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Summary. Let the linearized Liouville-Poisson equation be
iof ot = f,f = f(q, p), /, p=phase coordinates. &/ on f’s is
not a hermitian operator. However, an eigenvalue equation,
A f,= wf,, with real ’s and non-orthogonal eigenfunctions
can be set up. For spherically symmetric potentials =/ and /2
have 0(3) symmetry. There exists an angular momentum operat-
or, J;, which commutes with .. This classifies the eigenfunctions
into classes specified by a pair of eigennumbers (j, m) belonging
to {J?, J,}. This in turn enables one to separate the dependence
of the eigenfunctions on the direction angles of (¢, p) and reduce
the six dimensional phase space problem into a two dimensional
one in terms of the magnitudes (g, p).

Key words: galaxies: dynamics and evolution — Liouville’s
equation: symmetries and normal modes

1. Introduction

In Paper I of this series (Sobouti, 1989) the symmetries of the six
"dimensional Liouville equation pertaining to a time constant
potential were studied. The eigenfunctions were found to be
square integrable functions of phase coordinates in a complex
Hilbert space. They were orthonormal and complete. For an even
potential the real and imaginary parts of the eigenfunctions
possessed definite symmetries in configuration and in momentum
coordinates. For a spherically symmetric potential Liouville’s
equation had 0(3) symmetry and the eigenfunctions could be
chosen as simultaneous with those of an angular momentum
operator. The latter was in turn the sum of two angular momenta
in configuration and momentum spaces. These symmetries al-
lowed a classification of the eigenfunctions. A reduction of the six
dimensional phase space problem to a two dimensional one
became possible and a tractable computational algorithm was
found. Paper II (Sobouti, 1989) dealt with simple harmonic
potentials in one, two and three dimensions. Exact and complete
eigensolutions were obtained by means of raising and lowering
ladders for the Liouville operator. This communication is a
continuation of Papers I and II. Here we show that the linearized
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Liouville- Poison equation has most of the symmetries, including
the 0(3) symmetry, of the Liouville equation based on a time
constant potential. We construct the simultaneous eigenfunc-
tions of the linearized operator and the “angular momentum”
operator developed in Paper 1.

In applications to self gravitating stellar systems the com-
bined Poisson and Liouville equation is nonlinear. The linearized
version, however, is reasonably tractable. Antonov’s (1960) at-
tempt is of this nature. Lynden-Bell (1967, 1969), Lynden-Bell
and Sanitt (1969), Ipser and Thorne (1968) have elaborated on
Antonov’s approach. The focus of most of these efforts is the

“stability of a given distribution, a function of the energy integral

in most cases. Doremus et al. (1970, 1971), Doremus and Feix
(1973), Gillon et al. (1976), Kandrup and Sygnet (1985) investi-
gate stabilities of anisotropic distributions. More on the stability
of the linearized equation may be found in Sobouti (1984) and
Barnes et al. (1986).

Some investigators have attempted actual solutions of the
linearized equations. Shu (1970) puts forward the notion of spiral
density waves as permissible modes of oscillations of a stellar
disk. In this theory a central role is attributed to the gravitational
potential induced by the density variations. On the other hand
there are spherically symmetric systems with dimensions smaller
than Jeans’ wavelength (to avoid Jeans’ instabilities) where vari-
ations.in the gravitational potential play a lesser role. Doremus
and Feix (1972), and Doremus and Baumann (1974) consider
such systems and attempt to obtain eigensolutions for a one
dimensional system consisting of two phase space regions of
constant phase density. Along with extensive numerical study of
dynamical instabilities, Barnes et al. (1986) analyze the linearized
Liouville-Poisson equation for “thin-shelled” spherical systems.
A noteworthy aspect of their analysis is their emphasis on the
symmetries and commutations of the operators involved.
Sobouti (1984, 1985, 1986) attempts eigensolution of Antonov’s
equation applicable to spherical systems with no Jeans’ in-
stabilities. His approach is to assume a variational ansatz and go
through elaborate analytical and computational analysis of the
variational integrals.

