SI

FTOBIAGA Z ~Z10C 7118

Astron. Astrophys. 210, 18-24 (1989)

Liouville’s equation
I. Symmetries and classification of modes*

Y. Sobouti

ASTRONOMY
AND
ASTROPHYSICS

Department of Physics and Biruni Observatory, College of Sciences, Shiraz University, Shiraz, Iran

Received September 28, 1987; accepted May 16, 1988.

Summary. Let Q and P be parity operators in configuration and
momentum spaces, respectively. Let L and K be angular momen-
tum operators also in configuration and momentum spaces.
Let % be the Liouville operator and J = L + K. We show that
(1) {¥,J%J,,QP} commute mutually and (2) the operators
{£2,J%J,,0, P} commute mutually. This enables one to classify
(a) the eigenmodes of Liouville’s equation to classes which are
simultaneously eigenfunctions of {J2,J,,QP} and (b) those
of #? to classes which are simultaneously eigenfunctions of
{J%J,,Q, P}. The commutation relations also simplify mode cal-
culations. In a six dimensional phase space, by expanding eigen-
functions of £ and %2 in terms of those of the remaining com-
muting operators, the problem reduces to a two dimensional one.
By way of illustration this reduction is worked out in detail for
the class of modes belongging to (0, 0, even, even) eigenvalues of

{J%,J,,0,P}.

Key words: Galaxies — dynamics and evolution — Liouville’s equa-
tion — symmetries and normal modes

1. Introduction

In their study of the statistics of stellar systems, astrophysicists
have popularly used the Liouville equation (or at least a six di-
mensional version of it) as a working tool. Time-independent so-
lutions in the form of functions of the integrals of motion have
earned wide acceptance. Stellar hydrodynamics as moments of
the Liouville equation have served some purpose. The past thirty
years have also seen perturbation versions of it in Antonov’s
presentation (1960), and in the form of density wave theory in
flattened disks (Lin et al., 1969; Shu, 1970). Lynden-Bell (1962,
1967) has discussed initial value problems for small disturbances
in encounterless stellar systems and has proposed damping of
small scale disturbances as the stars become well mixed. Barnes
et al.’s (1986) analysis is noteworthy in that they place empha-
sis on some group properties of the linearized equation. One’s
knowledge of the time-dependent solutions of Liouville’s equa-
tion, however, is meager. Even in linear regimes (cases of time
constant potentials or linear perturbation) one knows of no ex-
plicit time-dependent solutions.

* Contribution No. 15, Biruni Observatory

In this paper we point out some of the symmetries of
Liouville’s equation and aim at the construction of exact eigen-
solutions. For pedagogical reasons here we consider time-
independent potentials. This is a step toward a more extensive
analysis of realistic self-gravitating systems where potentials vary
in time. It turns out that perturbations of realistic systems are
governed by an integro-differential operator with most of the
symmetries of the time constant Liouville operator. This, how-
ever, will be presented elsewhere.

In Sect. 2 we review the existing literature on time-dependent
solutions. The material is collected mainly from sources on sta-
tistical mechanics. We conclude that the eigenfunctions of
Liouville’s operator are complex functions of phase coordinates
in a complex Hilbert space. The latter in turn is the direct pro-
duct of two Hilbert spaces, one accommodating functions of con-
figuration coordinates and the other those of the momentum
coordinates. In Sect. 3 we introduce a pair of parity operators,
Q and P, in configuration and momentum spaces, respectively.
We show that QP commutes with the Liouville operator, %, and
classifies the latter’s eigenfunctions on the basis of their parities.
In Sect. 4 we introduce a pair of angular momentum operators L
and K in configuration and momentum spaces, respectively. We
show that J = L + K commutes with . and QP. In Sect. 5 we
construct the simultaneous eigenfunctions of the mutually com-
muting operators ., J2, J_, and QP. This (a) provides a classifica-
tion scheme for the normal modes of Liouville’s operator, and (b)
reduces the six dimensional phase space problem to a two dimen-
sional one in terms of the magnitudes of the position and momen-
tum vectors. In Sect. 6 we present simple examples of low order
modes. Section 7 is devoted to concluding remarks.

