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Summary. Exact and complete set of eigenfunctions and eigen-
values of a harmonic potential are presented. The eigenfunctions
constitute three distinct sequences of analytic, coanalytic, and non
analytic functions in Z=p+ ig, where (q,p) are phase space
coordinates. Solutions are obtained by a pair of raising and
lowering operators for Liouville’s equation. Ellipsoidal, sphe-
roidal and spherical potentials are discussed separately and in
details.
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1. Introduction

Depending on its potential Liouville’s equation exhibits various
degrees of symmetry. A real potential, U(qg), renders the Liouville
operator, .#, Hermitian and allows real eigenvalues. The eigen-
functions are square integrable complex functions of phase
coordinates (g, p), are orthonormal and complete.

If U(g) is even in ¢q there exists a pair of parity operators Q and
Pin qand p spaces, respectively, which anticommute with £. This
allows a classification of the eigenfunctions and their real and
imaginary components on the basis of their ¢ and p parities.

If U(g) is axially symmetric, ¥ commutes with an angular
momentum operator, J, = L, + K,, where z is the symmetry axis
and L, and K, are angular momenta in g and p spaces, respectively.
If U(g) is spherically symmetric, ¥ commutes with a vector
angular momentum operator, J= L + K. This allows a further
subdivision of eigenfunctions into subclasses characterized by
eigenvalues of J? and J,. These excepts are from “Paper I”’ of this
series (Sobouti, 1989).

In this communication we consider harmonic potentials and
elaborate on further symmetries of the pertinent Liouville
operator. We give a pair of ladder operators for ¢, J? and J,, and
construct the complete set of the eigenfunctions by their means.
The ladders can be analytic or coanalytic in Z = p + iq. Each class
generates its own sequence of analytic or coanalytic
eigenfunctions.

The cases investigated are i) U=1Q2?(x?+ y? +22), the
potential of homogeneous self gravitating spheres; ii)
U=10%(x*+y*) +4Q27%, the potential of homogeneous ob-
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late or prolate spheroids; and iii) U= $(Q7? x? + Q2% y? + Q222),
the potential of homogeneous ellipsoids. From an academic point
of view the results are of direct relevance to the stability and
oscillations of spheroidal and ellipsoidal figures of equilibrium. In
the case of rotating figures the non trivial problem of interpreting
the results in rotating frames has of course to be weeded out. From
a pragmatic point of .view, that also happens to be the main
objective of this communication, time dependent solutions of
harmonic potential reveal many intricacies and help a better
understanding of the possible modes and motions of more realistic
celestial systems. Secondly, the normal modes of a harmonic
Liouville equation are complete. They can be used as a basis or as
trial functions for constructing time dependent solutions of more
general cases. Perturbations in potential play decisive roles in
astronomical systems. For pedagogical reasons, however, they are
discarded at this stage. A separate communication will be devoted
to this issue.

2. Liouville’s equation-generalities

Let (q,p) denote the phase coordinates and U(gq) be a time
constant potential. The eigenvalue equation resulting from
Liouville’s equation is

Zf=of, $=—i(-i—.——— ) )

Forareal U(q), & is Hermitian. This ensures the reality of w’s and
orthogonality of the eigenfunctions belonging to distinct w’s. The
choice of f’s is to be limited to square integrable functions in phase
space. This in turn leads to a Hilbert space formulation of the
problem in which the inner product is defined as

(f,e)=[f*gdv=finite, dr=d>qd’p. )

Liouville’s operator is a purely imaginary, first order and homo-
geneous differential operator. Therefore it follows that:
a) The eigenfunctions belonging to w # 0 are complex,

f=u(q,p)+iv(g,p), ©=+0. 3)

b) If (w, f) is an eigensolution then

(—w, f*) is another solution, (4a)

ff* is an integral of motion, (4b)
[(n —m) e, f*™f™] is an eigensolution;

n, m = positive integers. (4¢)
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¢) Substitution of Eq. (3) in Eq. (1) yields
Fo=—iou, (%)
ZL2u=w?v. (6)

Lu=iwv,

L2u=0w?u,
d) If w % 0, fis not positive everywhere and

[fdr=fudr=[vdt=0, w=+0. 7

The latter property disqualifies solutions (@ =+ 0, f) or any linear
superpositions of them as being probability densities. They have
to be used in conjunction with some function of integrals of
motion. Proofs of Eqgs. (3)—(7) and further details are given in
Sect. 2 of Paper I.

For U(g) even in ¢, % is odd and £ ? is even in both ¢ and p.
From the first of Eq. (6) it follows that u is either odd or even in ¢
and also in p. From the second of Eq. (6) the same follows for v.
Equation (5) then shows that the g and p parities of u are opposite
to those of v. Further details on parities are given in Sect. 3 of
Paper 1.

3. Ellipsoidal harmonic potential

Let U=3im(Q?x* + Q% y* + Q22?). In its astronomical context
this is the potential inside a self gravitating homogeneous ellipsoid
of Jacobi or Dedekind type. See Chandrasekhar (1969, Chapt. 3)
for a historical background, expressions of 2’s in terms of the
parameters of the ellipsoid and other details.

