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Abstract. Normal modes of a binary member may be excited by
the tidal effect of its companion, causing energy transfer from the
orbital motion to the star (Fabian et al.). We decompose the
displacement vector field of the oscillating star into irrotational
and solenoidal components, and show that only the irrotational
motions are responsible for the energy transfer. The tidal capture
cross sections are calculated for a wide range of polytropic
indices.

Key words: oscillations of stars — close binaries — globular clusters

1. Introduction

Among the possibilities for close binary formation is the sugges-
tion of Fabian et al. (1975). They invoke a tidal process in which
the energy from the relative orbital motion of two unbound stars
is transferred into the normal modes of oscillations of one or the
other member. Press and Teukolsky (1977) analysed this tidal
process in some detail and gave mathematical expressions for the
energy transfer and the capture cross-section. The expressions
involve orbital specifications as well as the eigenvalues and
eigenfunctions of the non-radial normal modes. They also present
numerical calculations for n=3 polytrope. Giersz (1986) used the
same formalism and gave capture cross sections for a wide range
of stellar masses and radii. Lee and Ostriker (1986) reconsidered
the question of tidal capture and among other problems extended
the numerical analysis to n=1.5, 2, and 3 polytropes. McMillan et
al. (1987), and Ray et al. (1987) followed the same procedure as the
latter authors for polytropes 1.5 and 3, and added further details
to various aspects of tidaly interacting binaries.

In this communication we decompose the eigendisplacements
of a normal mode into an irrotational and a ‘weighted’ solenoidal
component. We show that only the irrotational component is
responsible for the interaction with the companion star. This
analytical features stems from the fact that the tidal gravitational
field itself is an irrotational one. And the whole affair is a special
aspect of a much wider group theoretic property that requires the
symmetries of interacting fields (the displacement and the tidal
fields in the present problem) to be the same. In the light of this
finding, one not only arrives at a better understanding of the
problem, but also can devise efficient methods of numerical
calculations. Numerical results are presented for polytropes 1.5, 2,
2.5, 3, 3.25,3.5, and 4.
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Our formalism for mode analysis is given in Sect. 2. Press-and-
Teukolsky’s treatment of tidal interactions is summarized in
Sect. 3. Incorporation of the two aspects to obtain the overlap
integrals is given in Sect. 4. Capture cross sections are discussed
in Sect. 5. Concluding remarks, and comparisons with other’s
calculations are presented in Sect. 6.

2. Normal modes in terms of scalar and vector potentials

Let p be the density and &(r) a displacement field in a star. Let H
be a Hilbert space the elements of which are &(r) and the inner
product in it defined as

(& &)=[p&* &d>x=finite, & &'eH, 1)

where the integration is over the volume of the star.

The normal modes of the star (w,, &,), in which w,, is the eigen-
frequency and &, is the corresponding displacement field belong
to H and satisfy the eigenvalue equation

W& =awypé,, 2
where

WE=V(op)+ opVQ+ pV(5Q), (3)
Sp=—V"(p&), (3a)
g | (), e o
V(5Q) =4nGép. (o)

The %" operator is self-adjoint. It follows that the eigenvalues w?
are real and the set {&,} is orthogonal and may be normalized to
unity, thus

(& &)= Opm- (O]

Dixit, Sarath, and Sobouti (1980) give a basis set for H and
expand &,’s in terms of this basis. Inverting their expansion it is
possible to express their basis in terms of {&,} in a unique fashion.
It then follows that {&,} is also complete and may serve as an
orthogonal basis for H.

Using a gauged version of Helmholtz’ theorem, Sobouti (1981,
1986) decomposes a general vector field &) in H into an
irrotational component and a “weighted” solenoidal component.
Thus

E=¢,+¢&,, (5
where
ép = VXp’ (Sa)
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1 1
==V xA,=—V x V x(fy,).
p P

(5b)

Here y,(r) and x,(r) are two scalar potentials, 4,=F x (fy,) is a
vector potential, and # is the unit vector in the radial direction.
The nomenclatures ‘irrotational’ and ‘weighted solenoidal’ is to
indicate that ¥ x §,=0, and V- (p&,) =0. Sobouti also shows that
in the vicinity of convective neutrality, ie., for small values of
(0p/0p),q — dp/dp, the eigendisplacement vector of the p-modes are
exactly of &,-type and those of the g-modes are exactly of & -type.
For larger deviations from convective neutrality this analytical
separation breaks down. However, it still turns out that the
p-modes have a dominant &,-component and the g-modes a
dominant &;-component. The indices p and g in Egs. (5) are to
remind this feature. Of attractive and simplifying aspects of this
procedure is that (a) each normal mode &, is expressed in terms of
two scalars y, and y, and (b) the two components are orthogonal

(8 &)=0. (6)

We emphasize that &, and &, are not the conventional p and g
modes of the star. They are defined by Egs. (5) without being
required to satisfy Egs. (2)—(3). Any normal mode &,, however,
will have its §, and &, components.