Evidently the pairs of parity and angular momenta operators
presented here are examples from a host of other pairs which act
on phase space functions. Prigogine and his coworkers call them
superoperators. They give their own examples and attempt to
develop a ‘superoperator’ viewpoint of statistical mechanics
(Prigogine, 1980; George and Prigogine, 1979).

2. Review of basic principles

A formal exposition of microscopic and macroscopic dynamical
quantities, their interrelations and time evolutions may be found
in Balescu (1975, pp. 37—44). Here, for pedagogical reasons, we
confine ourself to a six dimensional phase space and to systems
subjected to time-independent potentials, though most of the
conclusions are valid in 6N dimensional spaces. The Liouville
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equation may be written as

OF
i—=YF,

P . 0 0U 0 M
= —l . —— —— ——— N

ot Pi 0q;  0q; Op;

where (g, p) are configuration and momentum coordinates, U(q)
is a potential, F(q, p,t) is a phase space function, and % is the
Liouville operator. In order to be a probability density, F is re-
quired to be positive everywhere in the phase space and be nor-
malized to unity:

F(q,p,t) 20 forallq,pandt, V)
IF(‘IaP,t)dqdp= 1 forallt. 3)

2.1. Hilbert space of the phase space functions

An axiomatic study of the eigensolutions of Eq. (1) requires in-
troduction of a function space. Let H be the space of all complex
functions f(q, p) = u(q, p) + iv(q, p), (a) satisfying the Cauchy con-
vergence condition

(f.f) = f*fdqdp = finite, for all fin H, 4
and (b) vanishing at the boundary of the phase space,

f(q, p), u(q, p), v(q, p) = O at boundary. )

If the phase space is infinite, condition (4) will ensure the vanishing
of f, u and v at infinity. Condition (5) then becomes redundant.
In conformity with Eq. (4) the space will be endowed with the
inner product

(f,9)=[f*gdqdp = finite forall fandgin H. (6)

There is a large body of literature on the Hilbert space for-
mulation of phase space problems (see, among others, Schonberg,
1952 and Prigogine, 1962). The eigenfunctions of Liouville’s op-
erator find a natural place in such a space and constitute a com-
plete orthonormal set.

2.2. The eigenvalue problem

The material in Sects. 2.2 and 2.3 are mainly from Prigogine
(1962). The results are written as numbered theorems for easy
reference in subsequent sections.

Theorem 2.1: & is Hermitian. This is proved by showing that
(9, %f) = (Zg, f), for all f and g in H, by integrations by parts
and letting the integrated terms vanish by Eq. (5).

From Theorem 2.1 follows the eigenvalue problem

gf = (l)f, (M

which in turn implies the existence of time-dependent solutions
of Eq. (1) of the form f{(q, p) exp (—iwt).

Theorem 2.2: ’s are real and the eigenfunctions belonging to
distinct w’s are orthogonal. Proof follows from the Hermitian
character of .#. Orthogonality of two functions f and g is in the
sense of Eq. (6), (f,g) = 0.

Completeness of the set of eigenfunctions: For a harmonic poten-
tial, U = 1kr?, or a potential well, U = constant in some domain
and infinite outside the domain, completeness of the eigenfunc-
tions is proved in Appendix. For more general potentials we con-
jecture it to be true.

19

2.3. Non-zero eigenvalues

The Liouville operator is purely imaginary, ¥* = —%. There
follows:

Theorem 2.3: (a) Eigenfunctions belonging to w # 0 are complex.
(b) If a pair (w, f) is an eigensolution, then

(1) (—o, f*) is another eigensolution

(2) f*f is an integral of motion

(3) [(» — m)w, f*™f*] is an eigensolution, n,m = positive
integers.

Proof: (a) & is imaginary and o is real. Equation (7) can hold
if and only if f is complex. The proof breaks down if w = 0.

(bl) —L¥(* = Lf*= —wf *.

(b2) L(f*) = (LI + [HLf) = (0 —w)f =0, for £ is
a linear first order differential operator.

