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Summary. The eigenvalue problem for the first order radial
perturbation of four energy-truncated distributions is solved.
Wooley’s and Michie-King’s models are among the examples
analyzed. All eigenvalues of all models with finite masses and radii
are real. There is no indication of instability in dynamical time
scales.
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1. Introduction

Linear perturbations of the collisionless Boltzmann-Liouville
equation are governed by Antonov’s equation. This is an eigen-
value equation in the six dimensional phase space. In Paper I of
this series (Sobouti, 1984) it was proposed to Fourier-expand the
phase space density perturbations in the velocity space. This
reduced Antonov’s equation into a series of equations involving
functions of space coordinates only. Solutions in successive
approximations became feasible. In the present paper the method
is applied to the radial perturbations of the energy-truncated
models of Woolley, Michie-King, and to other models in the
sequence. The first order radial modes are calculated.

The equilibrium structure of four energy truncated models is
summarized in Section 2. The first order perturbation equation is
laid out in Sect.3. The numerical results and a discussion
constitute the object of Sects. 4 and 5. A proof of stability against
first order perturbations is given in the appendix.

2. The equilibrium structure of the energy-truncated models

Self gravitating isothermal gas spheres with Maxwellian distri-
butions are rejected as model stellar systems. They allow velocities
greater than the escape velocity, have infinite masses and extend to
infinity (see Chandrasekhar, 1957, pp. 155-168). As a plausible but
arbitrary model, Woolley (1954) adopted a truncated Maxwellian
distribution,

_ i 3/2 —eBp(_
FiB)=(5-) Cie " H(~E), (1a)
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where C, and o are constants, E =402+ U(r) is the energy integral,
and U is the gravitational potential. The step function is
H(—E)=1if E<0,=%if E=0, and =0 if E>0. Michie (1963)
proposed the distribution

« \32

Fy(E)= (ZE) Cole ™ ~1H(-E). (1b)
This distribution in addition to being an exact solution of the
Boltzmann-Liouville equation, is an approximate solution of the
Fokker-Planck equation as well. The latter takes stellar encoun-
ters into account. Over time spans of relaxation time scales, it is a
better dynamical equation to use (Chandrasekhar, 1960). King
(1966) employed Michie’s distribution and calculated the space,
and the projected-on-the sky densities of some globular cluster
models. Evidently, King’s models fit reasonably well some of the
observations. Katz (1980) reports that the distribution

3/2
F4(E)= (%) Ca(e™F—1+oE)H(—E) (10)
fits the open isolated cluster models of Spitzer and Thuan rather
well. To this list we add

3/2 1
F,= (%) C4<e'°‘E— 1+aE— -z—azEz) H(—E).

This distribution could be handled along the same formalism as
the other three. We shall show below that F,, F,, F5, and F, are
the only ones in the list of the truncated Maxwellian distributions
that could yield finite models.

The potential U(r) implicit in Egs. (1) will be chosen zero at the
boundary of the system. This choice implies that the velocity
0,(r)=(=2U)'? is the velocity of escape from r to the boundary
rather than to the infinity. King argues that for star clusters in the
gravitational field of a galaxy this is the proper parameter to use.
For, once a star reaches the boundary of the cluster it will be lost in
the tidal force field of the galaxy.

(1d)

The mass density is g;=4n jeF J(E)v*dv. Elementary manipul-
ations of Egs. (1) gives 0

0{0)=C;640), j=1,2,3,4, )
where
0=—alU (2a)
and

2i1 2,0 ;
&(6)= 3.0 ﬁ e .([) e 'y 3)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985A%26A...147...61S

62

(see also Katz, 1980). The following recursion relations exists for
the &-functions:

2601 2
e 1.3...(2j—1)ﬁ

Ve
g0=e°Erf(1/é)=e9—2— | e du.

