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Summary. In an expansion scheme in velocity space, the first order
perturbations of a stellar system bear close resemblance to those of
a fluid. This feature isexploited to study the structure of the Hilbert
space of the linear perturbations of a stellar system, to provide a
classification for the modes, and to provide the necessary ansatz
for variational calculations. The first order non-radial modes
appear to be trispectral. Some of their general characteristics are
pointed out. The eigenfrequencies and the eigenfunctions of radial
(I=0) and non-radial (/=1) modes of polytropes are calculated.
The density waves associated with these modes are also reported.
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1. Introduction

On separating the linear perturbations of the Boltzmann-Liouville
equation into symmetric and antisymmetric components in the
velocity space and eliminating the symmetric component, one
arrives at Antonov’s equation. Various versions of this eigenvalue
equation have been used by some investigators to obtain stability
criteria for stellar systems. Yet in a span of a quarter of a century
that has elapsed not a single solution of Antonov’s equation can be
found in the astronomical literature.

The question of whether or not collisionless stellar systems
possess global modes of oscillations is unsettled. The opinions
range from complete denials that “there are no phase-coherent
phenomena such as overall pulsations”” (King, Dynamics of Star
Clusters, 1967) to views that there is a continuum of such modes.
Toomre’s remarks in his 1977 review of Spiral Structure are:
«...It may be more instructive ... to ask why all this laudable global
mode calculating has taken so long.

The reason involves both principle and complexity. For one thing,
it has gradually dawned upon most workers that stable self-
gravitating disks (especially ones composed of colliosionless stars)
may not even possess many discrete normal modes of the sort that
one associates with church bells and cepheids.”

Kulsrud and Mark (1970) also express a feeling that “the
normal modes of collisionless systems are generally very singular
because of resonent-particle effects ... and there is a continuum of
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such modes ...”’. On the other hand, Vandervoort (1983) considers
rotating axisymmetric galaxies, uses tensor virial equations in their
stellar dynamical forms, and calculates discrete modes of oscil-
lation of toroidal-, shear-, and pulsation-types. Similarly, Kalnajs
(1977) maintains that purely oscillatory modes can be derived for
flat galaxies.

We do not deal with stellar disks here and are unable to
comment on Toomre’s and Kalnajs’ remarks. We do, however,
consider idealized spherically symmetric isotropic systems of
collisionless particles, and solve the combined Poisson’s and
Antonov’s equation pertaining to them. Within a scheme of
variational calculations, and strictly within the realm of the mean-
field approximation (which ignores particle individualities) we
obtain discrete global modes. The eigenfrequencies of many of
these modes lie outside the range of the admissible particle orbital
frequencies and leave no room for a debate on particle-wave
resonances.

The question of whether or not the linearized Boltzmann-
Liouville equation and its normal-mode solutions are of relevance
to actual stellar systems or, for that matter, to computer simulated
N-body problems is well worth of consideration. The issue is not
pursued here, except for one remark. There are systems in which
the normal modes do not induce perturbations in the total self-
gravitational energy, and there are classes of modes for spherical
systems which do not perturb the local gravitational force field. In
such cases a particle placed in the smoothed-out system will not be
coupled to the modes. No resonances will take place and the modes
will maintain their discrete identity. Other considerations in the
concluding section makes the notion of particle-wave resonance a
less worisome problem.

The question of whether or not there is a continuum of normal
modes in addition to the discrete ones will still remain open. For no
variational calculation, including the present one, can claim
completeness. The author does, however, feel that with a
systematic book-keeping in the six-dimensional phase space and
with a proper classification scheme a good deal can be learned
about the spectrum of modes and many more sequences of discrete
modes will emerge before attending to the question of continuum.

In Papers I and II of this series (Sobouti, 1984, 1985) it was
proposed to expand the perturbations of the phase space
distribution function in velocity space and to carry out integrations
over the velocity coordinates. This reduced Antonov’s equation to
an eigenvalue problem in the three-dimensional configuration
space, which contained a series of vector and tensor fields to be
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solved for. The problem in the configuration space, however, could
be tackled in successive approximations. Papers I and II contained
applications to the radial perturbations of polytropic and of energy
truncated distributions. In this paper we elaborate on the first
order non-radial modes. At this level, the problem bears a
parallelism to the oscillations of fluid masses. The astronomer’s
knowledge of the latter problem could be profitably employed to
track down the modes and even to provide a classification for
them.

A summary of the background and the starting formulas are
given in Sect. 2. The first order perturbations are characterized by
a vector field, €(x), which belongs to a Hilbert space. The various
subspaces of this space and the basis sets spanning them ate
discussed in Sects. 3, 4, and 5. The variational method for solving
the eigenvalue problem along with the required matrix elements
are developed in Sects. 6 and 7. Numerical results and conclusions
are given in Sect. 8.

Notation

The reduction of a phase space perturbation in six dimensions has
required six expansions. At each stage it has been necessary to
introduce appropriate indices to distinguish the expansion
components. To keep the notation under control, it has been
essential to exercise utmost economy. The expansions are as
follows:

i) Antonov’s own expansion of a perturbation ¢ (x,v) into
symmetric and antisymmetric parts in v,¢,,¢_. We have
managed for the most part to work only with antisymmetric
functions and have dispensed with the subscript + .

ii) Expansion of an antisymmetric function of v as an
antisymmetric power series of v, with indices designating the order
of the terms in the expansion. In this paper mostly the first order
quantities are dealt with, and the order-designating index is
suppressed.

iii) Helmholtz expansion of a vector {(x) into scaloidal,
poloidal, toroidal types with indices s, p, t, respectively.

iv) and v) Spherical harmonic expansions of scalars and
vectors with indices (/, m).

vi) Expansion of a scalar x(r) in terms of a basis set, {y,(r),
k=1,2,...}, say, with index k to distinguish the set membership.

All indices pertaining to a quantity are written as subscripts,
and in the order (i-vi) above. For example, a symbol {,, will
designate a vector of poloidal type, of harmonic order (/, m) and of
radial number k. In abbreviated forms suppression of indices from
right to left will be permitted. For example, {,, will denote a
poloidal vector of harmonic numbers (I, m) without designating
the radial number, ¢, will stand for a poloidal vector without other
specifications, etc.

The greek subscripts and superscripts will denote the three-
dimensional (covariant and contravariant) components of vectors.

2. The first order equation for the non-radial perturbations

The main reference for this section is Paper I of this series (Sobouti,
1984). The equation numbers of this paper are quoted by a
preceding roman numeral 1. Let F(E) H(-E) be a step-like
distribution function, where E is the energy integral and H is the
step function. Only mildly discontinuous distributions will be
considered here. These are defined as having F|dF/dE|~'* =0 at
E=0(see Eq. [I.6] and the comments thereof). Let ¢ (x,v,t) = ¢,
+ ¢ _ be a perturbation on F, with ¢ , and ¢ _ being symmetric and

antisymmetric in v, respectively. Furthermore, make the transfor-
mation ¢_ = |dF/dE|'?f(x,v,t) where f(x,,t) is a new anti-
symmetric function of ». Antonov’s equation governing these
perturbations are (see Egs. [I.3] and [I.6])

0
Edﬁ. +D¢_=0, (1a)
62
57 [+ W LS+ sign (Fg) #°2f=0, (1b)
where, Fp=dF/dE,

0 oU 0
D—U‘,gx—v—aTVaTv, (23)
W 1f=—D*f, (2b)
W2f= —GIFEl”ZDj|F,’;|”2D'f’|x—x’|‘1dr’. 2c¢)

A prime on a function or on an operator means that the function or
the operator in question is to be evaluated at (x’, v’). An element of
the phase space volume is denoted by di’=dx'dv’. For the
standing wave solutions, f=f(x,v)exp (iwt?), Eq. (1b) provides
the variational equation

w?=[W1+sign(Fg) W2)/S, 3)
where

S=[f*fdi>0, (4a)
Wil=[f*#1fdr20, (4b)
W2={f*#2fdcz0. (4¢)

A scheme of reduction of Egs. (3) and (4) into equations in the
three-dimensional x-space is developed in Paper I (see, in
particular, Eq. [I.19a]). Briefly it consists of (a) expanding fas an
antisymmetric power series of the vector v, (b) substituting the
series in Egs. (3) and (4), and (c) carrying out the integrations over
the velocity space. A solution of Egs. (3) and (4) in successive
approximations then becomes feasible. In the first order one
assumes

S(x,0)=8(x) - v, esc @)

where £(x) is a vector field to be determined. Let us elaborate on
this ansatz. First we note that Eq. (19b) of Paper I, of which
equation (5) is the first term, provides an absolutely convergent
series for f in powers of v. It is a property of absolutely convergent
series that there is a number N such that for any n > N the n-th term
is less significant than the preceding one. In the case of our
expansion there are reasons to believe that this property holds
from the beginning. The ratio of successive terms is proportional
to n!/(n+2)!=1/(n+1) (n+2). Secondly, a variational principle
underlies Eq. (3). Truncation of the series in any approximation
gives a variational expression for Eq. (3) Thus, while Eq. (5) is
not expected to satisfy the differential Eq. (16), it is a perfectly
legitimate variational ansatz for Eq. (3). The second order
accuracy of the calculated eigenfrequencies is guaranteed by the
variational principle. More restrictive ansatz, assuming f linear
both in x and » can be found in the literature. By means of such
ansatz, Vandervoort (1983) reduces the problem to a set of
Chandrasekhar-type tensor virial equations.