(b3) also follows from the linearity of .#. Restriction of n and
m to positive integers is to ensure the analyticity of f*™f™, i.e.
the existence of all Cauchy derivatives. QED.

Parts a, b1 and b2 of this theorem are due to Prigogine. Part
b3 is a generalization of b2. Alternative forms of Eq. (7) may be
obtained by decomposing f into real and imaginary parts. Thus,

f =ulq,p) + iv(q,p). ®)

Substituting Eq. (8) in Eq. (7) and separating the real and imag-
inary parts gives

Pu = iov, )
Lv = —iou. (10)
One also obtains

L= v?u, 11
P = 0. (12)

Theorem 2.4: Eigenfunctions belonging to w # 0 integrate to
zero (Prigogine, 1962).

[fdgdp=0, w#0. 13)

Proof : FromEq.(7),[fdqdp = w™' [ £f dqdp = 0, by integra-
tions by parts. QED. This integrability to zero holds for u and
v separately.

2.4. General form of the time-independent
and time-dependent distribution functions

An important corrollary to Theorem 2.4 is the following: No
eigenfunction belonging to a non-zero eigenvalue nor any linear
combinations of them can serve as a distribution function and
be interpreted as a probability density; for they will not satisfy
conditions (2) and (3). To avoid any future confusion we shall
reserve the words ‘distribution functions’ or simply ‘distributions’
or ‘probability densities’ for those functions of phase space which
are positive everywhere and are integrable to unity. The rest, in-
cluding all eigensolutions belonging to w # 0, will simply be re-
ferred to as phase space functions.

2.4.1. Time-independent distributions
Any solution F(p, q) satisfying

PFy=0 (14)
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is an integral of motion. Among the celebrated ones is the energy
integral, E = $p? + U(q), or any arbitrary but analytic function
S(E). Analyticity here implies infinite differentiability, though for
practical convenience one may be contented with the existence
of the first few derivatives. If U is axially symmetric then the
component of angular momentum along the symmetry axis is
another integral of motion. If the potential is spherically sym-
metric then any component of angular momentum and any ar-
bitrary analytic function of them are integrals of motion. The
choice should of course be limited to integrability to one and
consequently to square integrability which is the requirement for
membership in H. ’

According to Theorem 2.3b, however, any f*f, where f is an
eigensolution, satisfies Eq. (14). This, combined with the com-
pleteness of the eigenfunctions, implies that any F, should be
expansible as follows

Folg:p) =Y aof5f0s

where (w, f,,) is an eigensolution and a,,’s are constants. Assuming
that f,’s are normalized, Eq. (2) and (3) gives

(15)

a,>0, and) a,=1. (16)

Equation (15) should also hold for the energy and angular mo-
mentum integrals as well. This is demonstrated explicitly for a
harmonic potential in the Appendix.

2.4.2. Time-dependent distributions

A distribution F(q, p,t) is to be integrable to unity, be real and
positive everywhere in the phase space, and be expandable in
terms of the complete set of the eigenfunctions {f,}. Thus, it
must have the following form

F(q,p.t) = Fy(q,p) + Z [bwfweiwt + bz;fz;e—iwt] ,

where F is given by Eq. (15) and is an integral of motion, and
b,’s are expansion constants.

In perturbation problems it is customary to consider distri-
butions of the form F = F, + f(q, p,t) and assume [ « F,. Ex-
pansion (17) resembles this kind of separation into a steady state
and a time-varying term. There is, however, a conceptual differ-
ence of prime importance. Time-dependent terms of Eq. (17) are
not required to remain small in comparison with the time-inde-
pendent one. There is no approximation involved in Eq. (17).
Condition of positive probability at most prevents the time-
varying terms from exceeding F.

This section has enabled us to write recipes for the time-
dependent distributions in terms of eigenfunctions, has disclosed
the complex nature of the eigenfunctions and their integrability
to zero. More symmetries of % and further information on eigen-
functions is discussed in Sect. 3.