Sobouti’s ansatz for y, and y, are almost polynomials in r and
spherical harmonics in (6, ¢). Clement (1986), not satisfied with
the convergence of g modes, has proposed his own combinations.
He has been able to produce better g eigenfrequencies. But poor
features in eigenfunctions still persist. We shall comment on
Clement’s remark in Sect. 6.

3. Tidal interaction with normal modes

A unit mass of a primary star at position r is acted upon by the
differential gravitational field of a companion at position R(t), as

follows
R—r R
F(r,t)y=—VU(r,)=GM, RoP R W]

where M, is the mass of the companion, and the common origin
of r and R is the center of the primary. The tidal potential
corresponding to F, is easily obtained

Uy, 1) +GM[ 1 Er 1
r )= —_
' *lIR-r] R* R

GM, r\
R 1= 2,23, e <E> Pl (COS 0), (8)

where the potential is chosen zero at the center of the primary,
and 6 is the angle between R and r. Note that the summation in
Eq. (8) starts from /=2. This tidal potential generates a linear
motion within the primary with the velocity field v(r, 1)=&, t).
The displacement & satisfies the inhomogeneous wave equation

pE+W E=—pVU,, ©)

where #" is the same as in Eq. (3). The time rate of the energy
transfer from the gravitational field to the displacement field & is
dE

—=—lpg* VULx=~(& VU,

Press and Teukolsky analysed &(r, t) and FU (r, ) in terms of the

=+

(10)

complete set of the normal modes, {&}, and arrived at the
following expression for the total energy transfer

AE=27%Y|A,(»,)]?, (11

where the summation is over the normal modes, and 4, is defined
as

Af,)=(5, VV(r, »,)), (12)
and W(r, w,) is the time Fourier transform of U,(r, t):
1 + o
W, w,)=— f et Ugr, t)dt. (13)
21 ) _

4. The overlap integral in our formalism

Substitution of the decomposition of Egs. (5) in Eq. (12) gives

1
Afw,)= J p(— Vi, +—V x A,) VVdx
p

=JXFV-(pVV)d3x—JV-(VxAg)Vd3x, (14)
where each term is integrated by parts and the integrated terms
have been put equal to zero. The second integral in Eq. (14) is
obviously zero. The first integral simplifies further by noting that
p is spherically symmetric and V2V =0. For V is the potential of
the secondary at points within the primary and satisfies Laplace’s
equation. Thus

dp oVir,,) ,
An(wn)_JXp(r) F—— d°x. (15)
We conclude that the gravitational field of the secondary excites
the linear motion within the primary through their p-compon-
ents. The accompaning g-motions are of course excited but
through the intermediary of the p-motions. Thus, it should not be
surprising to conclude at this premature stage that the contribu-
tion of the p-modes to the energy deposition, AE of Eq. (11), is by
far larger than those of the g-modes, a prediction well born out by
numerical calculations. In fact, in the vicinity of convective
neutrality, i.e., small values of ¢=(p/p)[(0p/dp).a —dp/dp] contri-
butions from the g-modes are of the order of &2

Another noteworthy point: That the interaction is between &,
and F, is due to the fact that both fields are derived from scalar
potentials. Had the perturbing force been derived from a vector
potential (e.g., in magnetic interactions) then &, motions would
have entered the play at the expense of the exclusion of &,.