3.1. Reduction to one dimension

For this separable potential most of the characteristics of the
problem separate correspondingly. Liouville’s operator splits into

$=ngl+92$2+93$3? (8)

where

, 0 0
&= “I(Pia_q—‘Iia—pf),

There is no summation over the repeated index in Eq. (8a). Also
note the redefinition of g hereafter. The eigenvalues and eigen-
functions of Eq. (1) separate into

gi=mQ;x; (8a)

Ww=n2,+n,2,+n;2;, )
f@.p) =P, p1) fP (G2, P2) S (a3, P3), (10)
where f@ is the solution of

LSO =n, O = ,/2,=0,1,2, ... (11)

The Hilbert space becomes the direct product of three subspaces,
H=H, ® H, ® H;, where H;, is spanned by the set {f?} of
Eq. (11). A solution (n;, f®) has all the properties of a general
eigensolution reviewed in Sect. 2. Moreover, it will be shown that
n;’s are positive, zero or negative integers. This brings up the
question of periodicity versus ergodicity. If (2,, Q,, 23) are
commensurable, that is if there exist three integers (L, M, N) other
than (0, 0, 0) such that L, + NQ, + NQ; =0, then solutions
(10) are “exactly periodic”. The eigenvalues (9) will then be
degenerate; for different combinations of (n,, n,, n;) may lead to
the same w. Sorting out the order of degeneracy and searching for
a corresponding symmetry in Liouville’s equation is a meaningful
problem in its own right, but it will not be attempted here. On the
other hand if ’s are non commensurable, solutions (10) will be

ergodic and only “quasi periodic”. See Arnold and Avez (1968)
for a mathematical exposition of this point of view under the topic
of translation of tori. There is a compensation, however. De-
generacy is removed. In either case the problem reduces to the
solution of three one-dimensional Liouville’s equation. This is
discussed below.

3.2. Simple harmonic potential

For brevity the coordinate subscripts are suppressed. Equations
(11) and (8a) take the form.

L. =nf,, n=w/Q, (12)

$=—i<p%——q%>, g=mQx. (12a)
The domain of ¢ and p can be either infinite or finite. For
astronomical usages the latter is more appropriate. For celestial
objects have, in general, finite physical extensions and finite escape
velocities. This implies finite total energies for constituent par-
ticles. Thus we shall assume that the available phase space volume
is the area of the unit circle in (g, p) plane

pP’+q¢*=2EZ<1. (13)
3.3. Primitive solutions

It can be easily verified that the following is a set of eigensolutions
of Eq. (12)

fo=(+ig"

n=eigenvalue=0,1,2, ....

(14
(14a)

The set {f,} is analytic in the complex Z = p + ig plane, ortho-
gonal and complete within the unit circle | Z| < 1. Analyticity is in
the sense of Cauchy. Completeness is for analytic functions
meaning that any f(Z) analytic within the unit circle can be
linearly expressed in {f,}.

Similarly in the complex conjugate plane, Z*, the followingis a
set of eigenfunctions [see Eq. (4.1)],

Son=sr= (-1,

—n=eigenvalue=0, —1, -2, ...

15)
(15a)

The set {f_,} is coanalytic in Z, orthogonal and complete within
the unit circle | Z*| < 1. Any coanalytic function f(Z*) can be
expressed as a linear superposition of {f_,}. We emphasize that
{f-.} are independent from {f,}, for Z and Z* are independent.
The eigensolutions (14) and (15) will be called “primitive” for
reasons to be discussed below.

3.4. Degeneracy and non-primitive solutions

The eigenvalues + » are infinitely degenerate, for each £, or £;* may
be multiplied by an arbitrary real function of energy, E=1ZZ*,
and still be an eigensolution with the same +#. See Egs. (4b) and
(4c). Any regular real F(E), 2E < 1, may be expressed in powers of
E, or in any other complete set of polynomials in E. Thus one may
write down the following degenerate set:

A =E*(ptig),
+n=cigenvalue of £ =0, +1, +2,...,k=0,1,2, ... .

(16)
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These eigenfunctions are orthogonal with respect to n but not with
respect to k. We shall see that this can also be imposed.

It may sound strange that after announcing {f,} and {/f*}
complete we are still introducing further eigenfunctions. But
everything is in order. The truth of the matter is that the analytic
and coanalytic complex functions f(Z) and f(Z*) do not exhaust
the functions f(p, ¢) on the real two dimensional (p, q) plane. For
example the real function F(ZZ*) = F(2 E) is neither analytic nor
coanalytic. It cannot be linearly expressed in terms of { Z"} and/or
{Z*"}, but it can be written in terms of { f%,}.

Conclusion: There is a subspace to the Hilbert space which
accomodates analytic function f(Z). This is spanned by { f, = Z"}.
There is a second subspace with elements f(Z*) coanalytic in Z.
This is spanned by {f_,=Z*"}. The whole Hilbert space with
elements f (g, p), non singular in (p, q), is larger than the analytic
and coanalytic subspaces. This is spanned by { f%,} of Eq. (16) as
proved below.