(17

3. Parity operators

Let Q and P be parity operators defined in ¢ and p spaces, respec-
tively. Thus,

0f(q,p) = f(—4.p), (18)
Pf(q,p) = flq, —p). (19)

It is elementary to show that Q and P are Hermitian and have
two eigenvalues + 1. Eigenfunctions of Q or P belonging to +1

are even functions of ¢ or p, respectively, and those belonging
to —1 are odd functions. The sets of even and odd functions are
complete.

At this stage we assume the potential to be symmetric in ¢,
U(q) = U(—gq). There follows

Theorem 3.1:

(1) Q and P commute, [Q, P] = 0.

(2) Q and P anticommute with &, {Q, #} =0, and {P, ¥} = 0.
(3) QP commutes with &, [QP, ¥] = 0.

(4) Q and P commutes with 2, [Q, #*] = 0 and [P, ¥?*] = 0.

The proof is elementary and follows from the fact that .% is odd
both in ¢ and p.

Notation: If necessary the parities of a function u(q, p) will be
indicated by a pair of subscripts ‘¢’ and ‘0’ (for even and odd).
The first subscript will indicate the g parity and the second the
p parity. For example u,,(q, p) will be even in q and odd in p;
u,.(q, p) will be even in both, etc.

Theorem 3.2: QP is a parity operator in H. Its eigenfunctions be-
longing to +1 are of the form u,, and u,,. Those belonging to
—1 are of the form u,, and u,,. The proof is elementary.

Let u and v be the real and imaginary parts of an eigenfunc-
tion f, Eq. (8). One has

Theorem 3.3: The q and p parities of u are opposite to those of
v.

Proof: From Eq. (11) u is an eigenfunction of #2. Since
[£2 0] = 0, u can be chosen even (odd) in ¢. From Eq. (9), v =
(iw) ' Pu. Since £ is odd in q and u is chosen even (odd), v has
to be odd (even) in ¢. This proves the opposite parities of u and
v as regards ¢. The argument can be repeated for p. QED.

Corrollary to Theorems 3.2 and 3.3: With no loss of generality
the eigenfunctions of ¥ can be chosen as either
f = u,, t iv,,, even parity of QP, or

f =u,, * iu,,, odd parities of QP .

(20)
21

It is not necessary to consider u,, + iv,, or u,, + iv,., as these
expressions can be brought to previous forms by multiplying by
+i. For both f’s given in Egs. (20) and (21) the corresponding
macroscopic space density is associated with u, p = [(u,, or
u,.)dp, and the macroscopic velocity field is associated with o,
pv = [ (050 0T ,,)pdp.

This section has taken us one more step forward in the con-
struction of eigenfunctions. More symmetries of . is discussed
in Sect. 4.

4. Angular momentum operators

Let L and K be two angular momentum operators defined in g
and p subspaces of H:

. 0 0
L= *l<‘1ja—%—‘1ka—q>,
J

. 0 0
Ki==i(pi = regy )
J

(i, j, k) = even permutations of (1,2, 3).

22

(23)
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They satisfy the angular momentum algebra:
[Li7 L]] = _iLk9(i’ j’ k) = €ven perm (1’27 3)7 (24)
[K;,K;] = —iK,,(, j,k) = even perm (1,2,3), (25)
[L,K;]=0. (26)
In spherically symmetric potentials one can show that
[L, £]=—[K., <]
< 0 0 ) <6U 0 oU 0 )
“NPin " Pa | \F3 5 A A )
0qy aqj' aqj' op,  0q, al’j

(i, j, k) = even perm (1,2, 3). (27)

The proofis a matter of straightforward calculation. We only hint
that in the case of spherical symmetry one has

ou_1du 8
oq, qdg "
o*U  1dU 1d<1dU>
= ou (=5 )aus (29
5ai0q, qdq YV qdg\qdg) " )
Definition: J;, =L, + K;, i=1,2,3. (30)

Theorem 4.1:

(1) J is an angular momentum operator
(2) J commutes with &, [J;, ] = 0.

Proof: Part (1) follows from Egs. (24)—(26). Part (2) follows from
Eq. (27). QED.

