center. In addition, the first mode has one more
node somewhere in between, the second two more nodes, and so
on.

Acknowledgement. The author is grateful to the referee for pointing
out the need for a more elaborate discussion of the step-like
distributions, which resulted in stating the theorem of Sect. ITin its
present form.
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Table 3. Radial eigenvalues and eigenvectors of some polytropes
calculated with eight variational parameters. Eigenvalues are
displayed in lines marked by an asterisk. The column below an
eigenvalue is the corresponding eigenvector. N is the polytropic
index. A number a x 10%? is written as a+b

N=1.0
*0.2413+1 0.4073+1 0.6067+1 0.8505+1 0.1145+2 0.1509+2 0.2021+2 0.2867+2

0.1383 -0.5408  0.1229+1-0.2251+1 0.3013+1 0.6109+1 0.5744+1-0.2057+2
0.5921 =-0.1198+1 0.5549  0.9354+1-0.5339+1-0.9966+2-0.2358+2 0.5469+3
0.1089+1-0.1529+1-0.1250+2~0.3768+2-0.2228+3 0.7945+3-0.1052+4-0.6829+4
0.1953+1 0.7531+1 0.4466+2 0.3306+3 0.1596+4-0.4581+4 0.1040+5 0.3385+5
-0.4287 -0.1898+2-0.1922+3-0.1237+4~0.5450+4 0.1645+5-0.3850+5-0.8890+5
0.4687+1 0.4977+2 0.3832+3 0.2369+L4 0.1065+5-0.3192+5 0.6838+5 0.1271+6
-0.3420+1-0.4565+2-0.3947+3~0.2501+4-0.1088+5 0.3037+5-0.5852+5-0.9338+5
0.2396+1 0.2653+2 0.1987+3 0.1116+k 0.4371+4-0.1109+5 0.1937+5 0.2757+5

N=1.5

*0.4875  0.1371+1 0.2537+1 0.4003+1 0.5774+1 0.7997+1 0.1140+2 0.1778+2

0.6063 =-0.9567  0.1451+1-0.2084+1 0.2615+1 0.4895+1 0.L4464+1-0.1823+2
0.7985  0.5277-1-0.2708+1 0.9538+1-0.9657+1-0.8332+2 0.5251+0 0.5891+3
0.5507  0.2278+1-0.6823+1-0.6842+1-0.1493+3 0.7111+3-0.1248+4-0.6360+4
0.2465  0.3052+1-0.1253+1 0.9584+2 0.1170+4-0.4432+4 0.1138+5 0.3213+5
0.1455  0.3975+1-0.2861+1-0.4567+3-0.4125+4 0.1677+5-0.4149+5-0.8571+5
-0.1040 -0.3690  0.2922+2 0.8843+3 0.8497+4-0.3359+5 0.7360+5 0.1242+6
0.1153  0.2957+1-0.1597+2-0.1026+4-0.9233+L4 0.3267+5-0.6316+5-0.9238+5
-0.5882-1-0.7223  0.2477+2 0.5528+3 0.3926+4-0.1213+5 0.209%+5 0.2756+5

N=2.0

#%0.1633 0.6626 0.1303  0.2117+1 0.3109+1 0.4421+1 0.6695+1 0.1150+2

0.7924 -0.8300 0.1207+]1 0.1607+1 0.1881+1 0.3815+1-0.3213+1-0.1600+2
0.5316  0.3850 -0.2225+1-0.6584+1-0.2127+1-0.6831+2-0.3206+2 0.5291+3

0.2488  0.2466+1-0.6646+1 0.2276+1-0.177143 0.6999+3 0.1548+4-0.5813+L

0.1142  0.3663+1-0.4330+1-0.9547+2 0.1300+4-0.5015+4-0.1281+5 0.2978+5
-0.2726-1 0.3295+1 0.1377+1 0.4432+3-0.4857+4 0.1983+5 0.4522+5-0.8037+5