&E=6;- 6% (3a)

(3b)
I/E 0
Also
as;
0 &;-1(0) (3¢)
and
é’,{@)—»@“* as 0-0. (3d)

The Poisson equation

Let 6. denote the central value of the dimensionless potential 6.
The density at the center is g, = C;6(0,). Let us define a dimension-
less radius { = (4nGog.) ?r, where G is the gravitational constant:
the Poisson equation, V2U =4nGg, may now be expressed in the
dimensionless form

d*0  24do

wrtiae™ —&(0)/840.). @
This equation is to be solved with the conditions

0=0., and %:0 at {=0. (4a)

Evidently, Egs. (4) do not admit a homology transformation of the
type that polytropes or isothermal gas spheres do (see Chandra-
sekhar, 1957, pp. 101-106, 158-160, for homology theorems). This
means that 0, in Eqgs. (4) cannot be transformed, and that for each
model of a given 6, a numerical integration of Eqgs. (4) is necessary.
Considering the asymptotic behavior of Eq. (3d), however, Egs. (4)
in the limit #,—0 reduce to the polytropic equation of index j+73.
Since a polytropic index cannot be larger than five; one has to be
contended with the values j =1, 2, 3, 4 only. Since the correspond-
ing asymptotic polytropes are finite configurations all four models
with low enough 6, should have finite masses and radii. With
increasing 6,, however, the masses and the radii grow rapidly and
become infinite at some finite limiting values of 8,. The higher j, the
faster the models diverge. A choice of 6. or its dimensional
equivalent, U, = —af,, sets the upper bound for the velocity in the
cluster. This parameter will be said to indicate the degree of
truncation. The subscript j=1, 2, 3, 4 on F’s will be refered to as
the order of truncation.

Table 1 lists some of the characteristics of the models. The unit
of length is

R,=(4nGag,) 2. (5a)

The values of 6, and the surface radius {,=R/R, are given in
columns 1 and 2, respectively. Column 3 lists the inflection point in
o. This is the radius at which the density begins to level off and
could reasonably be identified as some sort of core-halo boundary.
It is significant to note that, while the halo radius, {,, ranges from
2 to 2000, the inflection radius, {;,, stays between 1 and 4.
Therefore, one can safely use R, as an indicator of the physical
radius of the core.

The virial theorem can be used to define a characteristic
dimension for the cluster. Thus,

R,;;=GM?/2|grav. pot. energy). (5b)
It has been suggested that R,;, is a core radius (see, for example,
King, 1967). The quantity {,;;=R,;/R, is given in column 4. In
models with intermediate and with moderately high central
densities, {,;, is of the same order of magnitude as {,. Obviously it
cannot be a good indicator of a core radius. Only in extremely high
central densities does it drop appreciably below the surface radius.

To indicate the degree of the central concentrations (density
contrast), 9({o/2)/0. is given in column 5. The relative density at
inflection point, g;,/0,. is displayed in column 6.

The mass M(r) =4n | ordr, is readily obtained by substituting
0
for ¢ from the Poisson Eq.(4), and integrating by parts. Thus,

MO = —4nRoe L 5. ©

The dimensionless total mass, M({,)= —(3(d0/d(),, is given in
column 7. The ratios M({,/2)/M((,) and M({;ne)/M({o) are given
in columns 8 and 9, respectively.

3. The first order eigenvalue equation for radial perturbations

A scheme of expansion of the linearized Boltzmann-Liouville
equation in phase space into a series of equations in the
configuration space is developed in Paperl. The first order
equation in the series, for radial perturbations, assumes that the
antisymmetric perturbations of the phase space density are of the
form f(x,v, t)=&(r)v, exp(iwt), where v, is the radial component of
v, and &(r) is a radial vector field to be determined. This
perturbation could be considered as a variational ansatz in the
velocity. The eigenvalues corresponding to it could only be larger
than the exact ones.