The linear dependence of f on v in Eq. (5) should not give the
impression that heavier weights are assigned to high velocity stars
either in perturbed or unperturbed states. (a) Restriction to linear

V<UD,
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perturbations, | /| < F for all x and », does not allow velocities
larger than the velocity of escape. This is in accord with the general
belief that escapes from a cluster are unimportant in dynamical
time scales. (b) The same restriction imposes severe boundary
behavior on &(x) and forces it to decrease rapidly enough to
prevent divergences. A detailed analysis of these boundary
conditions is gives in Sect. 4.

As we shall see in Eq. (7), & is intimately related to the
Lagrangian displacement of a material element of the system in its
perturbed state. Explicit expressions for the S-, W1-, and W2-
integrals for this ansatz are (see Eqs. [1.27-29]).

S=[@2&* - Edx >0, (62)
W1=[@4[0,e**0E,+20,8#* 0,8 dx
+ (920, Ue*Edx20, (6b)
W2=G[V-(PE)V - (PElx—x'|"'dxdx' 20, (6¢)
where
4n 4n
2(r) = -l—s—v;/f ,  ®4(n= szs/f , (7a)
4m tue 12 4
Y (r) =15 | |dFJdE|'? v* dv, (7b)
0
V... (r) = escape velocity from r = ]/ -2U, (T¢)
U(r) = the equilibrium gravitational potential,
normalized to vanish at the boundary of the system.  (7d)

The positive definite character of the S-integral is evident. The
positive character of the W 1- and W 2-integrals are shown in
Paper I, Egs. (1.8) and (I.9). Furthermore, the eigenvalues w? are
real. The eigenfunctions &(x) exist and belong to a Hilbert space H
in which the inner productis (5, { = [ @2n* - {dx,yand { € H. This
form of the inner product is dictated by the form of the S-integral.
At this stage we observe a close parallelism between the eigenvalue
problem of Egs. (3) and (6) and the eigenvalue problem for the
normal modes of an inviscid fluid. For a fluid system one assumes a
Lagrangian displacement vector £(x), and obtains an eigenvalue
equation and a variational integral for w? and . The important
aspect of the parallelism is the vector natur of £ in both problems
and will be exploited extensively here. A lesser aspect of the
similarity is that in both cases there is a W 2-integral which comes
from perturbations of the self-gravitation and is identical in both
problems. The W 1-integral, however, is different in the two cases,
and causes significant differences between the normal modes of a
stellar system and those of a fluid.

One very useful and systematic way of solving Egs. (3) and (6),
that works in fluids, and will also be followed here, is (a) to sort out
the main subspaces of H on the basis of physical considerations, (b)
to devise appropriate basis sets of vectors to span each subspace,
(c) to expand & in terms of the basis vectors, (d) to solve the
variational Egs. (3) and (6) for the expansion coefficients, and (),
depending on the size of the projections of & on each subspace to
assign a class to each mode.

Items (a) and (b) are worked out in Sect. 3—5. Computation and
classification of the modes [items (c—e)] is carried out in Sects. 6-8.
Presentations of these sections are of a somewhat formal nature.
To ameliorate the situation a description of the main results is
given at this point.

97

i) Spherical stellar systems may have discrete normal modes of
oscillations. Periods of most of the modes are of the order of but
shorter than the dynamical time scales.

il) The modes may be purely radial, m=0, /=0. The
corresponding Lagrangian displacement vector is then derivable
from a scalar potential (Sect. 8a).

iii) The non-radial modes may possess axial symmetry (m=0)
or belong to m=1,2,... symmetries.

iv) If m=0 or 1, the modes possess a definite /-symmetry as
well. If m = 2, however, terms of different l-symmetries get weakly
coupled.

v) For a given / and m, it is possible to construct three distinct
types of Lagrangian displacements, one derivable mainly from a
scalar potential, a second mainly from a toroidal vector potential
and a third exclusively from a poloidal vector potential (Sects. 6,
and 8b).

vi) Based on their potentials, the modes may be classified as
scaloidal, poloidal-, and toroidal-types. The classification is
completely analogous to the p-, g-, and toroidal-classification of
stellar oscillations.

vii) Associated with each mode is an Eulerian density change
which may be considered as standing density waves (Sect. 7 and
Figs. 1-10).

3. The subspaces of H

3.1. A subdivision based on the potentials generating the vector fields

Let H be a Hilbert space with elements {(x), three dimensional
vector fields defined over the volume of the stellar system. Let the
inner product in H be ({,{")=[®2 {* - {' dx = finite and real,
{,¢" e H, where @2 is defined in Eq. (72). By a modified version of
Helmbholtz’ theorem (Sobouti, 1981, Eq. [7]), { can be expressed in
terms of a scalar and a vector potential. Thus

P2 =—P2Vy +FxA, V-A=0, (®)

where y,(x) is a scalar field (the subscript s will be explained
shortly), and 4 (x) is a divergence-free vector field. The wisdom of
introducing ®2 in Eq. (8) will surface when we discuss the
orthogonality of the fields. A vector in three dimensions can be
chosen in three independent ways. The solenoidal character of 4,
however, limits its choice to two. We shall choose to decompose 4
into toroidal and poloidal components. Thus, 4= FVx(Fy,)
+ Vx Vx (fx,), where  is a unit vector along the r-direction, and
Xp(%) and x,(x) are two scalar fields. Substituting this in Eq. (8)
gives

(=C+C,+ 04, ®
where

==V, (%9a)
C,=VxVx(Fy,)92, 9b)
L=V xVxVx(Fy)d2. ¢)

We shall borrow a nomenclature from Elsasser (1946). The
component {, will be referred to as the scaloidal field and it is
derived from a scalar potential. The {, and ¢, will be called poloidal
and toroidal fields, respectively. The subscripts s, p, t accompany-
ing ¢ and y are to remind this nomenclature. Because of division by
@2 the poloidal field of Eq. (9b) is not exactly solenoidal. Its
divergence, however, is small. Because of vanishing radial
components, however, the toroidal field is exactly solenoidal.
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We shall mainly deal with spherically symmetric systems. For
future reference the spherical polar components of the various
fields are given below,

1 1
s = <arXs’ - ;69Xss - mad,){s), (103)
1
¢o= ¢2< szp, 6 aoxp, - 9 0 6¢xp> (10b)
1 1 1
{i= 52‘(0’ madft, - ;aOXt>’ (10¢)
where
L*= 69 (sin 939)+ ! —— 02, (10d)

n*f

and y, in Eq. (10c) is now redefined to simplify the form of ¢,.
An immediate conclusion from Eq. (9) is the subdivision of H

into three orthogonal subspaces, H,, H,, and H,, with elements {,

{,, and {, respectively. The orthogonality of H, and H,, is seen from

f@20F - Codx=— [Vy¥ - Vx Fx (Fy,)dx

=[xV - [FPxVx(Fy,)]dx=0. ¢3))
The orthogonality of H, and H, is verified similarly. The
orthogonality of H, and H, is easily verified by expressing the inner
product ({,,{,) in spherical polar coordinates and carrying out
integrations over the polar angles. See Chandrasekhar (1962,
Appendix I1I) for details. The reason for the introduction of @2 in
Eqgs. (8) and (9) is now clear. It guarantees the orthogonality of H,
and H, and brings in considerable simplification in numerical
computations of the eigenmodes.

Let us point out some of the analogies between the fluid
problem and the stellar system case.

Small perturbations of a fluid are conventionally divided into
three categories: a) Acoustic- or pressure-type of motions which
induce substantial pressure fluctuations. b) Convective- or gravity-
type of motions. Their existence depends on two factors, a
temperature difference between the moving element and its
surroundings, and a gravitational field to pervade the fluid. ¢)
Toroidal motions which are slidings of layers of fluid on
equipotential surfaces. Due to sheer free nature of an inviscid fluid,
toroidal motions do not cause deviations from equilibrium states.
From the mathematical point of view the vector fields associated
with the above motions are, indeed, those of Egs. (9) and (10), the
only and the insignificant difference being that the density ¢ of the
fluid replaces @2. These mathematical properties are spelled out in
detail by Sobouti, 1981.

3.2. Further subdivision based on spherical harmonics

A spherical harmonic expansion of y,, x,, and y, will result in a
corresponding expansion of {, {,, and {,. Thus,

Xa(r> 9> ¢)= IZ:Xal(r) Y;m(ea d))’ (12)

~ where o is a generic index denoting s, p, or t. Substituting Eq. (12)
in Egs. (10) gives:
Ca = Z Calm >
Lm

a=s,p,t,

(13)

where
1 im
Cslm=|:_arXsl Ylm’ —;stao Y;ma _mel Ylm:l’ (133.)
I(I+1) 1 im
Cplm 2 I: Xpl lem s arXpl 60 Y;m’ rm arXpl lemjl ] (1 3 b)
1 im 1
Ctlm=E|:0 rsinf thy'lm’ —;thaeYlm:l' (130)

Any two distinct vectors of Egs. (13) are mutually orthogonal in
H, in the sense that [®2(,,{u,dx =0, for (a1, m)+ (B, k,n).
A consequence of Egs. (13) is the further subdivision of any of
H,, o=s,p,t, into smaller orthogonal subspaces H,, with
elements {,,,, ® =S5, p.t.

Before we proceed further the boundary conditions on the
elements of H should be clarified.