Section 2 introduces the linearized equation and points out
some analytical features of the eigenvalue problem pertaining to
it. Section 3 discusses the 0(3) symmetry. Section 4 deals with
classification of modes and elaborates on the simplest class.
Section 5 is devoted to concluding remarks.
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2. Linearized Liouville-Poisson equation

In a collisionless stellar system one maintains that the distri-
bution function, F(q, p, t) satisfies Liouville’s equation,
oF

i—=Y%F,
ot

[ & oU ¢
L=—i\pjz—— =)
0q; 04;0p;

where the mean potential U(q,t) is the solution of Poisson’s
equation

U(qs [)= “‘Gj.F('II»PIa[H‘I—‘I/'Vld‘f’: (2)

where div' =dq'dp’. Let F - F(E)+ 6F(q, p,t), where F(E) a
function of the energy integral is an equilibrium distribution, and
O0F < F(E) for all (¢, p,t) is a perturbation on F(E). Actually this
perturbation condition may break down at the boundary of the
phase space volume available to the system. As an approximation
we will dismiss such eventualities. Accordingly, the potential
splits into a large and a small term, U(q) + 6 U(g, t). Substituting
these in Eqs. (1) and (2) and retaining only the first order small
terms gives

(1a)

(1b)

O5F OF 65U

Y ) S i 3)
api 41

SU=—G[6F(g.ph1)lq—q'| dr, @)

where % is now constructed with the time independent potential
U(q). The second term on the right of Eq. (3) may be written as
‘dF osU

=GF, SF( 1
dEp,a GFy & (q,p,t)lqg—4q| "di'. (5)

We shall confine the analysis to cases where F = dF/dE is either
positive or negative for all permissible values of E. Let us
introduce the transformation dF = |Fg|'/? f(p, q,t). This is a
provision of Antonov (1961) except for the square root on Fg
which is due to Sobouti (1984). Noting that Z F = £ (Fg) = 0, for
they are functions of E and are integrals of motion, Egs. (3) and
(4) can be combined into

af

Lo 6a
lat b (6a)
where &/ is defined as

A f=Lf+ Gsign(Fg)|Fe|'> & [|Fe|'? f'lg—¢q'|"'d7’,  (6b)

where primed quantities are to be evaluated at the phase space
point (¢, p'). A simplifying feature of &/ which will be used
repeatedly is that (a) the integral vanishes if its integrand is odd in
P, (b) the term containing the integral is odd in p, for # is odd in p
and the integral is independent from p. These imply that

Su=Pu for u(q,p)= —ulg, —p), (6¢)
Av=L{v+ Gsign(Fg)|Fg|'? [ [Fg|'? v'|lg—q'| " d7'}
for v(q, p) = v(g, — p). (6d)

2.1. Integrals of the linearized equation

For a time constant and spherically symmetric potential the
energy, E = $p* + U, and the angular momentum, h; = &,,4;p,,
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are constants of Liouville’s equation in the sense that E = Zh;
= 0. For the linearized equation the energy is not a constant of
motion for the obvious reason that the potential energy acquires
a time dependent term, dU(q, t). The angular momentum, how-
ever, remains constant. One may readily verify that

h; =0, h = &jx4;Dx- (7)

Implications of Eq. (7) are interesting. (a) Conservation of angu-
lar momentum requires spherical symmetry of the total potential,
U(q) + 0U(q,t). One concludes that there are solutions of
Eq.(6a) which lead to spherically symmetric density variations
and radial macroscopic motions. One must, however, be careful
not to generalize this statement to all solutions. We shall see such
solutions in Sect. 4.2. (b) Conservation of angular momentum
also means isotropy of space and invariance of .« under rotations
of the phase coordinates. This 0(3) symmetry of ./ is discussed in
Sect. 3.

2.2. Antonov’s equation

Letf=u(q,p,t) + iv(q, p, t), where u and v are odd and even in p,
respectively. This is not a decomposition into real and imaginary
components at this stage. It will, however, turn out to be so as a
characteristics of Eqgs. (6). The factor i is included in anticipation
of this feature. Substituting in Egs. (6), and decomposing the
resulting equation into odd and even components gives

ou

__=%’
ot "

ov
——=du=Zu
ot

(8a)

(8b)

Differentiation of Eq. (8a) with respect to time and substitution
from Eq. (8b) yields

G ©

Writing out ./ 2 explicitly by means of Egs. (6c and d) gives

Pu=FL*u+ Gsign (Fg)|Fg|'? &L [|Fp|'"? &' |lq—q'|" " dr'.
(9 bis)

Equations (9) are Antonov’s equation. u and v, calculated from
Egs. (9) and (8b), give a solution of the linearized Liouville-
Poisson Egs. (6).

An alternative formulation equivalent to that of Antonov is
possible. Upon differentiation of Eq. (8b) with respect to ¢t and
using Eq. (8a) one obtains an equation for v. We shall, however,
use Egs. (9) and (8b) for their relative simplicity.