The equilibrium distributions of Egs. (1) all have dF/dE <0.
For such distributions, the equation governing &(r) is [Paper 1,
Eqgs, (35)]:

2 PPE=HW E—WLE, W
where
3df, dé
== rew =
#ie r*dr ( dr>
(4)
< cli“‘)+zdd5 +4x ngﬁm)é (7a)

W& =16m2G[ PP 2r2¢ . (7b)

The functions @, ¢, and ¥@ are equilibrium parameters, and
are defined as follows (Paper 1, Egs. 16):

dn
@(n) o 2 (n+3)/2 _
13.. (+3)( 0 n=0,2.4,..., (82)
!ll(’l)_“;nl _IZU |dF/dE|1/zvn+2dv n=0.2.4 (Sb)
T13..n+1) o , n=0,2,4,...

The operators #7 and #7, are Hermitian and positive. The
eigenvalues, w?, are real and are obtainable from the variational
expression.

w?=(W, —W,)/S, ©)
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Table 1. Equilibrium parameter of energy-truncated distributions
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Table 2. First order radial eigenvalues of energy-truncated

distributions
8¢ %o Einf Svir p(Eo/z) D(;inf) Mtot M(';0/2) M(;inf) ec w? m% “’g ulz' wg
5 =1 (Woolley's model): =1 (Woolley's model):
0.001 0.365-1 0.147-1 0.512-) 0.420 0,576  0.271-5 0.460 0,283 0.001 0.€51-3 0.183-1 0.339-2 0.534-2 0.770-2
1.0 0.h05+1 0.126+1 0.495+1 0.297  0.637  0.263+] 0.525 0.167 1.0 0.547+41 0.158+42 0.297+2 0.472+2 0.684+2
2.0 0.658+1 0.141+1 0.683+1 0.180  0.674  0.725+] 0.600 0.101 2.0 0.927+1 0.268+2 0.507+2 0.611+2 0.118+3
4.0 0.14142 0.153+] 0.982+1 0.374-1 0.694  0.203+2 0.7k  0.469-1 4,0 0.136+#2 0.359+42 0.676+2 0.108+3 0.158+3
6.0 0.33842 0.156+1 0.148+2 0.380-2 0.635  0.416+2 0.827  0.243-1 6.0  0.137+42 0.33142 0.605+2 0.961+2 0.140+3
8.0 0.102+3 0.16k+] 0.330+42 0.298-3 0.67h  0.957+2 0.329  0.120-1 8.0 0.109+2 0.26042 0.471+42 0.745+2 0.108+3
10,0 0.31443 0.188+1 0.114+3 0.373-k 0.604  0.287+#3 0.789 0.570-2  10.0  0.102+42 0.247+2 0.453+2 0.717+2 0.10443
12.0  0.838+3 0.335+ 0.351+3 0.612-5 0.289  0.851+3 0.780 0.679-2  12.0  0.110+2 0.27142 0.497+#2 0.790+42 0.115+3
4.0 0.218+h 0.437+1 0.906+3 0.890-6 0.174  0.229+¢k 0.792 0.500-2 14,0  0.115+42 0.280+2 0.514+2 0.816+2 0.119+3
j = 2 (Michie = King's model): = 2 (Michie - King's model):
0.001 0.536-1 0.106-1 0.383-1 0.881-1 0.639  0.219-5 0.777  0.139 0.001 0.268-3 0.94k-3 0.186-2 0.304-2 0.4h7-2
1.0 0.592+#1 0.972 0.378+] 0.559-1 0.657  0.216+] 0.816 0.110 1.0 0.268+1 0.855+1 0.167+2 0.273+2 0.402+2
2.0 0.960+1 0.125+1 0.534+] 0.305-1 0.674  0.506+1 0.854  0.843-1 2.0 0.530+1 0.15242 0.294+2 0.477+2 0.703+2
4.0  0.208+42 0.149+1 0.792+1 0.508-2 0.683  0.174+2 0.919  0.508-} 4.0 0.914+1 0.22042 0.408+2 0.653+2 0.956+2
6.0  0.540+2 0.151+1 0.12142 0.338-3 0.703  0.363+2 0.95h  0.256-1 6.0 0.856+1 0.194+2 0.348+2 0.548+2 0.793+2
8.5  0.205+3 0.164+] 0.279+2 0.126-k 0.673  0.857+2 0.960  0.134-1 8.0 0.551+1 0.125#2 0.22342 0.349+2 0.503+2
10.0  0.673+3 0.269+1 0.105+3 0.151-5 0.408  0.270+3 0.345 0.137-1  10.0  0.507+] 0.116+2 0.209+2 0.329+42 0.h76+2