Completeness of {f¥,}: The set {p"q™, n,m=0,1,2, ...} is

complete within the unit circle p>+¢?><1. However,
p=(Z+2Z%)2, q=(Z— Z*)/2i, and '
n_9- n—m 7xm
p=2" Z(,,_m),m, znz (172)
- n—m *\m
g =(=20)7" Z(n m)'m' AR C VA i (17b)

The right hand sides of Eqs. (17) are linear superposition of non
primitive solutions. QED?!

3.5. Further symmetry of the simple harmonic problem

That the eigenvalues +# are degenerate implies a symmetry and
the existence of another operator which commutes with #. This
we already know. It is the sum of two Hamiltonian operators, one
in g and the other in p space. Let

F=H+G, (18)
1 62
1 02
o=1(- ap2+p> (18b)
One may easily verify that
[F,#]=0 (19)

Thus, with some labor one may look for simultaneous eigenfunc-
tions of Fand . and by so doing produce a non degenerate set of
eigenfunctions {f¥,} with the pair of eigenvalues (£#, k) for the
pair {#, F}. The eigenfunctions generated in this fashion will
automatically ensure orthogonality with respect to both » and k.

! Note suggested by the referee: Dr. A. Grecos has pointed out that
in action-angle variables, p=(2J)'? cosw, g=(2J)/? sinw,
Liouville’s operator is & = —id/0w. Solution of Eq. (12) then
becomes f*(J,w) =k, (J)exp in w, where {k,} is an arbitrary
basis in the space of functions of action variable. Assuming

=(2J)*""? and transforming back to (p,q) coordinates one
recovers solutions of Eq. (16), f* = E*(p +iq)".
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3.6. Macroscopic variables

Examples rather than the general formulas are given here. The
mass density, g,, macroscopic flux density (ou),, “‘the pressure”
IT, associated with f, are as follows (exponential time dependence
of all functions is explicitly written out)

L=(p+ige ™, (20)
_L _ 42 s \n+1 1\ a2 _ i nt1 —int
o=y (1= +ig" '+ (=1D)"(/1-¢* —ig)"" '} e 208
(Qu)n = jf;x PdP = (Qn+1 _qun) e—int, (20b)
1,=[£,p*dp=(0u+2—2i90,+ 1 —q* 00) €™ (20¢)

What is termed pressure is really the second p moment. The
conventional pressure is

pn'__Hn—Qnur% (20d)
These macroscopic quantities satisfy the continuity equation.

0 d

Egn— '_E (Qu)ns (21)

and the hydrodynamic equation. The latter may be written down
as the second p moment of Liouville’s equation,

0 dUu

a — __ 2
E(Qu)n_~%Hn—Qnd_qa U= q, (22)

N

or in its conventional but complicated and non linear form of
Euler’s equation.

Samples given in Eqs. (20)—(22) are not yet ready for use in
physical problems. For they provide complex and negative values
for quantities such as probability and mass density. They have to
be used along with their complex conjugates and time independent
terms. These points are elucidated in Sect. 6.

3.7. Ladder operators

Like the harmonic Schrodinger equation, the harmonic Liouville
problem can be solved by means of a pair of raising and lowering
operators. This technique is developed below mainly for the sake
of its later generalization to two and three dimensional problems.

Consider the Z plane and the analytic subspace of the Hilbert
space, {f(Z), analytic}. Define two operators

A=p+iq, (23a)
0 0
B‘a‘f“ﬁﬁ' (23b)

A and B are analytic operators meaning that for any analytic f(Z),
Af, and Bf are also analytic. One has the following commutation
relations

(2, A]= 4 (24a)
(2, Bl = — (24b)
[B, 4] =2, (24¢)

Theorem: 4 and B are raising and lowering operators, respec-
tively. Proof: Operate on Eq. (12) by 4 and use the commutation
relation (24a) to obtain £ (Af,) = (n+ 1) Af,. With B one gets
L (Bf,)=m—-1)Bf,. QED

The lowest eigenvalue is n=0 with the corresponding
eigenfunction f, = 1. One obtain f, = A" f, =Z2",n=0,1,... . This
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produces the analytic primitive solutions of Eq. (14). Note also
that Bfy =0.

Next we consider Z* plane with coanalytic functions f(Z*).
We take complex conjugates of Egs. (24). Noting that .# is purely
imaginary we obtain

[Z, 4*] = —A4*, (25a)
[#, B¥] = B*, (25b)
[B*, A*]=2. (25¢)

A* and B* are coanalytic operators. That is A* f and B*f are
coanalytic if £ (Z*) is coanalytic.

Theorem: A* and B* are lowering and raising operators for the
coanalytic primitive solutions. The proof is similar to that of the
previous theorem. Here also successive operations on f, = 1 by 4*
produces the coanalytic branch of the primitive solutions.