2.3. Symmetries of the linearized equations
Let H be the Hilbert space of all complex functions

g(q, p) = x(q, p) + iy(q, p), x and y real, (10a)

that are (a) square integrable over the available volume of phase
space and (b) vanish at the boundary of this volume. Let the inner
product in H be

(9.9') = [g*g dv =finite, g,g'€H. (10b)
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It is evident that &/ defined on H is a linear operator. Its
Hermitian adjoint can be found by integrations by parts on
(9, & f) and converting it to («/'g,f). One obtains

A f=% [+ Gsign(Fg)|Fl|'? [|Fg|'? £'f'|g — ¢'| "' dr! (11a)
In the special cases of odd u and even v one finds

AN u=Lu+ Gsign (Fg)|Fe|'? [|Fe|'? L'’ |lq—q'| " dv,
(11b)

R ANESS ) (11¢)

Evidently .o/ is not hermitian, for o/ # /%,

Let us consider the two subspaces of H, H (odd) with members
u odd in p, and H(even) with members v even in p. Neither
subspace is closed under & for «/u is even if u is odd and vice
versa. However, both subspaces are closed under /2. Further-
more, /% on H(odd) is hermitian. The proof is simple

(u, A u) = (Lu, Lu) + G sign (Fp)

x [|Fg|"? PulFg|'* £ 'w'|q—q'| ™! dt’ dt = real.
(12)

In deriving Eq. (12) we have used hermitian character of &. &/? is
not hermitian on H (even). This singles out H(odd) and allows to
set up an eigenvalue problem in connection with Eq. (9). Thus,
assuming a time dependence, exp(—iwt), Egs. (9) and (8b)
become

*u, = w*u,, *=real, (13a)

(13b)

(ua» uw') = 5(0(,,’,

Lu,= +iov,.

The real valuedness of w? and orthogonality of u,’s is a con-
sequence of the hermitian character of /2 in H(odd). The
orthogonality of the corresponding v,’s in H (even), however,
cannot be proved, for they are not the eigensolutions of a
hermitian operator. In fact we find

(vun vw‘) = T(guw’ guw’)
w*w

G
= Opor — 5 sign(F) '[lFEP/ZIF;Ell/Z
w W

X L*u, L', \q—q'| 'drdr, (14)
where we have written (Lu,,, $u,)=(%*u,,u,) and have
substituted for £2u, from Egs. (9bis) and (13a). The
physical meaning of the second term in Eq. (14) is clear. We
note that the mass density induced by f=u+iv is dp=
—(i/w) [ |Fg|'* Zu dp. The second term in Eq. (14) is then
proportional to — G [dp,(q)0p.(4')lq —q'| ' dg dq’ which is
the mutual gravitational energy of the two modes w and w’. We
also note from Eq. (13b) that for a real w, v,, is real. This shows
that f = u + i, besides being a decomposition into odd and even
parts, is also a decomposition into real and imaginary parts.

Returning to the original equation of motion we observe that
Jfo = u, + iv, is a solution of Eq. (6a),

Af,=wf,, (15a)

where u,, and v,, in turn satisfy Egs. (13). The proof is a matter of
substitution of Egs. (13) in (15a). Thus we have found the eigen-
solutions of the non hermitian operator .«Z. However, there are
peculiarities to these solutions:

1) The eigenvalues are either real or purely imaginary depend-
ing on whether w? is positive or negative, respectively, but never
complex.

la) For a real + w the eigensolutions come in pairs (w, f') and
(— w,f*). This is seen by taking the complex conjugate of Eq.
(15a) and noting that o/ is purely imaginary. For most cases of
astrophysical interest all w’s are real. For a proof see Sobouti
(1984) for the case of dF /dE > 0, and the references in Sect. I for
dF/dE < 0.

1b) For an imaginary w = + ia, « real, the eigenfunctions are
real and come in pairs (+ o, f ), withf, = (1 £ LZyy We note
that /i is real. B

2) For neither cases (1a) and (1b) above orthogonality of
eigenfunctions is realized. For, by Eqgs. (13) and (14)

(.ﬁn’f;n/) = (uwa uw’) + (Uan vw’) # 60)(0/' (ISb)

This lack of orthogonality brings in complications. For, com-
pleteness of the eigenfunctions comes under question and re-
quires a thorough scrutiny. The problem is non- trivial for
neither &/ nor % are invertible. They have zero eigenvalues
corresponding to integrals of motion.