12.0  0.164+h 0.323+1 0.316+3 0.329-6 0.299  0.794+3 0.941 0.702-2  12.0  0.597+1 0.137+2 0.287+2 0.391+2 0.567+2
i=3 J=3:
0.001 0.954-1 0.887-2 0.313-1 0.336-2 0.657  0.189-5 0.965  0.926-1 0.001 0.242-3 0.547-3 0.991-3 0.157-2 0.229-2
1.0 0.108+2 0.843  0.319+] 0.178-2 0.661  0.189+1 0.373 0.827-1 1.0 0.22141 0.95+1 0.888+1 0.140+2 0.20442
2.0 0.18142 0.112+1 0.456+1 0.782-3 0.673  0.535+1 0.981  0.6ak-1 2.0 0.389+1 0.866+1 0.154+2 0.24142 0.349+2
3.0 0.280+2 0.129+1 0.573+1 0.269-3 0.683  0.996+1 0.387  0.566-1 3.0 0.483+1 0.108+42 0.190+2 0.296+2 0.h27+2
b.0  0.447+42 0.143+] 0.697+1 0.661-4 0.676  0.158+2 0.992  0.490-1 4.0 0.490+1 0.109+42 0.193+2 0.300+2 0.430+2
5.0 0.808+2 0.145+] 0.860+1 0.984-5 0.695  0.233+2 0.995 0.353-1 5.0 0.408+1 0.913+1 0.16142 0.250+42 0.358+2
6.0 0.187+3 0.150+1 0.113+2 0.644-6 0.696  0.343+2 0.997  0.263-1 6.0 0.26142 0.586+1 0.103+2 0.160+2 0.230+2
7.0 0.732+3 0.293+1 0.178+2 0.920-8 0.343  0.54142 0.999  0.799-1 7.0 0.106+41 0.238+1 0.421+1 0.653+1 0.936+1
jo=4: J=4
0.001 0.318  0.764-2 0.289-1 0.0 0.667  0.17h-5 0.99936 0.671-] 0.001 0.781-4 0.175-3 0.309-3 0.479-3 0.686-3
0.5 0.257+42 0.566 0.206+] 0.106-5 0.638  0.617  0.93950 0.747-1 0.5  0.38h  0.771+ 0.136+1 0.211+1 0.302+]
1.0 0.428+2 0.770  0.295+1 0.474-6 0.653  0.175+] 0.99966 0.672-1 1.0 0.589  0.132+1 0.233+] 0.362+1 0.518+]
1.5 0.643+2 0.900 0.366+1 0.176-6 0.670  0.325+1 0.93976 0.589-1 1.5 0.726  0.163+] 0.288+1 0.hk6+] 0.639+]
2.0 0.97142 0.116+1 0.h3141 0.491-7 0.604  0.505+1 0.99985 0.771-1 2.0 0.749  0.168+1 0.297+1 O0.461+1 0.660+1
2.5  0.157+3 0.126+1 0.493+] 0.875-8 0.617  0.715+] 0.93992 0.690-1 2.5  0.657  0.148+1 0.260+1 0.40h+1 0.579+1
3.0 0.319+3 0.128+1 0.560+1 0.523-9 0.649  0.959+1 0.99997 0.554-1 3.0 0.43%  0.976  0.172+41 0.268+1 0.383+I
3.5 0.172+h 0.343+1 0.h29+1 0.37-12 0.147  0.125+2 1.00000 0.337 3.5  0.105 0.236  0.416  0.646 . 0.926
where n,(0,)=8&,(0,/2), note subscript “1” in &, (11b)
R (2) £2,,2 1 ¢
S=4n [ ®PEr2dr>0, (92)  74(0,)= 03—u_1)1/2y3/2y (11¢)
0 3)/2r 0
W, =4n 3f oW de 2rzdr T % o 12,32
v dr N4(04)= =10, —w]u du. (11d)
f 3|/ 2= o
oW
(4) @2 2404 >0 . . . .
+2/ (345 +tr— g +2nGe® " | Edr 20 (ob) In reducing the integrals S, W, and W,, the fractional radius
X x=r/R={/(, will be used. From Egs. (9}+(12) one gets
—_ 2 (2)12£2,.2
W,=16n2G [ [P®]*E%r2dr20. (%) 16n o (2\°% o, s
0 S= [ 652Ex%dx, (12a)
15 o 0
Reduction to dimensionless forms gn2  [2\721 o i 5
From the deﬁning Eqs. (8a) and (2a) one readily has W= 15 R o (j) 0; 7 01 dx x?
4 2 4m (2 2 dao;
2 5/2 4 7/2 2 2
oP = I Oj/ , W= 105 072, (10) 9+2 +C0x £,(0,)/6,0.) | &% ¢ dx, (12b)
where 6;is an integral of Egs. (4) for a given 6. The expression for - 8n? R 1z 60V—C 160 5 2(0)¢2x2d 0
¥(? is somewhat involved. From Egs. (8b), (1), and (3), however, 27735 L o/€16)] ) nj(x) x- (12¢)