Further reduction of A4,(w,) requires insertion of the orbital
motion of R() in Egs. (8) and (13), expansion of V(r, w,) and y,(r)
in terms of spherical harmonics, and integrations over the angles
in Eq. (15). For a parabolic orbit one arrives at the following
expression

GM% 1/2 Rl 1+1
Ay(@,)= i Kt 16
nlm( n) < R1 ) <Rmin) Q 1) 1 ( )
The overlap integral Q,,, in the present formalism is
! d
inzlf r’+1_po.nl(r)dr’ (17)
0 dr

where g, ,(r) is the r-dependent part of y,(r) for the mode in
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question. The other quantities as given by Press and Teukolsky
are

W,
Knlm =¢ 23/2 ”Ilm(”wn), (18)
21
4n 1z
sz —)u+mr2z —(l+m) (I —m)!
m=(=1 [21+1( i m)] /
I— I+
[2'<—m> ! <—m> !:l if [4+m is even,
2 2
=0 ifl+mis odd, (19)
Ml 12 Rmin 32
) )
M,+M, R,

x3

I,,,,(y):j dx(1+x2)"cos[2”2y<x+ 3>+2m’tan"’x], (21)
0

where M |, M, =masses of primary and secondary, R, =radius of

primary, R, = periastron distance. The expression for the energy
now becomes
GMZ M 2 R 21+2
AE= ‘(—2> ) < ‘) Tn), (22)
Rl Ml 1=2,3,... Rmin
where
© 1
Tim=2n> 3 1Qul*> ¥ |Kuml™ (23)
n=1 m=—1

For computations the following steps were taken. 1) A
Rayleigh-Ritz variational method was employed to obtain the
eigenfrequencies and the eigenfunctions for various ¢g and p
modes (Sobouti, 1977a, b; Sobouti and Silverman, 1978). Com-
putations were carried out for polytropes n=1.5, 2, 2.5, 3, 3.25,
3.5,and 4. 2) The information thus obtained was used to extract y,,
for each mode and to calculate Q,, of Eq. (17). These overlap
integrals are given in Tables 1 and 2. 3) Equations (18)—(21) were
integrated to obtain K,,,. 4) Next Ti(y) of Eq. (23) and finally AE
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of Eq. (22) were computed. A plot of T,(n) and T'5(y) are given in
Figs. 1-3. Five p and nine g modes were found sufficient to make
T,(n) and T'5(n) converge satisfactorily at large #. McMillan et al.
have also noticed that a larger number of g modes is necessary for
a good convergence.

1.0 -
- a
v b
C
d
0
= [
=
.l]l]l'-__—l
~ (a)m=1.5T,(n)
Ll (b)n=1.5T3(7)
T (¢)n=2.0,T, (1)
|| (d)n=2.0,T4(1)
.0001 | I N VR 1
1 10

Fig. 1. A dimensionless measure of energy absorption by normal modes
versus 7, a measure of proximity of the tidal encounter, Eq. (20). T, and T;
for I=2 and 3, respectively

Table 1. Overlap integrals (|Q,,|) for n = 1.5, 2, 2.5, and 3 polytropes

Mode n=1.5 n=2 n=2.5 n=3
=2 =3 =2 1=3 =2 =3 =2 =3

ps... 1.618(—4) 2694(—4) 1222(—3) 1.657(—3) 4902(—3) 5353(=3) 1337(-2) 1.145(-2)
Pa-.. 6174(—4) 9.802(—4) 3.085(—3) 4.065(—3) 9.339(—3) 1011(-2) 2110(—2) 1.780(—2)
ps... 2472(=3) 3753(—3) 8.071(—3) 1.043(—2) 1.866(—2) 1985(—2) 3.496(—2) 2.880(—2)
py... 1.062(—2) 1554(—2) 2287(—2) 2.861(—2) 3988(—2) 4107(—2) 6.161(—2) 4.853(-2)
py... 5576(—2) 7.391(-2) 7.574(—2) 8763(—2) 9.642(—2) 9.256(—2) 1226(—1) 8.735(-2)
f ... 4909(—1) 4.677(—1) 4219(=1) 3.599(—1) 3446(—1) 2.584(—1) 2372(—1) 1.518(—1)
g; .- c 2.105(—2) 1435(—2) 5099(—2) 2980(—2) 9.940(—2) 6423(-2)
gy .- - 8.595(—3) 7434(—3) 2307(-2) 1.733(=2) 4450(—2) 3.119(-2)
g3 - - - 3.843(—3) 3.810(—3) 1.191(-2) 1.057(=2) 2402(-2) 2.139(-2)
ga - - - 1.901(—3) 1.995(—3) 6.923(—3) 6.809(—3) 1446(—2) 1276(-2)
gs ... 8.287(—4) 1.079(—3) 3.515(—3) 3.543(—3) 9.115(=3) 8.600(—3)
g - - - 4.036(—4) 5.686(—4) 1.284(—3) 1.322(—3) 5.094(—3) 4946(-3)
gq .- 1.212(—4) 1.382(—4) 3.221(—4) 3377(—4) 4.661(—4) 4.541(—4)
Jg - - - 2.253(—=5) 2.518(—=5) 5.045(=5) 5356(—5) 6.601(—5) 6.683(—5)
go - - - 2.118(—6) 2.357(—6) 4.048(—6) 4360(—6) 4987(—6) 5228(—6)
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Table 2. Overlap integrals (]Q,,|) for n=3.25, 3.5, and 4 polytropes