4. Spheroidal harmonic potential

Let U=3m{Q}(x*+y*)+ Q2z%}. The system could be a self
gravitating oblate or prolate spheroid of uniform density. See
Chandrasekhar (1969, Chap. 3, p. 43) for expressions of 2, and
Q, in terms of the eccentricity. As in ellipsoids the problem is
separable into the product of three simple harmonic problems.
Because of the axial symmetry, however, the primitive solutions in
x and y directions are degenerate. This is in addition to the
degeneracy of non primitive solution discussed earlier. ¥, and £,
are no longer the complete set of commuting operators in the
analytic and coanalytic subspaces of Hilbert. An angular momen-
tum operator, however, can be found to remove this degeneracy.
Thus, we split Liouville’s equation into a one dimensional one in
the z-direction and a two dimensional one in the xy plane. The
latter is the subject matter of the remainder of this section.

4.1. Two dimensional harmonic problem

The Liouville operator is

0 0
g = —i ( i A — 4 _> . 26
i=z1,z 0g; 1 op; (26)

An angular momentum, J, in z-direction is

) 0 0 . 0 0
J= _l<pxa_py__pya)—l<qxajq_;_qy@> (27)
A pair of analytic ladders are
Ai=p;+iq, i=x,y, (28a)

0 0
5= (g5 9, 250)
From the latter we construct
Ay =% (A, %i4,), (29a)

We note that 4 and B are not Hermitian.

The following commutation relations hold

[B;, 4;] =24, (302)

[B;, Bjl=[4;, A4]]=0, (30b)
By, A_]1=[B_, 4,]=1, (30¢)
[B,,A,]=[B_,A_]=0. (30d)
One may also verify the following

[Z,J]=0. 31
Equation (31) allows simultaneous eigenfunctions of % and J.
(£, A.]1=4,, (32a)
[¥, BL]=—B.. (32b)

From Eq. (32) 4, and B, are raising and lowering ladders for .%,
respectively.

[Ja A¢]= iAi )
[/, By]=%B..

(33a)
(33b)

From Egs. (33) 4., B, are raising ladders, and A_, B_ are
lowering ladders for J. We are now ready to construct the
eigensolutions.

4.2. Primitive solutions

4.2.1. Analytic sequence

Let f,,, be a simultaneous eigenfunction of ¥ and J with the
corresponding eigenvalues n and m, respectively:

L fom=Wom s (34a)
Ifam = Mo - (34b)
From Eqgs. (32) and (33) the ladders operate as follows

Ay fim=lat1me1s (35a)
By fom=la-t,me1- (35b)

The lowest in the sequence is fy, =1, which trivially satisfies
Egs. (34). Successive operations on fyo by 4. gives

Joen=A% foo, n=0,1,2,... . (36)

Operation by 4_B_ (or A, B,) keeps n fixed and lowers (or
raises) m by two. Thus, successive operations on f,, by A_ B_ (or
on f, _, by A, B,) gives the sequence

ﬂtm=fln’ jr;,n—2> R .};,—n+2’ ﬁn,—n' (37)
Evidently m cannot exceed +n. For
Jint2=A4y B fru=A, B A% Joo =A% (B4 fo0) =0. (38a)

Similarly
fon-2=A_B_fi ,=A_B_A" fyo=A""'(B_fy0)=0.(38b)
Thus the following m values are allowed.

m=nn—2,..., —n+2, —n.

(39)

However, these are the only allowed values. For there are n+ 1
values in this sequence and the order of degeneracy of # is also the
same. We know this from the fact that the two dimensional
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eigenfunction in cartesian coordinates is the product of two simple
harmonic eigenfunctions of the type of Eqgs. (14) and (15).
Correspondingly the eigenvalue is the sum of two integers,
n=mn, +n,. A given n can be constructed in n+ 1 ways. QED

Conclusion: The eigennumber pair (n,m) with the
corresponding eigenfunction f,,, is non degenerate in the analytic
subspace of Hilbert. The eigenfunctions are orthogonal with
respect to both # and m. Equivalently, the pair of operators { &, J}
constitute a complete set of the commuting operators for the two
dimensional problem in the analytic subspace of the complex
Hilbert space.

4.2.2. Coanalytic sequence

Taking complex conjugates of Eqs. (34) and nothing that ¥ and J
are purely imaginary gives the coanalytic sequence of the
eigenfunctions {f_, ,, = f*_,}. The corresponding eigenvalues of
& and Jare —n and m, respectively. The allowed values of nand m
are the same as for the analytic sequence.

4.3. Non-primitive solutions

Like the one dimensional case the Hilbert space has a) one analytic
subspace with members f(Z) analytic in Z=p+iq, b) one
coanalytic subspace with coanalytic members f(Z*). The entire
space, however, is larger than the two subspaces and has the
membership g(Z, Z*) f(Z or Z*), where g(Z, Z*) is a real valued
function and is neither analytic nor coanalytic. The primitive
solutions (36) and their complex conjugates span the subspaces (@)
and (b). To construct a basis set for the entire space it is sufficient
to find a suitable complete set for g(Z, Z*). This is done below.