one obtains

2 5/4
T§2)=47[3/4C}/2 (;) 11](01)’ j=1’25 3549 (11)
where
11(01)=8,(0,/2), (11a)

The integrals in Egs. (12) are dimensionless. The factor in the
square bracket in Eq.(12c) is also dimensionless. This leaves
dim(W, — W,)/S =1/aR?=4rnGg, /(3. In the numerical results of
Table 2, this factor is chosen as the unit of the eigenvalues w?. The
quantity {o/]/4nGg, is the crossing or dynamical time scale of the
cluster.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985A%26A...147...61S

64

4. Numerical results

The eigenvalue problem of Eq. (9), in which S, W,, and W, are
given by Egs. (12),1s solved by a Rayleigh-Ritz variational method.
A description of the method in the context of astronomical
problems is given by Silverman and Sobouti (1978) and also in the
appendix to Paper L. The trial functions were &,(x)= 3 a;x?'*1.
i=0
Ten variational parameters, a;, i=1,...,10, were used in the
computations.

A sample list of the eigenvalues is given in Table 2. The models
with 6,=0.001 are essentially the asymptotic polytropes 1.5, 2.5,
3.5, and 4.5, corresponding to j =1, 2, 3, and 4, respectively. These
asymptots are worked out in Paperl, and were of considerable
help in the present work in checking and correcting the computer
programs. All figures in the Table are significant.

Each eigenvalue, w?, is proportional to the difference W, — W,,
in which W, is due to perturbations in self gravitation, and has a
destabilizing effect. In the appendix we show that W, > W, for all
eigenvalues. So that all @’s are real and the truncated distributions
are stable against the radial perturbations of the type considered
here. Numerical integrations, however, reveal much more. In
Figs. 1-4, ?, W, /S, and W,/S for the first mode are plotted against
0.. The following features are noteworthy:

(a) In the first and second order truncation, W, is an order of
magnitude less than W;. In the third order the effect is much
pronounced. In the fourth order this smallness amounts to two
and three order of magnitude.

J=1
WOOLLEY

12 -

1 | | {
0 2 4 6
Fig. 1. Plots of w?, W;/S, and W,/S for the first radial mode of j=1 models.