4. Boundary conditions and analyticity in H

4.1. Lagrangian displacements

Associated with the phase space perturbation ¢ _ is a macro-
scopic velocity field u(x)=0""' [¢_vdv, where g is the equi-
librium mass density of the system. In analogy with fluids, a
Lagrangian displacement field #(x) is defined by u=1. Letting
¢_=|Fg|'*&- v [see Eq. (5)] and using Eq. (7b) gives

=T

5 (14)

Thus ¢ at any position x is proportional to the Lagrangian
displacement of a material element of the system, #. A justification
for interpreting n as a Lagrangian displacement is provided in Egs.
(15) below, the expressions for the density perturbations. Its main
role, however, will be seen shortly when we raise the question of
the boundary conditions for é&.

4.2. Density perturbations

The Eulerian change in the density is 6g = j ¢ . dv, where ¢ , is the
symmetric-in-v part of the perturbation in the distribution
function. Substituting for ¢ , from Eq. (1a) and using Eq. (4) yields
i
do=—V-(¥)=—V"(em. (15a)

The Lagrangian density change follows from the conventional
definition of it,

Adg=00+ Vo -n=—9V 1. (15b)

4.3. Surface boundary conditions

Let n denote an effective polytropic index of the equilibrium state
near the surface. (In principle, one can do without this notion. We
are adopting it merely to economize in writing). Some of the
attributes of the equilibrium structure behave as follows. As r tends
to its surface value R:

U->r—R-0, (16a)
e~ 1UI", (16b)
j— |U|@*TVR - j=0,2,4,..., (16¢)
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Y |U|@nt54 - see Eq. (1.42b) (164d)
b4
U —(2n+5)/4~ 16
il (16¢)
As the surface boundary condition, all components of the
Lagrangian displacement vector, #, will be required to remain finite

at R. From Egs. (14), (13), and (16), this leads to

0, 2s1 —%—» [r— R|Gn= 04, (17a)
arxpl_,%%_,lr_Rl(Zn+5)/4’ (17b)
ot Lg% Ir= RIS, 179

Integrating these in the radial direction near the surface gives

xs,—>lr—RI(2"‘”’“—>ﬂ ; (18a)
R
xp,—>|r—Rl‘2”+9”“—>% , (18b)
R
X¢1—>|r—R|(2"+5)/4—>—Q$2 . (18¢)
R

The left hand side of these equations are constructed from the
asymptotic behaviors expressed in Egs. (16), and are for future
reference.

In fluids, the boundary conditions are commonly taken to be
the finiteness of 4 ¢/¢ (e. g., Cox and Giuli, 1968) and/or continuity
of the perturbed potential and its derivatives across the surface
(e.g., Ledoux and Walraven, 1958). For the sake of brevity we do
not present similar calculations for stellar systems here. It has,
however, been verified that these requirements are met by the
conditions of Egs. (18).

4.4. Analyticity near the center

Solutions of Egs. (3) and (6) must be analytic at r=0. A
straightforward way of selecting such solutions is to go back to the
differential equation (I.30) governing &, substitute series of the
form r/(1+r*+ ... for the various components of & and for the
other structural functions appearing there, and find an indicial
equation for the exponent j by equating the coefficients of the
lowest power of r to zero. This has almost been done, except that
instead of Eq. (I.30), new and simpler variational equations were
derived from the S-, W1-, and W 2-integrals given in Egs. (23)
below. The results are reported below.

The scalar potential y, tends to a solution of Laplace’s
equation at the center

xa =1 —0. (192)
For y,; and g, one finds

X =120, (19b)
ra— 7t —0. (19¢)

With these asymptotic behaviors, V- {;and ¥ - {,, also tend to r!
near the center. It is remarkable that the Lagrangian displacement
of a fluid for pressure and gravity modes, and their divergences
exhibit identical behavior. See Sobouti (1977, Egs. [19] and [24])
and Hurley et al. (1966, Egs. [30] and [39]). The toroidal vector &,

99

is divergence-free throughout the system. It can neither be
compared with those of a spherical inviscid fluid. For similar
displacements of such fluids are neutral and there is no equation of
motion to rely on. It is, however, comforting to note that the solid
body rotations of the system, say &,;, = (0,0, r sin 6) belonging to
I=1, m=0, are among the motions generated by Eq. (19¢).

5. Basis sets for various subspaces of H

The modified Helmholtz decomposition of Egs. (9) and (10) is
unique, orthogonal, and complete, in the sense that any vector {(x)
can be uniquely expressed in terms of three mutually orthogonal
components {, {,, and {,. Therefore, the division of H into the
orthogonal subspaces H,, H,, and H, is unique. The spherical
harmonic decomposition of Egs. (12) and (13) is also unique,
orthogonal, and complete. Therefore, the subdivision of each H,,
a=s,p,t, into the corresponding orthogonal subspaces H,, is
unique. To complete the task one has only to provide a basis set for
each H,,,, « =s, p,t. This can be accomplished by divising a set of
complete scalars in the interval (0, R) and expanding the potentials
2 (P, a=s,p,t, in terms of them. We resort to the Stone-
Weierstrass theorem:

If A is an algebra of real continuous functions on the compact
interval (0, R) which separates points in (0, R), and if A vanishes at no
point in (0, R), then the uniform closure B of A consists of all real
continuous functions on (0, R).

The set of the even powers of r, {r*,i=0,1,...},in (0, R) isan
algebra and satisfies the conditions of the theorem. Thus, any
continuous real-valued function on (0, R) can be approximated
uniformly as a linear combination of ¥*,i =0, 1, .... By Egs. (18a)
and (19a) the expression y, 7 '¥ ¢~ ' U~ ! is a continuous real-
valued function of r in (0, R). Therefore it can be expanded in
even powers of r. The same is true of the expression
X T W@ ' UT @271, which follows from Egs. (18b) and
(19b), and of y, r '"* ¥ 9~ ! $2~ ! which follows from Egs. (18¢)
and (19c¢). The long sought basis sets follow immediately:

U

Xs,k=%r'+2k, k=0,1,2, ..., (20a)
Uo2

x,,,k=QTr’+2k+1, k=0,1,2,..., (20b)
@2

x,,k=QTr’+2"“, k=0,1,2,..., (20¢)

where we have added a third subscript & to denote the radial
dependence of the y-scalars. Unlike the expansions of Egs. (9) and
(13), the expansion of Egs. (20) is not orthogonal. It is, however,
complete and provides a simple ansatz for numerical calculations.
More details on these basis sets in the context of fluid systems can
be found in Dixit et al. (1980).

In summary, the Hilbert space H of the & vectors, describing the
first order-in-v perturbations of a stellar system, is exactly the same
as the Hilbert space of the Lagrangian displacements of a fluid
system. Both spaces can be subdivided identically and can have
identical basis sets, etc. This does not, however, mean that the
eigensolutions of the two problems are identical. One deals with
two different operators. Some of the differences will be pointed out
in Sect. 6 as we work through the equations of motion, Egs. (3) and
(4). Some more will be discussed in the concluding Sect. 8.
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6. Eigensolutions belonging to m =0 and + 1

In the course of this section the following conclusions will
gradually emerge.

i) Spherically symmetric perturbations, /=m=0, are of
scaloidal-type only (see Egs. [13b] and [13c] for vanishing of {,
and {,). They are not coupled to perturbations belonging to other
(I, m) values. Therefore, one may speak of spherically symmetric
scaloidal radial modes of stellar systems. This property is sheared
by fluids.

ii) Perturbations belonging to different m values are not
coupled together. Therefore, one may assign a definite m-
symmetry to a normal mode of the system. This property is sheared
by fluids.

iii) Perturbations belonging to the same m but different I’s are,
in general, coupled together [exceptions are m =0 and =+ 1, and
will be discussed in (iv)]. The coupling comes about in the following
way. A scaloidal and/or poloidal perturbation belonging to a given
(m, I)is coupled with a toroidal perturbation belonging to m, /+ 1),
and vice versa. This causes a second order coupling between (m, /)
and m, [+ 2) perturbations of any of the s-,p-, and t-types.
Therefore, strictly speaking, one may not assign a definite
l-symmetry to a normal mode. The coupling, however, is weak, and
one may still do so approximately. Such a coupling does not exist in
fluids.

iv) If m=0 or £ 1, the coupling between I’s discussed in (iii)
vanishes. The modes acuire a definite -symmetry. They are either
of purely toroidal-type or of mixed scaloidal-poloidal types.
Furthermore, the eigenvalues become independent of m =0, or
+ 1 and are three-fold degenerate (provided /=1). The fluids have
the same characteristics, except that their pure toroidal per-
turbations are always neutral.

In the remainder of this paper we shall confine the analysis to
the simpler modes of m =0 and =+ 1. Because of coupling of item
(iii) above, the cases of higher m-values are somewhat involved and
will be presented elsewhere.

6.1. Computational procedure

A Rayleigh-Ritz variational method will be employed throughout.
The formalism is as follows. Let &; denote an eigensolution of Eq.
(3), with the corresponding eigenvalue w? =¢;. The subscript i
tentatively denotes the set of all specifications of the eigensolution
(the s-, p-, t-types, the harmonic numbers /, m, and the radial wave
number, k). The &; is a vector in the Hilbert space H of Sects. 3-5.
Let {{;} by a basis for H, where j also stand for similar
specifications of the element in question. Expand &, in terms of

{€;}:

§i=ZCjZﬁ’ 1)
J

where Z; are constants of expansion and will be treated as

variational parameters. Substituting Eq. (21) in Eq. (3) or in its

equivalent differential form, Eq. (1b), gives the following matrix

equation

WZ=SZE. (22)
or

ZtSsz=1I, (222)
and

ZYWZ=E, (22b)
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where [ is a unit matrix, E is a diagonal matrix whose elements are
the eigenvalues ¢;, Z is the matrix of the variational constants Z;;.
The elements of S are (see Eq. [6a]).