There are two real integrals of motion to the two dimensional
problem. We choose them to be the energy and the angular
momentum:

E=$(p*+¢*)=3%Z - Z*, (40a)

1
Any real function g(Z, Z*) can be expressed by the power set
{E*H;k,1=0,1,2,...}. On the other hand it can be verified that

PE=SLh=JE=Jh=0. 1)

Since both % and J are first order homogeneous differential
operators, any f,,, multiplied by E* A’ will still be an eigenfunction
with the same eigenvalues. The product will, however, turn non
analytic.

Conclusion: The complete set of eigenfunctions on . and J is

{fM=E*nf.}; k,1=0,1,2, ...,

n=0, +1, +2,..., m=—n, —n+2,...,n—2, n. 42)

It is only natural that the eigenfunctions in a four dimensional
phase space to have four specifying indices, k, /, n and m. The set is
defined within the four dimensional sphere p> + ¢>=Z- Z* < 1.1t
is orthogonal with respect to n and m indices but not with respect
to k and /. To impose the latter one needs two additional
Hermitian operators which commute with themselves and with &
and J. We already know one such operator. It is the two
dimensional analog of the Hamiltonian F of Eq. (18).
Completeness of {f¥} is proved similarly to the one
dimensional case. The set {p}p}¢tql; n,m,k,1=0,1,2, ...} is

87

complete within the unit 4-sphere p? + ¢*> < 1. Any of its members,
however, can be expressed as a linear superposition of
m}-  QED

4.4. Examples and macroscopic quantities

In a circular polar coordinate ¢ will be represented by (¢, ¢) and p
by (p, f). The followings can be easily worked out

A, =e*Fptietity, (43a)
rin-n(35-35)

A sample eigenfunction along with mass and flux densities are
given below. The flux density is decomposed into irrotational and
solenoidal components and the corresponding scalar and vector
potentials are given. The recipee is to write gu= —FV® +V x A4,
V - A=0 and to calculate @ and 4 from V2® = —VF - (ou) and
V2A= —V x(ou). Starting from f,,=1 we obtain (time
dependence is again indicated on the right hand sides)

f1,4_r1=Aifoo=(Peiw+iqeii¢) e ", (44a)
01,+1=inq(1 —‘12) A (44b)
n tdet) A | s L
(Q”)1,i1=z(1‘q2) 0T (GLig), (44¢)
n s 1 i(to—1)
¢1,11=§ q+q —g‘] e , (444)
_-r. s, 1 s i(to~1) 2
A =Fgi\39-a+3q )€ Z, (44e)

where §, q§, £ are unit vectors along the coordinate axes, and ¢ is
measured in units of 27/Q, .

Needless to say that the macroscopic quantities satisfy the
equations of continuity and of hydrodynamics. Finally the
complex conjugates of Eq. (44) are another set of independent
solutions corresponding to negative n values.

5. Spherical harmonic potential
Let U=imQ?r% For a self gravitating spherical system of
uniform density 22 = (47/3) Gg. The Liouville operator is

3——1'%(1) i—q.—a—> q; = mQx;
S\ 0g ap)’ ' v

(45)
5.1. Angular momentum operator

The followings are from Sect. 4 of Paper I. There exists a vector
angular momentum operator which commutes with #:

. 0 0
Ji= —ig (Pj EP +4; 0_q—k> : (46)
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The nomenclature is because J has an angular momentum algebra:
[Ji, J1= —iJy, (i,j, k) = even perms (1,2,3). 47)

One may also define J . for raising and lowering of the eigenvalues
of J,:

Jy=Jit i, (48)
[JZ,Ji]=Oa (483)
[V, Jel=2J . (48b)
The three operators &, J?, and J, commute.

(£, 1]=[2, J]=[]? J.]=0. (49)
Thus, let f,;, be their simultaneous eigensolutions:
gﬁjm=nnjms n=w/.Q, (503)
JZfr;jm =J(J+1)ﬁ|]m’ (SOb)
Jz.fr.ljm = mj;njm . (SOC)

5.2. Ladder operators

The technique developed below is parallel to one used in three
dimensional quantum harmonic oscillators. See, for example,
Dicke and Wittke (1963). Let

Ai=p+iq, A =%(AxiiAy)’ (51a)
=249 =1(B,+iB,) (51b)
i_api iaqi» = 2 x = v/

A and Bare analytic. That is, on operation on an analytic function
f(Z) on the complex domain Z=p+iq leave the function
analytic. Their complex conjugates are coanalytic in the same
sense. All functions and operators are defined within the six
dimensional sphere of unit radius

Z -Z*=p>+4g*<1. (51¢)
The following commutations hold among 4 and B

[4;, 4;]=1B;, B;]=0, (52a)
[4% A:]1=[B? B.]=0, (52b)
[Bs, A,]1=[B-, 4_]1=0, (52¢)

[Biv A1]= 251’j’ (52d)
[Bi, A]=[B_, 4, ]=1. (52¢)

Derivation of the commutation rules with £, J2, and J, is also
straightforward.