The abscissa is the dimensionless central potential, 6.. The unit on the ordi-
nates is 4nGo, /3

T T T T T T
J=2

12 MICHIE-KING -
8l _
4 - ]

o

0 1 1 ! 1 1 Lo
4 8 12

Fig. 2. Same as in Fig. 1 for j=2 models

0

0 2 4 6 8
Fig. 3. Same as in Fig. 1 for j=3 models

(b) With increasing mode number, W, becomes far less
significant than W,.

(c) With increasing 6, (or equivalently, the central con-
centration) again W, falls rapidly behind W, and loses its role.

(d) InFigs. 1and 2, W, and W, each display one maximum and
one minimum. In Figs. 3 and 4 the minima disappear. The extrema
for W, occur before those for W;.

It should be noted that the choice of 4nGg,/(3 as the unit for w?
has a decisive role in making the figures look as they do. Had one
chosen 4Gy, as the unit, for examples, the extrema would have
disappeared and the effect would have been reduced to minute
changes in slopes and inflections of the curves.
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T T |
J=4
0.6 i
W,/S and w?
0.4 | -
02 .
S)
0.0 ' ' L
0 1 2 3 4

Fig.4.Same asin Fig. 1 for j=4 models. In the adopted scale W,/S was too small
to be shown, and w? and W,/S coincide

The density waves (i.e., perturbations in the density) were
computed according to Egs.(36) of PaperI. We only report that
with increasing j, increasing 6,, and increasing mode number, they
become more and more localized in the vicinity of the center and
leave no significant trail in the halo. Evidently this behavior is
shared by all physical characteristics associated with the pertur-
bations and is not exclusive to density waves.

5. Discussion

Distributions F(E) for which dF/dE>0 for E<O0 and
F|dF/dE|"Y2=0 at E=0, are stable against all infinitesimal
perturbations (Paperl, Theorem). Instabilities are possible if
dF/dE <0 only, and on account of the W, term, the perturbations
of the self gravitation. Dorémus, Feix, and Baumann (1971),
however, show that the latter distributions are also stable against
radial perturbations. Stability of solutions of Eq. (7) is also proved
in the appendix. That all w? forj=1, 2, 3, 4, and for , values giving
finite equilibrium models are real is in perfect accord with the
conclusion of Dorémus et al., and with that of the appendix.

The author is not aware of any eigensolutions of the energy-
truncated distributions to compare the present results with. Some
investigators taking thermodynamical and statistical mechanical
approach to cluster problems, however, have discussed the
stability of these distributions. Lynden-Bell and Wood (1968) find
that in Woolley’s models (j=1) at 8,~8.5 (6. =k in their notation)
entropy reaches a maximum. They deduce that “...the actual path
of evolution departs radically from Woolley’s models at this
point”. Katz (1980) studies Woolley’s, Michie-King’s, and
Peterson’s models (j=1,2,3) in connection with gravothermal
instabilities. He reports that the models become unstable at
0.=7.65, 740, and 6.56, respectively. While we do not find
instability for these values of 6, we do find minima for W, and W,
in the vicinities.

Horwitz and Katz (1977, 1978) consider systems confined to
constant volumes and subject to other thermodynamic con-
straints. They devise grand canonical, canonical, and microcanon-
ical ensembles for their models. They conclude that “...instabilities
with respect to spherically symmetric perturbations are associated
with a change of sign of thermodynamic quantities”. Katz et al.
(1978) apply the same technique to Woolley’s and King’s models
and find that (i)in the scheme of microcanonical ensembles
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Woolley’s and King’s models become unstable at §.=7.65 and
7.40, respectively. (ii)In the scheme of canonical ensembles
instabilities develop at 6, =2.45 and 1.35. In the present computa-
tions, the only noteworthy feature is the appearance of minima of
W, and W, at slightly larger 6.’s of case (i) and the appearance of
maxima at slightly larger 6.’s of case (ii).