Sij=jd>2C;" “gav. (23a)
For the W-matrix one has
W =W, +sign(dF/dE)W,, (23b)

where the elements of W1 and W 2 are (see Eq. [6b] and [6¢]).
Wi1,=[®4[0,(t*0" (¥ +20,(¢*0,0]dx

+ [ @205, UL*(} dx,
W2,=G[V-(PLHV - (PL) |x—x'|dxdx’.

(23¢)
(23d)

The matrices S, W 1, W 2 are known. A solution of Eq. (22) consists
of finding the eigenvalue matrix E and the eigenvector matrix Z for
the given S and W matrices.

In integrating Egs. (23), some of the integrals over (0, ¢) angles
vanish. The properties (i)—(iv) listed in the beginning of this section
are inferred from these vanishing matrix elements.

A Rayleigh-Ritz approximation consists of truncating the
series expansion of Eq. (21) at some finite number of terms n,
say. This, correspondingly, scoops out a finite dimensional vector
space H (n) out of the infinite dimensional H. All matrices in H (n)
are n x n. Solution of Eq. (22) reduces to simultaneous diagonaliz-
ation of S to I and of W to E, and to finding the matrix Z of the
transformation. This procedure will be carried out here. However,
due to the multitude of the subspaces of H, each with its own
idiosyncracies, the bookkeeping of the modes is elaborate and
requires special precautions.

6.2. Partitioning of Egs. (22)

In long-hand notation an element of the basis set reads ., (see
Egs. [13] and [20] and Sect. 1, Notation), where o denotes one of
the s-, p-, or t-types, / and m are spherical harmonic numbers, and
k is the radial number of Egs. (20). By property (ii) above an
eigensolution of Eq. (22) always has a definite m-symmetry which
remains unchanged throughout the analysis. By property (iv), if
|m|=0or + 1, the eigenmodes also have a definite l-symmetry. To
simplify the notation. Both of these indices will be suppressed,
hereafter. The column vector of the basis sets for H can now be
written as follows:

il Gl ue)s

where we have explicitly partitioned the set into its scaloidal,
poloidal, and toroidal components, and i, j, k are radial wave
number designations. Any of the matrices of Eq. (22) gets block-
partitioned, correspondingly. Thus,

LLk=1,2,.., (24a)

M, Mg, M,
M=|M, M, M,|, M=EZWI1,W2S. (24b)
Mts Mlp M(t

There are simplifications, however. Perturbations of different
s-, P-, t-types are orthogonal in H in the sense of Eq. (11). Therefore
the S-matrix is block diagonal:

S= S : (25a)
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In Eq. (25a) and in what follows the blank slots are zero. From the
property (iv), there is no coupling between t-types and s- or p-types.
Therefore, the W-matrix takes the following form:

W= |W, W, (25b)
W
The matrix of the eigenvalues, E, is by definition block-diagonal:
ES
E= E, (26a)
El

Substituting Egs. (25) and (26a) in Eq. (22) gives the corresponding
block-structure of Z, which turns out to be the same as that of W:
zZ, Z,

Z=\Z, Z, (26b)
Z!t
Equation (22) itself splits as follows:

Wee WollZes Zoo| | Sss Z, Z, || E
b el 2 s 2P A
(27a)
(27b)

and
WywZ,= Stt Z\E,.

6.3. Explicit expressions for the S- and W-matrices

6.3.1. The scaloidal and/or poloidal elements

The angular dependence of {; and {, is the same. This allows one to
present the matrix elements constructed with these vectors by a
single expression. Let the r-dependent part of the radial component
of {,,x=s,p, be denoted by (,,, and that of its non-radial
component by (.. From Egs. (13a) and (13b) one reads:

Cor = — Xe» (28a)
loer = — %xsk, (28b)
Coir = (';_2 l(lr—-iz—l)ka’ (292)
Cors = % % Xok's (29b)

where a “‘prime” denotes d/dr. The (i, j) element of a matrix block
S, or W, is obtained by inserting the pair of vectors (% and {,;in
Egs. (23) and integrating over the (6,¢) angles. The angular
integrals are elementary but elaborate. With the notation of Eqgs.
(28) and (29) one obtains

Suiaj= J D2 Wasp Lae +LUFD L Ly 177, (30)

All integrals in Egs. (30)—(35) are from 0 to R. The expression for
W1 is:

w1

a=Ss,p.

=W lpju

=3 [@41r* (i Cpje + Cain Lppel dr
F1U+D) [ P4 — Larn) Copr— Cpy) + 72 L Gy
27 Cair = Lt 1) Lo+ 27 Lis G — L) (€1))
=3 QCair o Cain L) + 3 +1=1) (i1 Lyl ar
+ JO2[rPU" L Lgje HIU+1) rU' L1 Ly ] dr,
o f=s,p.

ai B
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The W 2-matrix expresses the effect of the perturbation in self-
gravitation. It is exactly the same as the corresponding term for a
fluid. From Eq. (9.10d) and (9.7a) of Sobouti (1980) one finds

W2pi=W2=4nG [, Wy dr, o, f=s,p. (32)

ai Bj
where

R
@ai(r)=r'PCair_(l+l) rqullcair_lcai] r_ldr’ x=S,p. (323)

6.3.2. The toroidal elements

The toroidal vectors of Eq. (13¢) have non-radial components
only. Let the radius-dependent part of this be denoted as

(33)

With this notation, inserting a pair of vectors {* and {; of Eq.
(13¢) in Egs. (23) and integrating over the angles gives

Sy =l(l+1)j¢2€tilﬁtjlr2dr, (34)
Wi, =10+1) [ P4

s L) (rCtlj_L —C.j¢)+(12+1—2) C:u{qi]dr, (35)
W2,,;=0. (36)

Once again let it be restated that there is no coupling between the
toroidal fields and the other types in the case of m =0 and 1.
Therefore, the mixed ts- and tp-blocks of all the matrices vanish
identically.

7. Volume and surface density waves

By Eq. (14) a vector & is proportional to the Lagrangian
displacement of a material element of the system. Corresponding
to this displacement is the Eulerian density change of Eq. (15a).
For a scaloidal-poloidal vector & belonging to harmonic numbers
(I, m), Eq. (13a) gives

50(,6,0)=30() ¥,n 0,9, G7)
where
o‘e(r)=£[,1—z%(rz é,)—1(1+1),1—zcl] (372)

For a toroidal displacement the density change vanishes identi-
cally. The density change of Eqs. (37) generated by an eigenmode &
will be referred to as a volume density wave.

More important than 6 ¢, and perhaps of relevance to surface
brightness inhomogeneities of globular clusters, is the projection of
0 ¢ on some plane (the plane of sky, say). Let P be a plane normal to
which makes an angle o with the z-axis and the intersection of
which with the xy-plane makes an angle § with the x-axis. Let
(x’,y’,z") be a new coordinate system where z’ is the normal to P
and x’ is the intersection of P with xy. The angles  and « are the
first two Euler angles which transforms (x, y, z) to (x',y',z'). The
law of transformation from the spherical polar coordinates (r, 0, ¢)
on (x,y,z) to (r',0,¢") on (x',y,z') is

r=r', (38a)
cosf =cosf’ cosa+ sinf’ sinacos(p’+ f), (38b)
tan ¢ = cos 8’ sina + sin 0’ cosasin (¢’ + ff) (38¢)

sin 0’ cos (¢’ + B)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986A%26A...169...95S

SI

FT9BBAGA - ~169- °. 95

102

The volume density wave of Eq. (37) projected on P and integrated
over the available z’ values gives

80(@, )= | 50(r) Y (0. d)dz

-z

(39)

where @’ and ¢’ are two-dimensional circular polar coordinates on
P. The integration limits are + z, = + }/R> — &?. The projected
density change of Eq. (39) will be referred to as a surface density
wave.

For /=0, m=0 all planes of projection are equivalent.
Equation (39) takes the simple form
do(@)=2(60(r)dz, 1=0. (40)

0
For/=1,m=0,onehas Y, oc cos 6. Substituting for cos 6 from

Eq. (38b) and noting the symmetry of the integrand with respect to
+z' gives

o0 (@', ¢")=sino cos (¢’ + B) z_f oo(r) sinf@'dz',

-z

(41)

where r2=@'2+z'% and sin' = @'/)/®'% + z'%. The integral in
Eg. (41) is independent of « and B. Therefore the pattern of the
surface density waves of /=1 is independent of the orientation of
the plane on which it is projected. The amplitude of the waves,
however, is proportional to sinacos (¢’ + f).

The case /=1, m=1 is the same as /=1, m=0. For, real Y;,
(o< cosf) transforms to real Y;, (oc cosfcos¢) upon inter-
changing the x and y axes. This is equivalent to letting o = 7/2 and
p=0in Egs. (38). The same is true for /=1, m= — 1, which could
result from Y,, by interchanging the y and z axes. Therefore, we
conclude that in the case of /=1, m=0, + 1, the surface density
wave pattern on the plane of sky isindependent from orientation of
any preferred polar axis. Only the amplitude of the surface waves
depends on this orientation.