[g’ Ai]=Ai7 (533)
[, A%] =242, (53b)
[Z, B.]=—B., (53¢)
[#, B21= —2B>. (53d)

Equation (53) show that 4, and A2 are raising ladders and B,
and B2 are lowering ladders for . Also 4% and B? work two steps
at a time. Commutators involving J? are

V2 AL)=2(xA4: . F A, T +42), (54a)
(72, 4%]1=0. (54b)
(72, Bs]=2(£B. J.¥ B.J, + B,), (54¢)
[J3, B?]=0. (544)
Those involving J, are

[, Ae]= %44, (55a)
[J,, 421=0, (55b)
[V:, B:]1=*B., (55¢)
[V, B*]=0. (55d)
Theorem.

A foji=Far 141,41 (562)
A foj - =S et -G (56b)
B fii=l-1,+ 1,54 15 (57a)
B_ fuj-i=h-1+1, -G+ (57b)

Proof. We only prove Eq. (56a). The others follow similarly. That
A, raises n and m = by one unit is evident from Egs. (53a) and
(55a). To show thatitraisesjtoj+ 1let m = jin Eq. (50b), operate
on it by 4, and use the commutation (54a). One obtains

T A fy) =G+ (G+2) (44 £;),  QED (58)

The manipulation uses the relation J, f,;; = 0. We are now ready
to generate the eigenfunctions.

5.3. Primitive solutions

5.3.1. Analytic sequence

For brevity we abandon B at this stage. It should, however, be
reminded that rigorous proofs of some statements below is
facilitated by B. The lowest in the sequence of {f,;,} is fo00 = 1.
From this and Eq. (56a) one obtains

Sii =A% fooo - (59a)

From Eq. (53b) A2 raises n eigenvalue by two, but, by Egs. (54b)
and (55b), keeps j and m eigenvalues unchanged. Thus, operation
on f;;; by (42"~ 972 gives

f;:jj = (-’42)("_’.)/2 Ai fooo . (59b)

Finally from Egs. (49) and (48a), J_ leaves n and j unchanged but,
by Eq. (48D), lowers m by one unit. Operation on Eq. (59b) by
Ji~™ yields

Srim= 7T (AR 4L oo, (59¢)
where

n=0,1,2,..., (59d)
j=nn—2,n—4,...1or zero, (59¢)
m=—j, —j+1,...j—1,]. (591)
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The set {f,;,} is analytic within the complex unit sphere of Eq.
(52), provided the powers of 4, , A% and J_ in Eq. (59¢) are non
negative. Otherwise the functions become non analytic at the
origin. This explains why # is a non negative integer and j < n with
steps of two. That m should be an integer in the interval —j to j
comes from the fact that J is an angular momentum operator and
satisfies the commutations (47). A proof of j values of Eq. (59¢) is
given in the next subsection. For the moment let us note that
B?f,;i=f;-2,;;=0. This shows that j cannot exceed n by two units.

5.3.2. Completeness of {&, J?, J,} for analytic functions

The proof is parallel to that presented for the two dimensional
cases following Eq. (39). In cartesian coordinates let
Z=p+ig=(Z,,Z, Z,). The product Z, Z* Z.; i,k,1=0,1, ...,
is an eigensolution of % with the eigenvalue n =i+ k + . A given
n is degenerate of order (n+1)(n+2)/2. This is the number of
ways that n can be constructed from three integers in the interval 0
to n. Let us now return to {f,;,}. For a given j there are (2j+ 1)
values of m. Allowed values of j are n, n—2, .... Thus, the
number of independent f;’s for a given n is
@n+1)+@2n—-3)+...=1(m+1)(n+2). This is the same as the
order of degeneracy of n. Thus the sets {f,;,} and {Z.Z}Z.;
n=i+k+1[} for a given n are equivalent. The eigenumber trio
(n,j,m) is non degenerate and the set of commuting operators
{&, J?, J,} is complete in the analytic subspace of Hilbert.

5.3.3. Completeness of { f,;n}

The cartesian set {Z% Z} Z!} is complete within the unit sphere. A
subset of this, for which i+ j+ k = n, is equivalent to the subset
{ fojm} With the same » and all permissible values of j and m. Thus,
for n=0, 1, ... the two sets are equivalent and therefore both
complete. Completeness is for the analytic functions.

5.3.4. Coanalytic sequence

As a general property of Liouville’s equation the complex
conjugate set {f_, ; ,(Z*)=/f,; -m(Z)} is also an eigenset. This
can be seen by taking complex conjugates of Eq. (52) and noting
that & and J, are purely imaginary and J? is real. Restrictions on
n, j,and m are the same as in Eq. (59). The complex conjugate set is
coanalytic and complete in the coanalytic subspace of Hilbert. The
eigennumber trio (—n,j, m) is non degenerate.