0.8270-2 0.1305+1 0.2055+2-0.8697+3 0.1053+5-0.4000+5-0.7897+5 0.1177+6
-0.7756-2 0.6822  0.2564+] 0.1094+4-0.1169+5 0.3874+5 0.6717+5-0.8823+5

0.1868-2-0.2093  0.1697+2-0.6299+3 0.4986+4-0.1429+5-0.2220+5 0.2652+5
N = 3.0

%0.5779-1 0.1517  0.2901  0.4705  0.6959  0.1034+1 0.1788+1 0.3936+1

0.5675 =-0.6355 0.7431 -0.8873 -0.9165 0.2125+1 0.1518+1-0.1150+2
0.1039+1-0.8326 0.4183  0.1169+1-0.7193+1-0.4108+2 0.6883+2 0.4077+3
0.9912  0.1516+1-0.6331+1-0.1809+1 0.1980+3 0.6321+3-0.1866+4~-0.4695+L
0.6733  0.626L4+1-0.1365+2 0.1536+3-0.1448+4-0.5687+4 0.1422+5 0.2491+5
-0.9956  0.6016+1-0.1156+2-0.5967+3 0.6195+4 0.2402+5-0.4872+5-0.6913+5
0.142141 0.1059+1 0.4974+2 0.1222+4-0.1466+5-0.4909+5 0.8382+5 0.1035+6
-0.1004+1 0.1256+1-0.131142-0.1688+4 0.1677+5 0.474145-0.7068+5-0.7912+5
0.2929 -0.5626-1 0.3313+2 0.9917+3-0.7168+4-0.1736+5 0.2323+5 0.2417+5

Appendix A: computational technique
a) The Rayleigh-Ritz procedure

The eigenvalue equations encountered in Sect. V are of the form:

WE =1L (A1)
or
W= E*W Edx/] E*dEdx . (A.1b)

The eigenfunction & is either a general vector field, as in
Egs. (27)31) or a radial vector field, as in Egs. (32)+36). In
addition, W is self adjoint and @ is positive definite. Let
{t* 1=1,2, ...} be aset of complete trial functions which satisfy the
same boundary conditions as {£*,v=1,2,...}. Expand &' in terms
of {{*}:

e=xrze (A2)
where Z*¥ are linear expansion coefficients and will be used as

variational parameters. Substitute Eq.(A.2) in Eq.(A.1a), pre-
multiply by {* and integrate over the x-space. One gets:

WHAZW = SuAZI )Y (A3)

where the matrix elements W** and S** are:
WHA=[ [y {Mdx,
SHA=[* P dx.
Let A=[4A"]giagona1 b€ the diagonal matrix of the eigenvalues, and

W, S, Z be the matrices with elements W** S** and Z**
respectively, Eq. (A.3) for all eigenvectors becomes:

WZ=SZA. (A.52)
Similarly, the matrix form of Eq. (A.1b) becomes:
A=Z'WZ/Z'SZ . (A.5b)

The matrices in Egs. (A.5) are, in general, infinite matrices. The
Rayleigh-Ritz procedure consists of approximating them by finite
square matrices and solving Egs. (A.5) for the approximate A and
Z.

b) The trial functions

The basis {{*} should satisfy the same boundary condition as {£*}
and should be complete. In a remark after Eq. (2a), it was noted
that &(x) is an indicator of the macroscopic motion of the
perturbed system. Equation of continuity then requires div £ to be
finite at the origin and at the boundary. This statement can be
proved rigorously from Egs. (3a), (5b), and (19b). We will elaborate
on this point in a forthcoming paper where we analyze non-radial
perturbations. With these considerations in mind, for radial
perturbations we have chosen:

{t={x>*"1u=1,2,...}, (A.6)

where x =r/R is the fractional variable. Dixit et al. (1980) show that
the proposed set is complete in the range 0 <x <1, and any well-
defined function can be expanded in terms of it.
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