This simplifying feature does not hold for higher /-values. For
this reason we have further confined the numerical results of the
paper to /=0, and /=1, m=0, + 1. The results for higher l-values
will be given elsewhere.

8. Numerical results

The eigenmodes of polytropic stellar systems for /=0, and 1 are
calculated. Polytropes have a constant polytropic index, s,
throughout the system. Numerical experiments showed that the
alternative ansatz of Eqs. (42) below were more suitable than those
of Egs. (20). Convergence of the eigenvalues and the eigenvectors
was faster. And the eigenvalues converged to lower values. Thus:

K= |12 — R?|CGno D4 L2k k=0,1,2,..., (42a)
Hone= 7% — RE[Gn9s 2640 o090 (42b)
Xllk=|r2_R2|(2”+5)/4r1+2k+19 k=091729"" (420)

The surface- and the center-behaviors of Egs. (42) and of Egs. (20)
are identical. The functions @2, ¢4, and ¥ for polytropes were
taken from Sect. 4 of Paper I. Sample computations are presented
in tabulated and graphic forms below.

8.1. The radial modes, =0

These are purely scaloidal fields. For by Egs. (13b) and (13c¢) there
are no poloidal or toroidal vectors corresponding to /=0. The first

Table 1. Eigenvalues of radial oscillations of polytropes

.3834+1 n=1.0, 1=0
.2929+1 .5600+1

.2655+1 .4636+1 .8404+1

.2568+1 .4296+1 .6957+1 .1131+2

.2623+1 .4189+1 .6468+1 .9593+1 .1522+2
.8987 n=1.5, 1=0
.6441 .2072+1

.6879 .1649+1 .4052+1

.6624 .1527+1 .3145+1 .6100+1

.5491 .1485+1 .2884+1 .4875+1 .8975+1
.41562 n=2.0, 1=0
.2630 .1232+1

.2279 .9063 .2584+1

L2112 .8101 .1829+1 .3984+1

.2021 .7742 .1612+1 .2918+1 .6001+1
L2779 n=2.6, 1=0
.1624 .7923

.1367 .5197 .16565+1

.1263 .4440 .1045+1 .2564+1

L1191 .4166 .8772 .1683+1 .3878+1
.1966 n=3.0, 1=0
.1054 .4790

.8679-1 .2732 .9715

.7917-1 .2228 .56368 .1603+1

.7600-1 .2044 L4277 .8639 .2268+1
L1219 n=3.6, 1=0
.6624-1 .2524

.44156-1 .1216 .4867

.3946-1 .9467-1 .2290 .7460

.3694-1 .8510-1 .1740 .3646 .11156+1
.6797-1 n=4.0, 1=0
.1963-1 .1041

.1417-1 .3869-1 .1868

.1224-1 .2839-1 .7042-1 .2773

.1126-1 .2481-1 .5068-1 .1091 .4051
.1419-1 n=4.5, 1=0
.2516-2 .2331-1

.1698-2 .4935-2 .3907-1

.1418-2 .3369-2 .9035-2 .5495-1

.1283-2 .2847-2 .6009-2 .1384-1 .7673-1

five eigenvalues of polytropes 1.0 to 4.5, in five variational orders
are given in Table 1. The eigenvalues here and in other tables are in
units of 4w Go,. A number a 10*® here and in other tables is
written as a+ b. As a rule convergence of the variational results is
better for lower central concentrations, i.e., for lower polytropic
indices. As a sample, the eigenvectors (i.e., the variational
constants of Eq. [21], Z;;) of polytropes 1.0, 1.5, 2.0, and 2.5 are
given in Table 2.

The present computations use the surface boundary conditions
of Egs. (18). Similar computations given in Tables 1 and 3 of Paper I
use different surface conditions. A comparison of the present
results with those of Paper I shows a few per cent increase in the
eigenvalues of polytropes 1.0 and 1.5. As the polytropic index
increases, however, the difference grows and amounts to a factor of
two in polytropes 4.0 and 4.5.

The corresponding volume and surface density waves are
calculated from Eqs. (37) and (40). Sample plots of these quantities
as functions of the spherical radius, r, and the cylindrical radius, @,
are given in Figs. 1-3. The plots are for polytropes 1.0, 1.5, and 2.0.
The modes are arranged in an ascending sequence of eigenvalues
and are numbered from k=1—5. The k-index could properly be
interpreted as a radial wave number. An increase in k by one unit
adds one more node to the waves. On the whole, as the central
condensation increases, the outward extension of the waves
diminishes.
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Table 2. Eigenvalues and eigenvectors of radial oscillations of
polytropes

n=1, 1=0 :
.25623+1 .4189+1 .6468+1 .9593+1 .1522+2
.1388+1-.1944+1 .1018+2-.9715+1-.5026+2

-.5744+1-.1699+2-.3087+2-.4086+2 .3529+3
.3558+2 .5601+2 .1318+3 .3377+3-.1008+4

-.5766+2-.1093+3-.2884+3-.6197+3 .1241+4

.4371+2 .8410+2 .1952+3 .3423+3-.5496+3
n=1.5, 1=0 :

.5491 .1485+1 .2884+1 .4875+1 .8975+1
.4561+1-.6536+1 .1310+2 .1229+2-.5849+2
-.2962+1-.1500+2-.3963+2 .3891+2 .4568+3
.4047+2 .6699+2 .1461+3-.4442+3-.1437+4
-.6976+2-.1219+3-.3859+3 .9311+3 .1921+4

.5441+2 .1066+3 .2900+3-.5671+3-.9169+3
n=2.0, 1=0 :

.2021 L7742 .1612+1 .2918+1 .6001+1
.7233+1-.6682+1 .1486+2 .1274+2-.6978+2

~.2600+1-.2149+2-.6100+2 .7351+2 .5925+3
.56862+2 .1089+3 .2313+3-.7199+3-.2011+4
-.1096+3-.2197+3-.6416+3 .16651+4 .2868+4
.9667+2 .2088+3 .5401+3-.9836+3-.1453+4

n=2.65, 1=0 :
L1191 .4166 .8772 .1683+1 .3878+1
.9250+1-.7344+1 .1668+2 .1307+2 .8488+2

-.1372+1-.3430+2-.6242+2 .1357+3-.7831+3
.9289+2 .1732+3 .3763+3-.1199+4 .2856+4
-.1837+3-.3997+3-.1160+4 .2634+4-.4330+1

.1826+3 .4225+3 .1023+4-.1726+4 .2321+4
n=3.0, 1=0 :

.765C0-1 .2044 .4277 .8639 .2268+1
.1048+2-.8583+1~-.1923+2-.1416+2 .1067+3

.9692 -.5681+2 .7284+2-.2391+3-.1075+4
.1626+3 .2716+3-.6202+3 .2032+4 .4208+4
-.3384+3-.7339+3 .2122+4-.4578+4~.6780+4
.3869+3 .8568+3-.1954+4 .3104+4 .3839+4

In Figs. 4 and 5 the surface waves of Eq. (40) are plotted as a
cloud of dots on a disk. The density of dots is proportional to
[00(D) — 00 i)/ (60 may — 0G min), Where the subscripts min and max
indicate the minimum and maximum values of §¢. The maximum
dot density corresponds to maximum Eulerian mass density
changes, and the zero dot density corresponds to the minimum
mass density changes. Due to a coarse digitization process (from 0
to 8 or 10) the finer details of 5o as a function of @ are smeared out.
Should a globular cluster have a density wave of the type
contemplated here, then Figs.4 and 5, and similar ones to come
later, could mimic the surface brightness fluctuations of it.

8.2. The non-radial modes of =1

As pointed out earlier, these modes are either of purely toroidal
nature or of mixed scaloidal-poloidal character. Each isintroduced
separately.

8.2.1. Scaloidal-poloidal modes of /=1

At most, ten variational parameters are used in the computations,
five for scaloidal and five for poloidal trial functions. The
eigenvalues in ten different variational orders are given in Table 3.

The tenth order eigenvectors of polytropes 1.0, 1.5, and 2.0 are
given in Tables 4, 5, and 6, respectively. The eigenvalues are
displayed in the line marked by the first asterisk. The column of
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ten entries below an eigenvalue is its corresponding eigenvector.
An entry in the line marked by pl (or sl1) is the variational
coefficient corresponding to the first poloidal (or scaloidal) ansatz
of Eq. (20b) or (20a). Entries in other lines have similar
interpretations.

To appraise the degree of coupling between the scaloidal and
poloidal motions, computations using pure poloidal or pure
scaloidal ansatz are also presented in Tables 4-6. The eigenvalues
displayed in the line marked by the second asterisk are calculated
with pure poloidal ansatz. The corresponding eigenvectors,
columns of five entries, are below each eigenvalue. The eigenvalues
in the line marked by the third asterisk and the columns following
them are calculated with five scaloidal trial functions. The
columns of pure-ansatz calculations are displaced to match those
of the mixed-ansatz calculations as closely as possible. Interesting
conclusions may be drawn. For example, let us compare the tenth
mode (i.e., the tenth column) of Table 4 with its pure scaloidal
counterpart. The two eigenvalues differ in the fourth figures
(12.93 as compared with 12.92). The scaloidal component of the
mixed calculation (that is, the last five entries marked by s1 to s5) is
surprisingly the same as the eigenvector of the pure calculations.
The poloidal component of the mixed calculation (that is, the first
five entries marked by pl to p5) do not have counterparts in pure
calculations. They are, however, much smaller than the scaloidal
components. Thus, in the loose sense of the word, this mode is
classified as a scaloidal mode, and is marked by an s at the bottom
of the column. The same can be said of the 9th, 8th, and 6th modes,
except that the differences between the mixed and pure calcu-
lations have become slightly larger. These are also marked as
scaloidal modes. The same can also be said of the 7th, 5th, and 4th
modes, except that the scaloidal components and the poloidal
components have exchanged their roles. These are marked as
poloidal modes. On the other hand, in the first two columns one
encounters a strong mixing of the poloidal and scaloidal ansatz.
The first mode, in particular, has comparable poloidal and
scaloidal components. It is marked as an sp mode.