Theorem 4.2:

(1) The operators {%,J?,J,,QP} commute mutually.
(2) The operators {£2,J%,J,,Q, P} commute mutually.

Proof:

1) [£.J*]=J[ZL,J]+ [Z.J]J; =0, by Theorem 4.1.2.
[#,J.] =0, by Theorem 4.1.2.

[#,0P] =0, by Theorem 3.1.3.
[J%,J.] =0, by Theorem 4.1.1.

[J% QP] = 0and[J,, QP] = 0by the fact that all components
of J are even both in g and p.

(2) Mutual commutations of the second set can similarly be
inferred from Theorems 3.1, 4.1 and 4.2.1. QED.

Consequences of Theorem 4.2 reach far. The theorem enables
one to construct simultaneous eigenfunctions of { &, J 2,7, QoP}
and to construct the real and imaginary parts, u and v, as simul-
taneous eigenfunctions of {¥2,J%J,,Q, P}.

Eigenvalues and eigenfunctions of J* and J

The operator J is the vector sum of two independent angular
momenta L and K in two diffferent spaces q and p. Standard texts
in quantum mechanics, spectroscopy, and nuclear interactions
discuss the coupling of angular momenta in details. In compiling
the following review we have consulted Brink and Satchler (1968),
Rose (1957), Condon and Shortley (1935), and Rotenberg et al.
(1959).

The four operators {J%J,, L% K?} commute mutually. In
Dirac’s notation let | jmlk) be their simultaneous eigenfunctions.

21
One has
J¥|jmiky = j(j + 1)|jmlky, j=0,1,2,... 31)
J |jmlky = m|jmik) —j<m<j (32)
L?|jmlky = [I + 1)|jmlk), 1=0,1,2,... (33)
K?|jmlky = k(k + 1)|jmlky, k=0,1,2,... (34)

The operators {L* L,,K* K,} also commute mutually. Their
simultaneous eigenfunctions are |Imkm> = Y,,(0, ¢) Y (@, B),
where (0, ) are the polar angles of ¢, (a, f) are those of p, and
Y’s are spherical harmonics. Both sets of eigenfunctions are com-
plete and one can be expanded in terms of the other. For example
[jmiky = Y |lmkmy{Imkmy) jmiky (35)
my,ny

where <...|...) are the Clebsch-Gordan coefficients. They are
nonzero if (a) m = m; + my, and (b) (j, I, k) satisfy the triangle con-
ditions, that is, the sum of any two is larger than the other and
the difference of any two is smaller than the other. Condition
(a) reduces the double sum in Eq. (35) to a single one, the sum
over m, or m,, whichever may have the smaller range. Condition
(b) makes an eigenvalue j(j + 1) infinitely degenerate. For the
permissible values of j turn out to be

JER I/ p 3 (36)

A given j can be constructed by choosing / and k in infinitely many
ways. For example,j = Ois constructed byl = k =0, 1,2,...,and
j=1byl=k—1=0,1,2,...,and byl=k+1=1,2,...

The g or p parity of |jmlk) is that of | or k, respectively. Clas-
sified on this basis, | jmlk)’s also become eigenfunctions of Q and
P as well.

5. Normal modes of Z: classification and calculation

An eigenfunction f consists of its real and imaginary parts, u
and v, each with definite g and p parities indicated in Eqgs. (20)
and (21). The real part u is a solution of Eq. (11), and v can be
calculated from Eq. (9) once u is known. One also has the option
to solve Eq. (12) for v and then Eq. (10) for u.

By Theorem 4.2.2, u can be a simultaneous eigenfunction of
{J*J,,0, P} as well as #2. This means that u(q, p) can be ex-
panded in terms of the appropriate parity classes of the degen-
erate ] Jjmlk)’s with expansion coefficients depending only on the
magnitudes g and p. Thus,

u(q, p) = ; uy(q, p) =Y, |imlk>iy(q, p). (37)

Lk
Equation (37) is written for specified values of j,m, g parity, and
p parity. All quantities u(q, p), uy(q, p), #,(q, p), and |jmlk) carry
these specification. They, however, are suppressed for brevity.
The sums over [ and k are over the permissible values of Eq.
(36).