5.4. Non-primitive solutions

There are four real integrals of motion to the three dimensional
Liouville equation of spherical symmetry. We choose three of
them to be the energy, the square of the magnitude of the angular
momentum and its z component:

E=5(p*+¢*)=3Z - Z*, (602)
h=pq|sin®|=3%|Zx Z*|, (60b)
h,=pqsin0 sinasin(¢p — ) =3i(Z, Z} - Z,Z¥). (60c)

where @ is the angle between ¢ and p, (0, ¢) and (o, ) are spherical
polar angles of ¢ and p, respectively. Any real function of complex
Z,g(Z, Z*), can be expanded as power series of E, 4%, and . Any
of the primitive eigensolutions, f., ;, multiplied by arbitrary
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g(Z, Z*) still remains an eigenfunction. Thus a complete set of the
eigenfunctions of {&,J?,J,} in the entire Hilbert space is

{foim} = {E W B foms}

ik, 1=0,1,2,...,

n=0, +1, +2, ...,

j=n—-2,n—4,... 20,

m=—j, —j+1,...,j. (61)

Itis only natural that the eigensolutions in a six dimensional phase
space to be specified by six indices. Of these we have been able to
associate the lower indices with the eigenvalues of three
commuting operators. More work is required for upper indices
along the line indicated below.

The set is orthogonal with respect to (n,j,m) but not with
respect to (i,k,/). The eigenumber trio (n,j,m) is no longer
non degenerate in the entire Hilbert space. Correspondingly
{&, J?, J,} is no longer complete. To impose orthogonality with
respect to superscripts one needs three real Hermitian operators
which together with {&, J2, J,} form a complete set of mutually
commuting operators. We know one such operator. It is the three
dimensional version of the Hamiltonian operator F of Eq. (18). By
looking for simultaneous eigenfunctions of {#, J2, J,, F} at least
some of the degeneracy associated with integrals of motion will be
removed. One of the upper indices will become an eigennumber
for F and orthogonality with respect to that will also be
established.

5.5. Examples and macroscopic quantities
Let (¢, 0, ¢) and (p, a, ) be the spherical polar coordinates of ¢
and p. The operators J,, 4, and 4% are as follows

0 0
— otip Il +ig
Ji=e (+ + icota 6ﬁ>+e (+ +icotf 6¢> (62a)

Ay =psinae*® +igsing e*?, (62b)
A*=p*—¢*+2ipgcos O, (62¢)
cos ® =cosa cosf + sina sinf cos(d—f). (62d)

Sample eigenfunctions along with mass and flux densities are
given below. Let foo0 =1.

Sr00 =47 fooo = (p* —¢* +2ipgcos @) e~ ", (63a)
0200= 12 (1?2 (3~ 8g%) e, (63b)
8ni R
(e#)200 =15 g —g?)** §e ™ = —V &, (63¢)
8mi 217/2 - 2it
Pa00 =105 1 =9, (63d)
fzz,iz = Azi f;)oo
= {p*sin?a e*?¥ — g2sin2f ¢*2i4
+2ipgsina sinf eFiB+ O} o= 20t (64a)
iz , 2\3/2 win2 9 L2i(£d—1)
022,22=5 ¢°(1—-¢)"" sin*fe (64b)
8w . 2\5/2 L2i(+é—1)
(Q#)22,+2 =1 ig(1—q°)" e
- {§sin?0 + @ cosO sin0 + i¢sin6}, (64¢)
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20 =72 22 (652)
— {p2(30052a— 1)_q2(300529_ 1) + 2iquOS@} e—2it,

0220= —F (1) (Beos?0—1) e, (65b)
8ni 2152

(@#)220 =5 9(1—9%)
- {§(3cos?0—1)—3fcosh sinf} e~ 2", (65¢)

It is not surprising that the angular dependence of all these
functions are spherical harmonics Y,,,(0, ¢) and Y,,, (o, §) or vector
spherical harmonics in the case of flux densities. The operator J is
designed to do just this.

The macroscopic densities ¢, and (ou),o, are spherically
symmetric. Moreover the flux is purely radial and derived from
the scalar potential @ (q) of Eq. (63d). These features will persist
for all 9,00 and (Qu),0, n = £2, 4, ... Densities g,;, and (o#),jo
are axially symmetric. The flux is in the meridian plane and can be
split into irrotational and solenoidal components derived from
scalar and vector potentials, respectively. The vector potential will
be in ¢ direction. A general flux (ou), jm My also be written as the
sum of irrotational and solenoidal components. The latter is a
poloidal vector field and will be derived from a toroidal vector
potential. See Sobouti (1986) for details of this point of view.
Macroscopic quantities satisfy equation of continuity and of
hydrodynamics.

Finally the complex conjugates of Eqs. (63)—(65) are the
coanalytic counterparts and are another set of independent
solutions.

6. Concluding remarks and an example

Eigenfunctions of Liouville’s equation for a one dimensional
harmonic potential fall into three distinct classes: (1) An analytical
sequence, f,=Z", Z=p+iq, n=non negative integer. (2) A
coanalytic sequence, 1, = Z*". And (3) a non analytic sequence,
f¥.,=E*f.,. The corresponding eigenvalues are +n. These
eigenfunctions are members of a complex Hilbert space defined
over the (g,p) plane. They are complete and orthogonal with
respect to n. Orthogonality with respect to k can be imposed by
inviting in a Hamiltonian operator of quantum mechanical type
and requiring f¥, to be a simultaneous eigenfunction of both the
Liouville and Hamiltonian operators.