The radial dependence of the volume density waves, Eq. (37a),
and the radial dependence of the surface density waves, the integral
in Eq. (41), are plotted in Figs. 6—8. The modes are arranged in an
ascending sequence of the eigenvalues and are numbered from
k=1 to 10. Unlike the /=0 case, k£ may not be considered as a
proper radial wave number. The number of nodes does not
necessarily increase with k. This is due to the bispectral nature of
the modes belonging to each /= 1. Of the two modes with the same
number of nodes, one usually is dominantly of scaloidal type and
the other is dominantly of poloidal type. For the example, in Fig. 6,
the number of nodes (not counting the center) for k=1 and k=61s
two, and they are of sp and s types, respectively. That for k=2 and
k=3 is three and they are of p and s types, respectively.

In Figs. 9 and 10, the surface density of Eq. (41) is digitized and
plotted as clouds of dots. The darkest and the lightest areas of the
plots correspond to the maxima and minima of the Eulerian
density fluctuations projected on a plane. The asymmetry of the
plots is simply the effect of cos ¢’ in Eq. (41).

8.2.2. Toroidal modes

The eigenvalues of five toroidal modes of /=1 in five variational
orders are reported in Table 7. They are in units of 47 Gg..
The lowest eigenvalue is zero for polytrope 2.5, and appears
to converge to zero in other polatropes. This is because of
the special form of the first toroidal ansatz. Equations (20c) and
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OmegaF*2 = 0.25 @A\ = 0.5491e+00 omega**2 = 0.20210+00
Kk =\y k=1 X=3
/ omegR¥*2 = 896401 ++2 = 0.14850+01 omega**2 = 0.7742¢+00

g/ k=2 =2 k=2
Wﬁf\o.&m&wm omega**2 = 0.2884e+01 omega**2 = 0.16120+01

—_ pa——
k=3 X k=3 s k=3
egax*2 = 0.9593e+01 = 0.4875e+01 omega**2 = 0.2918e+01
TS S X~
J7 k=4 k=4 k=4
omega**2 = 0.1622¢+02 omegat+2 = 0.8976e+01 omega**2 = 0.6001e+01
~—_ N =
/ Radius k=65 / Badiys k= =
Fig. 1. Radial dependence of volume Fig. 2. Radial dependence of volume Fig. 3. Radial dependence of volume
(v) and of surface (s) density waves; (v) and of surface (s) density waves; (v) and of surface (s) density waves;
n=1.0, /=0 n=15,1=0 n=2.0, =0

Eadttoad

.

Rt ek Losd

Radial dependence of Radial dependence of
volume (v) and of surface volume (v) and of surface

(s) waves . /Qﬁ/ (s) waves . /

Fig. 4. A surface density wave of the polytrope n=1.0; the radial mode /=0,  Fig. 5. A surface density wave of the polytrope n=1.0; the radial mode /=0,
k=1, »*=0.2523E+01. The density of dots is zero at minimum mass density k=2, w? = 0.4189E 4-01. The density of dots is zero at minimum mass density
and is maximum at maximum mass density and is maximum at maximum mass density
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Table 3. Eigenvalues of non-radial oscillations of polytropes. Scaloidal-poloidal modes

.5879 171641 n=.{.0, 1=1
.2273 .1252+1 .1375+1 .4285+1

.2072 .8396 .1140+1 .2298+1 .3439+1 .6637+1

.2040 .8339 .1104+1 .1689+1 .3170+1 .3411+1 .5472+1 .9499+1

.2029 .8308 .1089+1 .16581+1 .2526+1 .3085+1 .4708+1 .5085+1 .7970+1 .1293+2

.2545 .3180 n=1.5, 1=1
.1445 .2169 .6125 .1423+1

L1241 .1950 .4928 .1047+1 .1120+1 .2932+1

.1190 .1872 .4905 .9408 .1036+1 .1577+1 .2311+1 .4907+1

L1179 .1829 .4873 .9376 .1006+1 .1508+1 .2129+1 .2214+1 .3860+1 .7342+1

.7696-1 .1387 n=2.0, 1=t
.3647-1 .1015 .2982 .8450

.2818-1 .8180-1 .2682 .5190 .6321 .1851+1

.2471-1 .7472-1 .2647 .5089 .5646 .8159 .1347+1 .3195+1

.2301-1 .7249-1 .2619 .5062 .5402 .8158 .1180+1 .1208+1 .2326+1 .4871+1

.4562-1 .6457-1 n=2.5, 1=1
.1450-1 .56256-1 .1473 .6697

.8467-2 .4736-1 .1399 .2689 .3764 .1210+1

.5914-2 .4304-1 .1344 .2687 .3206 L4172 .7855 .2076+1

.4543-2 .4115-1 .1324 .2536 .2986 .4134 .6214 .6676 .1355+1 .3157+1

.2756-1 .3953-1 n=3.0, 1=1
.1311-1 .2692-1 .6765-1 .3631

.8408-2 .2383-1 .6630-1 .1205 .2008 .7351

.6438-2 .2251-1 .6162-1 .1201 .1620 .1946 .4103 .1241+1

.5284-2 .2143-1 .6078-1 .1133 .1473 .1905 .2923 .3294 L7067 .1869+1

.1036-1 .3102-1 n=3.5, 1=1
.1014-1 .1156-1 .2607-1 .1964

.7896-2 .1002-1 .2582-1 .4740-1 .8677-1 .3810

.6519-2 .9846-2 .2349-1 .4656-1 .6640-1 .7632-1 .1743 .6335

.5453-2 .9681-2 .2337-1 .4218-1 .5911-1 .7347-1 .1142 .132¢ .301¢C .9424

.2891-2 .2014-1 n=4.0, 1=1
.2765-2 .6997-2 .7392-2 .7896-1

.2448-2 .8340-2 .6869-2 .1302-1 .2606-1 .1462

.2424-2 .5520-2 .6295-2 .1248-1 .1909-1 .2123-1 .5092-1 .2393

.2295-2 .5279-2 .6244-2 .1102-1 .1670-1 .1979-1 .3133-1 .3701-1 .8781-1 .3515

.3406-3 .9850-2 n=4.5, 1=t
.2949-3 .7647-3 .2381-2 .1921-1

.2570-3 .7334-3 .1430-2 .1789-2 .4177-2 .3057-1

.2570-3 .6493-3 .1307-2 .1440-2 .2386-2 .3161-2 .6900-2 .4629-1

.2479-3 .6471-3 .1154-2 .1318-2 .2148-2 .2686-2 .3626-2 .5039-2 .1101-1 6506-:

Table 4. Normal modes of /=1 calculated with mixed and pure scaloidal-poloidal ansatz.
Polytrope 1.0

* 2029 .8308 .1089+1 .1581+1 .2526+1 .3085+1 .4708+1 .5085+1 .7970+1 .1293+2

pl .1270+1 .1722+1 .5190-2-.1982+1-.3003+1 .5436-1 .1551+1-.4851-2-.3690-1 .7303-1
p2-.2230+1-.6892+1-.1091+1 .1242+2 .3199+2 .4564 -.2051+2-.2141 L1717 -.8047

p3 .1334+1 .7675+1 .1577+1-.1860+2-.1041+3-.2569+1 .8244+2 .1457+1 .9765-1 .2744+1
p4-.2345 -.4415+1-.6150 .2071+1 .1306+3 .3819+1-.1279+3-.2966+1-.8354 -.3668+1
p56-.1279 .1861+1 .1216 .5947+1-.5521+2-.1770+1 .6713+2 .1824+1 .6281 .1680+1

sl .7746 -.4068 .1853+1 .8419-1 .1388 -.17651+1-.1707 .2905+1-.3006+1 .7584+1
s2 .8951-1 .2416 .3018 -.5062-1-.1445+1-.3509+1 .1356+1-.9803+1 .8274-1-.9487+2
s3 .2345+1-.2909+1 .8876+1-.1529+1 .5103+1 .1906+2-.6088+1 .3512+2 .1002+3 .3636+3
s4-.4128+1 .5669+1-.1680+2 .5303+1-.6363+1-.3946+2 .1193+2~.1056+3-.2587+3-.5404+3
s5 .3634+1-.5321+1 .1421+2-.3800+1 .2153+1 .3947+2-.7629+1 .9061+2 .1730+3 .2727+3

sp P s p P s P s s s

Pure poloidal ansatz :

* 2973 .8468 .1684+1 .2630+1 L4T710+1
pl .1377+1 .1647+1 -.1977+1-.3003+1 .1661+1
p2-.2498+1-.6894+1 .1240+2 .3200+2 -.2052+2
p3 .1588+1 .7805+1 -.1851+2-.1041+3 .8253+2
p4-.4214 - .4491+1 .1943+1 .1306+3 -.1280+3
p5-.3688-1 .1885+1 .6002+1~-.5619+2 .6721+2