5.1. Classification of modes

An important part of our goal is achieved. Theorem 4.2 and
Eq. (37) provides a classification scheme for the normal modes of
Liouville’s equation:

“A specified set of (j,m,q parity, p parity) specifies a class
of modes”.
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5.2. Calculation of modes

A mode u(q,p) of Eq. (37) is determined by giving #,(q, p)’s.
Substituting expansion (37) in Eq. (11) provides the necessary
relations for obtaining these functions. Thus, the six dimensional
phase space problem of finding u(q, p) is reduced to a two di-
mensional problem of solving for i,(q, p). We shall use a vari-
ational technique for this purpose. Before doing so, however,
let us write % in terms of the spherical polar coordinates of ¢
and p, for we have already used these coordinates in the con-

struction of | jmlk), Eq. (35). One obtains
g-cz+le + ULy (38)
q dq p
where
¢ =cos(q,p) = cosfcosa + sinfsinacos(p — f), 39
¢y =Lic=—-K,c, L,=L.+iL,, etc, (40)
c,=L,c=—Kgc, 41
_ 0 dU @
- ) “
&, =4%ilc,L_+c L, +2C,L,], 43)
Sy =3%i[c.K_ +c K, +2c,K,]. 44)

We note that & is in terms of the magnitudes of ¢ and p, and
&) and %y are in terms of the angular coordinates of ¢ and
p- < is Hermitian in a (q,p) subspace of the original Hilbert
space, H. The inner product in this subspace is
(@) = [u*iq*> dq p*dp. (45)
The angle operators %, and %k are Hermitian in a (6, ; «, )
subspace of H. The inner product in this subspace is

Y’y = jl//*l//’ sinfdfdosinadedp. (46)
Variational integrals. The Hermitian character of ¥ and %2 al-
lows variational equivalents of Egs. (7), (11) and (12). For ex-
ample for Eq. (11) one obtains

(u, L) = (Lu, Lu) = 0v*(u,u). 47)
Substituting expansion (37) in Eq. (47) gives
z (Luy, Luyy) = ? Z (v, up) (48)

for specified (j, m, Q, P).

The sums in Eq. (48) are over L k, I', k'. Integrations over angles can
be carried out analytically, and the different matrix elements can
be expressed as integrals over the magnitudes g and p. We post-
pone a more elaborate study of Eq. (48) and its numerical com-
putations to another occasion. To gain some insight, however,
we consider some of the simplest and the lowest modes in some
details.

6. Modes belonging to (j,m, P, Q) = (0, 0, ¢,¢)

From Eg. (36) j = 0 implies | = k. Requiring even parities further
limits the choice to even integers. | = k = 0,2, etc. Equation (35)
for j = m = 0 yields

10011 = 3" ¥,,(6, 9)Y, _(o B) < In, —nf00II

1
=4 V2l + 1P(cos 6), 49)

where we have used the addition theorem for Legendre poly-
nomials and the Clebsch-Gordan coefficient {Inl, —n|OOIl) =
(—1y"*"@21 + 1)~ "2, See Brink and Satchler (1968, pp. 136-8).
Equation (37) reduces to
1 _
u(q, p) = Y u(q, p) = in le V21 + 1 P(cos O)ii(q, p). (50)
[]

Letting £ of Eq. (38) operate on u(q, p) and reducing all angular
integrals to single Legendre polynomials gives

1 -
Luy = ————— {[ L, — 14w + )P
1 471,’ 21+1 {[ 1 l]( I+1

+ [Zi, + (1 + DA ]IP,_ )}, (51
where
_ 1
A=_,-[£__d_U], (52)

q pdq

A typical matrix element of Eq. (48) is (Lu,., Lu,). After integra-
tions over the angles one obtains

(L., Lu)

- m (QF + 21 — 124, Z7)
+ Ul + D[(Lu, Auy) + (Am,, Zi7))]
+ 21%(1 + VX Auy, Ay},
N 1 {(l’ + 1)1

Jarsh@ s n a1

+ (I + \)(Zu,, Aw) — I(Aq,, L)
— Il + 1)(Abty, Aw)15, -,
+ lz(ll—t¥ [(Zu,., Z7)
— &, Au) + (I + 1) (A7, L))
'+ l)l(jﬁz'ﬂiﬁt)]ér—z,t} >

[(gal” gﬁl)

(53)

where all inner products on the right side are in the sense of
Eq. (45). We note the coupling of the harmonic number [ to [ + 2.