Doubts have been expressed whether the Boltzmann-Liouville
equation and the thermodynamic formalism consider the same
physical problem. As to the question of stability, the present work
does not agree with the conclusions of thermodynamical ap-
proach. It does, however, indicate the existence of a common feature
between the two problems. This is, the close correspondence of the
extrema of W, and W, with sign changes of thermodynamic
quantities of Horwitz et al. Admittedly, the indication is a weak
one. But in the absence of any other convincing evidence to settle
the dispute it is worth noting it. Exact correspondence of extrema
with sign changes of Horwitz and collaborators is not important at
this stage. After all, the present work considers only the first order
terms in the Fourier expansion of the perturbations. As pointed
outin Sect. 3, thisis a variational ansatz in the velocity space. It can
only overestimate the eigenvalues and make the extrema appear
at larger values of 6..

Finally, Miller’s (1973) remark is noteworthy. He examines
Boltzmann’s H-theorem and finds that “...the variational calcu-
lations to find the single particle ensemble distribution...can
violate the n-body equations of motions and the Liouville
equation in 6n dimensions”. The present analysis reports direct
solution of the Boltzmann-Liouville equation. Its conclusions
seem to be more in line with Miller’s conclusions than with the
inferences of those who argue that thermodynamic instabilities
indicate dynamical instabilities of the Newtonian cluster models.

Appendix: stability of solutions of Egs. (7) and (9)

Dorémus et al. (1971) show that distributions F(E) for which
dF/dE <0 are stable against radial perturbations. In considering
their multiple water-bag models they implicitly use the trans-
formation (v, vy, v5) to (E,J,v,), where E=%v’+U, and
J?=r*(v} +v3). Gillon, Cantus, and Baumann prove the stability
against radial perturbations for F(E, J) with dF/dE <0. In doing
so they make an explicit use of the same transformation. The
transformation is not a one-to-one mapping. For, the double
values (£v,, +v,,v,) correspond to the same (E, J,v,;). How the
difficulty is circumvented is not clear. In the following we prove the
stability against the special class of the radial perturbations we use
in this paper. The method is entirely different from those of the
authors referred to above, and should serve as an independent
verification of their results.
(1) An inequality for W;: Let Eq. (9b) be written as follows

W, =4n[34%+6B*+C?—-2D?], (A1)
where
R dé 2
A= [ oW <—> r2dr>0, (A2)
0 dr
R
B2= | &W¢2dr>0, (A3)
0
R
C?=4nG | o@D E%r%dr>0, (A%
0
R @
D*=—{ d Erdr>0. (AS)
o dr
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Integrating D? by parts gives

D*=B2+2 qumg Erdr

=>B%+2 ’I oW de Erdr
dr

>B*+2A4B, (A6)

where the second inequality follows from the Schwartz inequality
below

dg
’I oW = &rdr

2 1/2
g[[ oW <Z—f) rldr I(D“"ézdr] =AB.

Substituting Eq. (A7) in Eq. (A1) gives

(A7)

W, 24n[24% +(4—2B)*+C?]. QED. (A8)

(ii) An inequality for W,: From Eq. (8b) one has:
16n2 [V=2U( dF\Y?
—_— ( ) v2dv

2
¥R~

9 { " dE
47IV‘2U<_dF) 4 V-

30
an A\ 4, AT 2
3 g 1E v¥do 3 £ vidv,

= (A9)

where the inequality is again a Schwartz one. For F(E) one has
vdF/dE =dF/dv. Substituting this in the first integral on the left
side of Eq. (A9) and integrating by parts gives

4?”]<~Z—£> v*dv=4n| Fv’dv=g. (A10)

By Eq. (8a), the second integral on the left side of Eq. (A9) is &)
Therefore,

IW(2)|2§Q‘D(2)~ (A11)

Substituting Eq. (A11)in Eq. (9¢c) and using the notation of Eq. (A4)
gives

W,<4rnC?. QED. (A12)
From Egs. (A8) and (A12) it now follows
W, — W, >47|24% 4+ (A —2B)?*>0. (A13)

Thus, all w®s of Eq. (9) are positive and the distributions F(E) are
stable against the special class of the radial perturbations of this
paper.
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