Pure scaloidal ansatz :

* .9895 .3076+1 .5082+1 .7967+1 .1292+2
si .2059+1 -.1748+1 .2904+1-.3008+1 .7588+1
s2 .2679 ~.3466+1 -.9823+1 .8869-1-.9489+2
s3 .9419+1 .1895+2 .3528+2 .1002+3 .3637+3
s4 -.1678+2 ~.3931+2 -.1060+3-.2588+3-.5405+3
sb .1614+2 .3945+2 .9088+2 .1730+3 .2728+3

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1986A%26A...169...95S

SI

FT9BBAGA - ~169- °. 95

106

Table 5. Normal modes of /=1 calculated with mixed and pure scaloidal-poloidal ansatz.
Polytrope 1.5

Mixed scaloidal - poloidal ansatz :
* 1179 .1829 .4873 .9376 .1005+1 .1508+1 .2129+1 .2214+1 .3890+1 .7342+1

pl .18365+1-.1712 -.1492+1 .1705+1-.2213 -.2467+1 .9460-1-.2302+1-.2866 .1297

p2-.3388+1 .2610 .6820+1-.1021+2 .3808 .2415+2 .8154 .2877+2 .2446+1-.1426+1
p3 .4026+1-.1277 -.9999+1 .1405+2 .2665-1-.7140+2-.6294+1-.1110+3-.6763+1 .4943+1
p4-.2606+1-.6073-1 .8619+1-.2739 -.8032-1 .7939+2 .1141+2 .1671+3 .7643+1-.6772+1
pS .6421 .8062-1-.3764+1~.4697+1~.1162 -.2829+2-.6245+1-.8568+2-.2951+1 .3190+1

s1 .9543-1 .3090+1 .5855 -.3230 -.2304+1 .3357 .3246+1 .6826-1-.3230+1 .8212+1
s2 .4908 .1203+1-.1436+1 .1330+1-.8643 -.2914+1-.1449+2-.2556+1 .5028+1-.1181+3
s3 .4557+1 .8653+1 .1571+1 .2242+1 .2383+2 .5300+1 .3786+2 .1009+2 .1185+3 .6067+3
S4-.8121+1-.1649+2~.5196+1~.8910+1-.4329+2 .6898 -.1219+3-.8682+1-.3729+3-.8269+3
sb .8176+1 .1609+2 .56574+1 .4687+1 .4862+2-.3966+1 .1275+3-.1360+1 .2826+3 .4528+3
sp s P P s p s ) s s

Pure poloidal ansatz :

* 1375 .5010 .9489 .1617+1 .2219+1
pl .1348+1 -.1610+1 .1712+1 -.2482+1 -.2319+1
p2-.3210+1 .6726+1-.1006+2 .24156+2 .2902+2
p3 .3677+1 -.9718+1 .1330+2 ~.7094+2 -.1120+3
p4-.2285+1 .8459+1 .7375 .7833+2 .1683+3
pS .5165 -.3765+1-.5103+1 -.27656+2 -.8620+2

Pure scaloidal ansatz :

* .18156 .9857 .2113+1 .3874+1 .7334+1
s1 .3074+1 -.2381+1 .3268+1 ~-.3263+1 .8213+1
s2 .1219+1 -.7096 ~.1444+2 .56356+1-.1182+3
&3 .9397+1 .2373+2 .3673+2 .1174+3 .5071+3
s4 ~.1784+2 -.4250+2 ~.1185+3 -.3718+3-.8279+3
sb .1746+2 L4774+2 .1263+3 .2824+3 .4534+3

Table 6. Normal modes of /=1 calculated with mixed and pure scaloidal-poloidal ansatz.
Polytrope 2.0

Mixed scaloidal - poloidal ansatz :
* .2301-1 .7249-1 .2619 .5062 .5402 .8158 .1180+1 .1208+1 .2326+1 .4871+1

pl-.39871 .1306+1-.1314+1 .1213+1-.8912 -.1773+1-.1681+1 .2049+1-.3869 .113886

p2 .1353+1-.4312+1 .6661+1-.8100+1 .4411+1 ,1504+2 .2212+2-.2315+2 .3658+1-.1285+1
p3-.2335+1 .7414+1-.1184+2 .1413+2-.6444+1-.3565+2~-.8687+2 .8409+2-.1126+2 .4585+1
p4 .2079+1-.6651+1 .1187+2-.7989+1 .3405+1 .2544+2 .1313+3-.1218+3 .1400+2-.6472+1
p5-.7381 .2344+1-.4998+1 .1897+1-.1036+1-.67083 -.6726+2 .6086+2-.6114+1 .3142+1

sl .4019+1 .6560 L7069 -.1378+1-.1912+1 .4493 .2642+1 .2191+1-.3421+1 .9344+1

s2 .1677+1 .8264 ~.1765+1 .1457+1-.1594+1-.2904+1-.1548+2-.9469+1 .1835+1-.1495+3

s3 .9296+1 .9079+1~.1648+1 .1745+2 .3275+2-.6920 .4603+2 .3397+2 .1940+3 .6977+3

S4-.1897+2-.1757+2-.2517+1-.3578+2-.6651+2 .1294+2~.1439+3-.1677+3-.6187+3-.1223+4

s5 .2144+2 .2021+2 .2126+1 .3685+2 .8862+2-.6731+1 .1549+3 .1835+3 .4897+3 .7136+3
s P P s P P s sp s s

Pure polidal modes

* .8092-1 .2757 .5223 .8245 .1201+1
pl .1298+1-.1351+1 .1500+1-.1790+1 -.2688+1
p2 -.4081+1 .6487+1 ~-.9057+1 .1486+2 .3248+2
p3 .6857+1-.1123+2 .1464+2-.3413+2 -.1222+3
P4 ~-.6050+1 .1135+2 -.7592+1 .2255+2 .1802+3
FS .2097+1-.4841+1 .1800+1 .9343 -.9089+2

Pure scaloidal ansatz :

* . 2691-1 .5166 .1179+1 .2310+1 .4866+1
s1 .4049+1 =-.2437+1 .3469+1 -.34568+1 .9344+1
S2 .1854+1 -.4873 -.1778+2 .2414+1-.1496+3
s3 .1133+2 .3707+2 .5476+2 .1922+3 .6984+3
s4-.2288+2 -.7293+2 -.2083+3 -.6178+3-.1225+4
s5 .2588+2 .9313+2 .2368+3 .4905+3 .7147+3
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(13c), for /=1, k=0, m=0, gives {,;,=[0,0, —(o/¥)rsinb].
The Lagrangian displacement corresponding to this vector is
1,10 =1[0,0, (i/w) rsin 0]; see Eq. (14). In the case of a fluid this is
a solid-body rotation of the fluid and is neutral (i.e., it is an exact
eigenfunction with zero eigenfrequency). In the stellar system case,
however, there is a velocity perturbation induced by this {, ;,; see
Eq. (5). It is not exactly a solid body rotation. However,
convergence of the lowest toroidal eigenvalue to zero indicates that
it is very close to it. In polytrope 2.5, /¥ =1, see Egs. (16b) and
(16¢c). The two vectors {,;, and n,;, become identical. The
corresponding element of the W 1-matrix, W, ,,, vanishes; see Eq.
(35). Thus, the lowest toroidal eigenvalue becomes exactly zero.
This feature is exclusive to /=1.

Finally let us observe that the toroidal modes do not induce
density waves. They only give rise to a macroscopic velocity field,
u=1n=—(¥/0)¢&; see Sect. 4.1.

We close this section by making a final comparison between the
stellar system problem and the fluid one. It has been advocated
throughout the paper that the Hilbert space of the eigenmodes of
both systems are identical. Here we observe further features
common to both problems. The counterpart of the pressure modes
of a fluid are the scaloidal modes of a stellar system, and the
counterpart of the gravity modes of a fluid are the poloidal modes.
There are also differences. The sequence of the eigenvalues of the
gravity modes starts from a highest value and converges to zero as
the mode order (the number of nodes, say) increases to oc, while
that of the pressure modes starts from a lowest value and increases
without bound. Convergence to zero is not observed in stellar
systems. Both sequences of the scaloidal and poloidal modes start
from a lowest value and increase with increasing mode orders. It
appears, however, that the poloidal eigenvalues fall in general
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Fig. 9. A surface density wave of the polytrope n = 1.0; non-radial mode /=1,
k=1, w*=0.2029. The density of dots is zero at minimum mass density and is
maximum at maximum mass density
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Fig. 10. A surface density wave of the polytrope n=1.0; non-radial mode
I=1, k=6, ©®> =0.3085E +01. The density of dots is zero at minimum mass
density and is maximum at maximum mass density