A typical matrix element on the right side of Eq. (48), after
integrations over the angles is

(wys ) = (i, T)0y; . (54)

There are no off diagonal terms in this matrix, for |imlky’s of
Eq. (35) constitute an orthonormal set.

Detailed solutions of Egs. (48), (53), and (54) will be presented
elsewhere. By way of illustration, however, we make a crude
estimate of an eigenvalue. As a variational approximation we
keep only | = 0 term in Eq. (50). Equations (48), (53), and (54) give

21 (Zu, Zir)

=3 @

(39)
Let us assume a simple harmonic potential, U = w3q> This
could be the potential of a self gravitating system of uniform

o 4 . .
density with w3 = ?n Gp. Let u(g, p) have the following trial value

@ =pexp[—(p* + wiq*)/2E,], (56)

where E, is a constant. The exponential term is a function of
energy and is an integral of motion. It is incorporated in the
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trial function to make it square integrable. In fact @7 is the product
of two simple harmonic wave functions, exp(—w3q?*/2E,), the
lowest wave function in q space, and pexp(—p?/2E,), the first
excited function in p space. From Eq. (42) one has

Zi = wygexp [~ (p* + w3q?)/2E,]. (57)

The integrals of Eq. (55) become

(Zu, Zin) = (2E°) f x*e % dx f e Vdy, (58)
(i, i) = (2E°) f y2e ¥ dy f x*e ¥ d (59)

Substituting in Eq. (55) gives

w=t+—=w, (60)

e
As we shall see in the Appendix, the problem of simple harmonic
potential is exactly solvable and the lowest non zero eigenvalue
magnitudewise is w,. Our crudest calculation of the last few
paragraphs is off by a factor of 1/1/3 = 0.6. Note that the lowest
eigenvalue of Liouville’s equation is zero. The variational prin-
ciple guarantees to produce eigenvalues larger than this which
is true of Eq. (60).

7. Concluding remarks

The aim of the paper is to construct time-dependent solutions
of Liouville’s equation. For this purpose the symmetries of the
Liouville operator are explored and its eigenfunctions are clas-
sified. An eigenfunction of % is a complex function of phase coor-
dinates, whose real and imaginary parts are in turn eigenfunctions
of #2. 1t is found that the five operators {¥?2,J%J,,0Q, P} con-
stitute a mutually commuting set. This enables one to search for
the simultaneous eigenfunctions of the set and thus classify the
eigenfunctions of #2 and £ on the basis of eigenfunctions of
{J2,J.,0, P}. In the course of expansion of eigenfunctions of #>
in terms of those of the remaining operators the six dimensional
phase space problem reduces to a two dimensional one in terms
of the magnitudes of the position and momentum vectors. The
two dimensional problem can then be put in differential or varia-
tional forms. Either way the computational simplification is
enormous.

The potential entering Liouville’s equation is assumed to be
time-independent. Actual problems of theoretical astrophysics
(let aside observational astronomy) are a good deal more com-
plicated for this assumption to hold. The present paper lays the
foundation on which the analysis of a more realistic problem will
be built. To elucidate the point let us consider a self-gravitating
spherically symmetric system. Let F(E), E = energy, and U(q)
denote the equilibrium distribution and potential of the system.
Let 6F = f(q, p,1)|dF/dE|"* and 6U(q,t) be small perturbations
on F and U, respectively. The time evolution of f is given by

z%’; = #f —sign(Fp)|Fg|'* L 8U, (61)
oU = —G[|F'*(q,p)la — | *dp' dq’, (62)

where F = dF/dE (Sobouti, 1984). Equation (61) is an eigenvalue
problem for f and the first order time variations of U are re-
tained in it. Decomposing f into symmetric and antisymmetric
terms in p and eliminating the symmetric term leads to an
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Antonov type of equation. Antonov’s equation has all but the g
symmetry of Eq. (11). There follows at once that all theorems,
mode classes, and other characteristics that have been established
so far (except those pertaining to the g symmetry) hold true for
Antonov’s problem. This linearised problem is treated in Paper
III of this series.