Mode n=3.25 n=3.5 n=4
=2 1=3 1=2 =3 =2 [=3
ps... 2010(—2) 1475(-2) 2895(—2) 1.752(—2) 3.299(—3) 1.524(-3)
Pa.-. 2940(—2) 2111(—2) 3.990(—2) 2326(—2) 1.856(—2) 7.603(—3)
py ... 4558(—2) 3.162(—2) 5941(—2) 3.264(—2) 5.133(-2) 1.682(-2)
py.-.. 1569(—=2) 4917(—2) 9.572(-2) 4.723(=2) 6.326(—2) 2.109(—2)
pi... L1364(—1) 7997(—2) 4.346(—2) 5405(—2) 6.591(—2) 2413(-2)
f... 1408 (—1) 1.055(—1) 1.186(—1) 7.678(—2) 7.093(—2) 3.732(-2)
gy ... 1329(—1) 4212(—2) 1.080(—1) 3.569(—2) 5.740(—2) 3.485(-2)
g, ... 6.167(—2) 4.858(—2) 8.855(—2) 3.404(—2) 4970(-2) 2695(-2)
gs ... 3764(—2) 2786(—2) 4.802(—2) 3.342(—2) 2.185(—2) 1.369(—2)
ga ... 1925(=2) 1475(—2) 2.182(—2) 1.558(—2) 2.176(—2) 1.065(—2)
gs... 1621(=3) 6297(—3) 8.047(—3) 6.262(—3) 7.083(—3) 4.884(-3)
g ... 2287(=3) 2026(—3) 2294(—3) 1944(—3) 1847(—3) 1426(—3)
g, ... 4.888(—4) 4.578(—4) 4.714(—4) 4279(—4) 3.575(—4) 3.045(—4)
gs ... 6729(—5) 6586(—5) 6.311(—5) 6.039(—5) 4.593(=5) 4.238(—5)
go ... 5.025(—6) 5104(—6) 4.652(—6) 4.635(—6) 3.288(—6) 3.258(—06)
1.00 = 10
E N — _:_ {a):n=3.25,T(7)
- (a)m=2.5,T, (") (b)n=3.25To(1)
a (b):n=2.5T3(7) (c)n=3.50,To(N)
(c)n=3.0,To(") (d)n=3.50.T5(1)
n=3 ’ (e)m=4.00,T5(7)
.10 (d):n=3.0,Tz(7) (£):n=4.00,T3(7)
AN
) .01
p—
E-‘ N
[
01— ~
- =
[
| .001
.001 —
.0001 .000m L1
10
1 n 1 10
Fig. 2. Same as Fig. 1, for n=2.5 and 3 Fig. 3. Same as Fig. 1, for n=3.25,3.5 and 4
5. Capture cross sections and rates These considerations give
Consider two unbound stars of the total mass M,, the reduced Ro=(2GMR,;,/v%)" . (24)

mass p and the relative velocity v, at infinity. What should their
impact parameter Ry(v,,) be to form a binary system? The angular
momentum should remain constant in the process, and the energy
absorbed by modes should at least be AE=AE, +AE, =1 u?.