Table 7. Eigenvalues of non-radial toroidal oscillations of

polytropes

6724-1 n=1.0, 1=1
.7397-3 6672

.1057-3 .5735  .1401+1

.2718-4 5545  .1290+1 .2314+1

.9422-5 5518 1225+1 .2201+1 .3411+1
.11568-1 n=1.5, 1=1
.4543-3 3457

.7480-4 .3457  .7648

.2055-4 .3399  .7462  .1329+1

.7447-5 .3376  .7376  .1247+1 .2046+1
.1212-2 n=2.0, 1=1
.8409-4 .2020

.1580-4 .1865  .4801

.4620-5 .1865  .4030  .8723

.1738-5 .1862  .4000  .6903  .1377+1
.0 n=2.5, 1=1
.0 11160

.0 .9298-1 .2921

.0 .9164~1 .2087  .5450

.0 .9152-1 .1982 L3711 .8726
1907-3 n=3.0, 1=t
2142-4 .5963-1

4992-5 .4134-1 .1569

1638-5 .3942-1 .9680-1 .2995

6618-5 .3917-1 .8737-1 .1773  .4872
2425-3 n=3.5, 1=t
3077-4 .2482-1

7802-5 .1513-1 .6754-1

2693-5 .1395-1 .3657-1 .1319

1126-5 .1370-1 .3168-1 .6829-1 .2189
.1218-3 n=4.0, 1=1
1698-4 .6985-2

4630-5 .3852-2 .1940-1

1673-5 .3446-2 .9477-2 .3870-1

7221-6 .3333-2 .7983-2 .1784-1 .6560-1
.1983-4 n=4.5, 1=1
3027-5 .7816-3

8795-6 .4044-3 .2175-2

3315-6 .3524-3 .1001-2 .4376-2

1475-6 .3352-3 .8279-3 .1882-2 .7623-2

behind the scaloidal values and increase at a slower pace than their
scaloidal counterparts. One further noteworthy difference: While
the toroidal modes of a fluid are neutral, those of a stellar system
are not. In other words, the non-neutral modes of fluids are
bispectral, pressure- and gravity-modes. Those of a stellar system
are trispectral, scaloidal-, poloidal-, and toroidal-modes.

8.3. Comparison of wave frequencies
with particle orbital frequencies

This section and the following are devoted to the question of
interaction between particles and waves. Here we search out the
modes whose frequencies lie outside the range of the admissible
particle frequencies. There are such modes and the question of
wave-particle resonance does not arise for them.

Within a spherical system of uniform density g, a particle is
subject to the gravitational force —(1/3)4n G gr. Its motion is a
three dimensional harmonic oscillation with the angular frequency
w?=(1/3)4nGp. In an actual stellar system the density is
sufficiently uniform in the immediate neighborhood of the center,
and orbits with w? as large as (1/3) 4 G, can exist, where g is the
central density. Thus the lowest upper limit to w? is (1/3) 47 G g..

Similarly a lower limit to w? is (1/3) 4% G g, where g is the mean
density of the system. An improved lower limit can, however, be
obtained. Let us consider a highly centrally condensed system of
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Table 8. The lower limits of wZqe for polytropes. The unit is 47 G g,. A number a 10*° is written as a+ b
Polytropic index 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
A/3) /e, 0.101 0551 02921  0.142-1  0.615-2 02182  0.536-3  0.539-4
©/3) /e, - - 0.234 0.114 0.492-1  0.475-1  0.429-2  0.431-3

the total mass M and the finite radius R. Particles move in
Keplerian orbits with w? = GM/a®, where a is the semi major axis
of the orbit. Particles reaching the outermost regions of the
system have highly elliptical orbits with a= R/2, and have the
lowest »* = 87 GM/R® = (8/3)4n G §. Thus, the largest lower limit
lies somewhere between 1 to 8 times (1/3)4n Go.

In units of 47 G g, (the unit used for normal mode frequencies
of this paper) the admissible w? for particle motions falls in the
range

a0

- where 1 <o <8.
3 0.

1
< w? (particle) < 3

The higher the central condensation the closer « to 8. These lower
limits for polytropes are given in Table 8 (the data for g/ is from
Chandrasekhar, 1957).

In Table 1 many of the radial eigenvalues are larger than 1/3,
the lowest upper limit for particles. Examples are all modes of
polytropes 1.0 and 1.5, the second and higher modes of polytropes
2.0 and 2.5, and many higher modes of other polytropes. There are
no eigenvalues smaller than the lower limits of Table 8.

In Table 3, many non-radial eigenvalues of /=1 are larger than
1/3. Examples are the second and higher modes of polytropes 1.0
and 1.5, the third and higher modes of polytropes 2.0 and 2.5, etc.
Two of the eigenvalues are smaller than the lower limits. These are
the first modes of the highly centrally condensed polytropes 4.0
and 4.5.

There is no need to compare the toroidal frequencies of Table 7
with particle frequencies. These modes do not perturb the
equilibrium gravitational field and do not interact with particles.

8.4. Particle — wave interaction

In the earlier sections we have strictly confined ourselves to the
mean-field approximation and have ignored particle individu-
alities completely. In this section we abandon this consistency and
ask what happens to a particle placed in the smoothed-out but
perturbed system. Let us consider a normal mode of the type
contemplated in this paper and a particle in its Keplerian orbit in
the system. The equation of motion of the particle at position r is

F=—PU®r) — VU, 1), (43)
where U(r) is the unperturbed gravitational field and SU (r, ¢)
=0U(r) exp iwt is the perturbation induced by the wave. On
multiplying Eq. (43) by v = r and integrating with respect to time
from 0 to ¢ one arrives at:

1 t

502+U(r)+ji~ VéU dt = const . (44)
0

The total time derivative of U is

doU 06U

d_t=7+r VouU. (45)

Substituting for the integrand in Eq. (44) from Eq. (45) one obtains
‘. t1doéUu  9o6U

- voUdt= [ | ————|dt
7 ! [ ot ]

=8U(r, 1) — 8U(ry, 0) — 5U(r, 1) + 8U (ro, 0)

=06U(r,t)—6U(ry,1). (46)
Equation (44) becomes
102+ U@+ [6U@F) — 6U(ry)] €'t = const . 47

As expected, the total energy of the particle, 1 v> + U(r) + 6U(r, 1)
is not constant in time and there is a transfer of energy from the
wave to the particle, but also from the particle to the wave, if the
expression in the square bracket is negative. This is not surprising.
The wave-particle combination is a Hamiltonian system subject to
time reversibility. During one complete period of motion some
energy exchange will take place, but whatever happens in half the
period will be undone in the following half. Indeed, Eq. (47) clearly
shows that if r and r, happen to lie on the same equipotential of
SU(r), the energy of the particle returns to its unperturbed value
102 + U(r) = const. The wave is not damped, nor the particle
absorbs unlimited quantities of energy from the mode on account
of resonance.

In addition to this argument there are other considerations. i)
The toroidal modes of any spherical system belonging to m = 0 and
+1 do not induce perturbations in the density or in the
gravitational potential. There is no coupling between particle
orbits and the waves. ii) The polytrope 1.5 has the distribution
function F(E)= const. and dF/dE = 0. Perturbation in the total
gravitational energy for all modes is identically zero (this is the
same as vanishing of the W 2-integral for this polytrope; see Eq.
[I.45]). Therefore, to begin with there is no potential energy in the
wave to be trensferred to the particle, iii) Finally let us quote
Miller’s point of view. A harmonic oscillator with a constant
frequency can resonate in a time varying force field which has the
same frequency. A mass point in a Kepler orbit in a gravitational
field, however, has an orbit dependent frequency. If the time
varying field moves the particle from one orbit to the other, the
orbital frequency will also change and the conditions for resonance
will be destroyed.
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Note added in March 1986

In the course of refereeing this paper a dialog was exchanged
between the referee (Frank H. Shu) and the author. A good deal of
the differences of opinions were reconciled. There, however,
remains a reservation which the referee recommends to bring to the
attention of the readers. This is duly done by including a summary
of the relevant points of the dialog below.

Referee: ... the Hilbert space methods that Sobouti introduces to
do the configuration space analysis are quite powerful; unfor-
tunately, an approximation of dubious accuracy is adopted right at
the outset, the assumption that the antisymmetric part of the
perturbation in the distribution function is linear in the velocity »
(see Eq. [5]). For a general choice of the equilibrium distribution
function, F(E), this form does not satisfy the fundamental Eq.
(1b); thus, the subsequent analysis for the eigenvalue problem
resulting from Eq. (3) contains an uncontrolled approximation
whose errors are independent of the accuracy or completeness of
the trial functions constructed for €. This defect would not be fatal
if the author could give a plausible physical argument which
justifies why Eq. (5), a drastic truncation of a power series
expansion which may itself have limited convergence properties (at
large |v|), represents a reasonable ansatz. Alternatively, the author
should give a mathematical demonstration which shows that its
adoption does not seriously affect the numerical results.

Author: ... Eq. (5) is the first term of an absolutely convergent
series and is used as a variational ansatz. No variational ansatz is
expected to satisfy the differential equation of motion to which it
pertains. Yet the second order accuracy of the calculated
eigenvalues is guaranteed by the variational principle. ...

After revision:

Referee: .... An assumed linear dependence on v suffers the
opposite criticism (from an assumed linear dependence in x) since
one intuitively expects stars of high random velocity to partake less
than stars of low random velocity in any coherent oscillations of
the system. This is certainly the case in density-wave theory. Dr.
Sobouti has alleviated part of my worry by pointing out the
truncation at the escape velocity, but I am still concerned that the

basic ansatz assumes a qualitatively wrong assumption, namely
that f increases with increasing v. I worry that this assumption
underlies the finding that the eigenfrequencies are generally larger
than the characteristic orbital frequencies of the system. If they are
not, then resonances can arise and the discussion on pp. 108—109 is
invalidated. ...

Author: In a forthcoming paper we attempt to include third order-
in-velocity terms in the variational ansatz of Eq. (5). Let us hope
that the new computations will throw some light on the issue and
provide something more than intuitive feelings to base the
judgement on.
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