As it stands the analysis can be used in several ways. 1) The
eigenfunctions of Liouville’s equation for some potential (no
matter how idealized) can be used as a basis for expansion or as
trial functions for iteration of the solutions of more complicated
potentials. 2) In stellar systems with dimensions less than Jeans’
wavelength contributions of U to the eigenvalues of Eq. (61) is
small compared with those of the remaining terms. In energy
truncated distributions, this is shown to vary from 25%, down to
insignificant values (Sobouti, 1985). Omission of éU does not
change the spectrum or the structure of the modes significantly.
Thus, solutions proposed here may serve as reasonable approx-
imations to solutions of Eq. (61).

In a series of papers (Sobouti, 1984, 85, 86) the author has
studied the linearised Liouville equation. As an approximation
he has assumed a perturbation on the distribution function
whose odd p parity component has the form f(q, p) = &(q) - p,
where &(q) is a vector in g space and in turn is expanded in terms
of vector spherical harmonics. The referee of 1986 paper ex-
pressed reservations on this ansatz and recommended a further
justification. The present analysis provides this justification. The
angular part of £ - p turns out to be a member of |jmlk) functions
of Eq. (35). In case & - p = f(q)q - p = f(q)qp cos O, the subject of
1984 and 1985 papers, cos @ is a member of |OOII> of Eq. (49).
Thus, the expression &(q) - p is a term from the expansions of
Eqgs. (37) and (49) and is a legitimate variational approximation.
Actually in the case of simple harmonic potential a term such as
q - p is an exact eigenfunction of #2. The author finds it grati-
fying that some members of his earlier ansatz are indeed exact
solutions of simple harmonic potentials, the potential of self-
gravitating systems of uniform density.
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Appendix: simple harmonic potential

The Liouville equation is exactly solvable in this case and much
can be learned from it as regards the analytical properties and
actual computations of the more general problems. We include
this brief expose here to elucidate the concepts developed in the
text and to prove the completeness of the set of the eigenfunctions.

In Cartesian coordinates let U = fw3(x? + x2 + x3) be the
potential. The Liouville operator is

. 0 0
L= -l<l7i ax. woxna >

Let the maximum energy available to the oscillator be E,. This
limits the accessible region of the phase space to inside the sphere
p? + w3r? < 2E,. One may easily verify that the following is an
eigenfunction of .Z.

(A1)

fi=p; +iwgx; inside E,

o (A2)

outside E,, .
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Propositions of Theorem 2.2, 2.3, and 2.4 are seen in the fol-
lowing relations:

f; = wof,,
fF = —aoff,
LfE, =0, THi=40" + 0d?) = energy,

LUST =T =0,

(A3)
(A4)
(A5)

(fif ¥ — f¥f) = kth. component of angular momentum, (A.6)
ZLft =nwofi, LfF'= —nwof¥". (A7)
Eigenfunctions integrate to zero (Theorem 2.4)

[fidxdp =0, (A.8)

for f; is odd in x and p, and the domain of integration is sym-
metric about the origin of the phase coordinates.
Completeness of the set {f1,f¥"},n=0,1,2,...,i=1,2,3

The set {x}}, n=0,1,...,i=1,2,3, is complete in the finite
interval 0 < x; < a;. So is the set {p}} in the interval 0 < p; < b;.
One, however, has

1 *
&=E%M—LL (A.9)

pi=3fi+1H. (A.10)

There follows that {x, p} is equivalent to { /7, /#"} and the latter
set is also complete. QED.
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