In Figs. 4 and 5 log(VRy/R,) is plotted against V, where

M, \ "2 /R \? v »
V=(——> <~) (+>=617.44<i , 25)
Mg Ro 10 kms™! v*
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and v*=(2GM,/R,)"/? is the escape velocity from stellar surfaces.
Figures 4 and 5 can be approximated by a single power law. Thus

Ry(V)/R,=CV . (26)

For different polytropes the constants C and « are given in
Table 3. The data is for the neighborhood of ¥'=10kms™!
(appropriate for globular clusters). The exponent « varies from
1.06 to 1.09 for polytropes 1.5 to 3, and remains constant at 1.09
for higher polytropes. The capture cross section o =R may now
be written as follows

~

v -2.12
12.89 <i> R?, for n=1.5
U*
—-2.14
10.64 (ﬁ> R, for n=2
v*
—-2.16
8.87 <4;°> R?, for n=2.5
v
—-2.18
o=< 7 24(24‘:) R}, forn=3 27)
v —-2.18
6.83 <ﬁ> RZ, for n=3.25
v
v —2.18
6.46 (%f) RZ, for n=3.5
v
v —-2.18
5.39 <ﬁ> R? for n=4
U*

-
The tidal capture rate per unit volume in a cluster with a

velocity distribution f(v) is
NZ

Fcap=3— Ja(v) vf(v)d’ (28)

where N is the number density of stars. For a Maxwellian

distribution characterised by a rms velocity v,, Egs. (27) and (28)

give

R1 2-a 1\/11 a v, 1-2a
I—‘capzl( o N1 AL -1
Rg M) \10kms

N 2 3 1
“3g71, 29
<10pc‘3> pe 3 @)
where
re—
K=189 10—2°c2<—(—°‘_)> 1022 (30)
(0.752¢

and I'(z) is the Gamma function. The values of K for various
polytropes are also listed in Table 3. In a globular cluster

75
( a)yn=1.5
340 o] O
2.9
E—J.m 3.0
N
[+ 4
2
It}
3.120
310 B
Tdal Capture
3.00 | 1 |
.01 Ki 1 10 199

Fig. 4. Tidal capture impact parameter in units of R, as a function of
relative velocity at infinity. Identical stars of polytropic indices n=1.5, 2,
25,3

340
(a)m=3.25
. (b)m=3.50
e (c)m=4.00
S’J.ZG

310
Tidal Caplure

.00 |

|
.01 R 1 10 00
v
Fig. 5. Same as Fig. 4, n=3.25,3.5, 4
with  parameters R,;~510°cm, M,;~05Mg N~10%

vo~10kms™ !, n=3, radius 0.5 pc, and of age ~510!"s, the
number of tidally captured binaries is ~43. Fabian et al’s
estimate for the same cluster is ~ 50.

6. Concluding remarks

Decomposition of fluid motions into an irrotational and a
weighted solenoidal component, Egs. (5), gives a deeper insight and
a simpler computational procedure. One immediately concludes
that only the irrotational component of the fluid motions inter-
acts with the tidal gravitational field. Therefore, contributions of

Table 3. Best-fitting constants for tidal capture cross sections and rates for
encounters between main-sequence stars determined near v, =10 kms™*

n 1.5 2.0 25 3.0 3.25 35

C 1839 1782 1735 1672 1623 1579

o 1.06 1.07 1.08 1.09 1.09 1.09
K/1071° 0.659 0.594 0.540 0.481 0.453 0.429

4.0
1442

1.09

0.358
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the g modes to the energy transfer from orbital motions to
oscillations are far less important than those of the p modes. For
the g modes are mainly solenoidal motions. The reason is the
common symmetry of the p motions and the tidal fields. Both are
derived from scalar potentials. Had the interaction between the
binary members been through a vector potential field then the g
and toroidal displacements of the fluid would have been the
medium of interaction. The authors intend to investigate mode
excitation by an external magnetic field in the spirit of this last
remark.

Our computations cover the range n=1.5, 2, 2.5, 3, 3.25, 3.5,
and 4. In the overlapping region we obtain the same results as the
other authors. This is in spite of the fact that we use an entirely
different formalism for the overlap integral and a variational
technique for mode calculations (Press et al., calculated their
modes by Robe’s (1968) method; Lee and Ostriker, McMillan et
al., and Ray et al., adopted Cox’s (1980) and Dziembowski's
(1971) procedures). We wish to present this agreement with others
and the simplicity of the procedure (namely the expression for the
overlap integral in terms of a scalar property of the modes) as an
evidence for the validity and strength of expressing the modes in
terms of scalar and vector potentials. Clement finds Sobouti’s
(1981) decomposition of Eqgs. (5) ‘esthetically pleasing’ but ex-
presses a desire for supporting computations. The full agreement
of the present with those obtained by other means may also serve
as such supporting evidence.
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