For two-dimensional circularly symmetric potentials the same
classification holds. The additional complication is that ()
Z=p+iq is now a two dimensional vector, and (b) the
eigenfunctions are characterized by two pairs of subscripts and
superscripts, f¥, .. The lower indices, +n and m, are the
eigenvalues of Liouville’s operator, %, and an angular
momentum operator, J,. The eigenfunctions are orthogonal with
respect to n and m. Orthogonality with respect to superscripts can
be imposed if one finds two additional hermitian operators
which, together with ¥ and J,, constitute a complete set of
commuting operators. One such operator is a Hamiltonian.

The three dimensional spherically symmetric potential also
exhibits similar characteristics. Here Z is a three dimensional
vector. Eigenfunctions are specified by three subscripts and three
superscripts. Thus, f,r.. The subscripts are the eigenvalues of &,
J? and J,. The eigenfunctions are orthogonal with respect to any
of the subscripts. To ensure orthogonality with respect to

superscripts one requires three additional hermitian operators to
commute with themselves and with %, J?, and J,.

In the case of non harmonic potentials the properties
elaborated for subscripts and superscripts, and the complex
nature of the eigenfunctions still survive. The simple dependence
of functions on (g, p) in the combination Z = p + ig, however, is
lost. Nevertheless the harmonic eigenfunctions serve (a) as a guide
to understand the more complicated cases, (b) as trial functions
and (c) as a basis for the Hilbert space of phase space functions.

A probability density is to be real and positive for all (g, p, ?).
Time independent integrals of motions, F, (E, A, h,), have these
properties and the time dependent solutions, f¥ exp(—in),
don’t. A physically meaningful time varying distribution can,
however, be constructed by a suitable superposition of constants
of motion, eigenfunctions, and their complex conjugates
(Prigogine, 1962, and PaperI, Sect.2). As an example let us
consider the following

3 ~2i i
Flg,p, 1) = Fo(E,h) +g— A frz0€™ " + [0 €), (66)
where F; is a positive and isotropic function of E and 4, 4 is
arbitrary but small enough for F to be positive everywhere and for
all times. Substitution from Eq. (65a) gives

F=F0+Z3; 2{[p* (Bcos?a—1) — g*(3cos? 6 — 1)) cos 21

+2pq [cosacos ¢ + sinasin ¢ cos (¢ — B)] sin2¢}, 67)
where time is measured in units of 27/, and Q is the fundamental
frequency of the oscillator. The mass density associated with F is
0=00—A(1—¢*)3?% g* (3cos?20—1) cos2t, (63)
where we have used Eq. (65b) and ¢ may now be interpreted as the
fractional radius of the sphere, r/R. If one is dealing with an
externally provided potential, F, could be arbitrary. In a self
gravitating system, however, F is constrained to give a uniform
density g, (and A< 1 to neglect the gravitation of the time
dependent terms). The flux density is.

ou =% q(1 —¢*)3?[(3cos*>0—1)§ — 3cosfsinHf]sin2¢

= % (1—¢»%?*[—xi—yj+2zK] sin21, (69)
where Eq. (65¢) has been used. Cartesian components are given
for future references. Equations (68) and (69) satisfy the equation
of continuity.

To verify hydrodynamic equations the second moments of F
are needed. For simplicity and transparency cartesian coordinates
are used. Let IT;;= [ Fp,p;d®p. One obtains

I, .=1,=1I,—- §1§ A(1—¢?32(2—9¢*+212z%)cos2t, (70)
H,,=H0+§§ A(1—=¢?)%%(4+3¢*—212%) cos2t, (71)
II;;=0, i%j, (72)
where

H0="—jF0p2d3p=%(1—q2), (73)
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and satisfies the hydrostatic equation —V II;—¢g=0. The
hydrodynamic equation can be written down as the second
momentum moment of Liouville’s equation,

O gy M _ ,0U
g; Q)= dq; Qaqi’

(74)

Equation (74) is satisfied by the macroscopic quantities of Egs.
(68)—(73).
The angular momentum density, L= [g x pFd>p, is
L=gqxgu
=8(1—¢*)*? ¢*cosOsinf (sin i — cos ) sin2:.

(75)

This vector has no z component, a consequence of m =0 in Eq.
(66). The global angular momentum at any time is zero as
expected. Kinetic and potential energy densities are

[1 —qz)—liﬂ —q?)*% (3cos? 0 — l)coszt],

T= s

(76)

Al w

V= [qz —2¢*(1 —¢*)3? 3cos?0— 1)0052t] (77)

SR

91

The global kinetic and potential energies are each constant in time.
This is much more than one expects from the conservation of
total energy. The virial theorem for the harmonic potential,
T100 — Vo = 0, also holds for all times.
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