3) Eigenfunctions belonging to w # 0 integrate to zero. Pro-
of {f,di=w""! [ f,dr =0, for from Egs. (6c and d) the in-
tegrand is a perfect differential and leads to a vanishing surface
integral.

4) Eigenfunctions belonging to @ = 0 can be chosen real. For
if &/ f, =0 then by complex conjugation &7f§ =0 and «(f,
+ f¥) = 0. The angular momentum integrals of Eq. (7) are of this
nature.

2.4. Comparison between </ and ¥

It is worth pointing out the similarity and differences between the
perturbed and the unperturbed operators. & is hermitian on the
entire Hilbert space. The eigenvalue problem % f,, = wf,, or its
real and imaginary decompositions, #?u, = wu,, Lu, = iv®
v,, have real eigenvalues and complete orthogonal eigenfunc-
tions. In addition (a) for U(q) even in ¢, ¥ is odd in ¢q. And (b) &
is a first order differential operator subject to Leibnitz’s rule
L9f)= (ZLg)f + g(ZLf). Implications are

(1) u, and v, have definite g-parities in addition to their
definite p-parities;

(2) Both g-, p-parities of the u,, are opposite to those of v,,.

3) If (w,,f;) and (w,,f;) are two eigensolutions then
(0, + w,,f; f,) is another solution.

In particular,

4) f*f, is a constant of motion, that is, Z(f*f)=0, and
furthermore (nw, f7,) and ((n — m)w, f*™ f7) are eigensolutions.

Details and Proofs of statements (1) to (4) are given in Sect. 2
of Paper L.

2.5. Variational form of Egs. (13)

The eigenvalue problem for .72 is best handled in its variational
form. For brevity we suppress the subscript in u,, and remind that
u(q, p) in Egs. (13) and the subsequent ones is an odd function of

p- We left-multiply Eq. (13a) by u* = u and integrate over the

phase space volume available to the system. After some integr-
ation by parts, or equivalently using the hermiticity of &, we
obtain

o? =[W, + sign(Fg) W,1/5, (16)
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where
W, =(Lu, Lu) = [(Lu)* Ludt >0,
W, =G [|Fg|V*(Lu)*|F > (Lu)|(g—q'| ' drdr =20,

(17a)

(17b)
(17¢)

That S is positive definite is evident. Similarly, W, is positive and
could be zero if Lu = 0. The positive nature of W, is proved by
Sobouti (1984). It could be zero if #u=0. Thus, a sufficient
condition for positive w? is dF /dE > 0. However this is far from
being necessary. For we now know that most isotropic distribu-
tions with dF /dE < 0 also possess positive eigenvalues.

Equations (16) and (17) together with (13b) for v will be used
for variational calculations. This will be done after discussing the
0(3) symmetry of o/, expanding the dependencies of the in-
tegrands on the direction angles of ¢ and p, and integrating over
the angles.

S =(u,u) = [u*udt > 0.

3. 0(3) symmetry of </

Let U be spherically symmetric. Motivated by the conservation
of angular momentum, Eq. (7), we look for the invariance of .o/
under rotation of both ¢ and p coordinates. In the spirit of Paper
I, Sect. 3, we argue that rotations of g coordinates, about the ith
axis, are generated by an angular momentum operator in g space:
L= —ig,.q,—.

i l]kqj aqk (183)
One must note that L, rotates the q coordinates with no effect on
p axes, for ¢, p are independent in phase space problems. Simi-
larly rotations of p coordinates about the ith axis are generated
by a similar operator in p space:

K= - (18b)

igupDi—-
wPi opy

The g and p coordinates together are rotated by
Ji=L+K,. (18¢c)

Before proceeding further we note that L;, K;, and J; are all
hermitian in their respective spaces and have the angular
momentum algebra. For instance,

L Jj] = —iguJ,.

A well-known corollary to Eq. (19a) is

(19a)

(/% J.1=0. (19b)
It is shown in Paper I, Sect 4. that
[Z,J;]=0. (20a)
Here we extend the same to /.

Theorem:
[«,J;]1=0. (20b)

The proof of the theorem is given in Appendix A. The essence
of Egs. (20) is the invariance of the Liouville and the linearized
Liouville equations under rotations of both ¢, p coordinates
about the same axis and by the same angle. This obviously leaves
the (g, p) angle unchanged and one may suspect &/ and & to
depend on the relative orientations of the ¢, p vectors rather than
their absolute orientations. Indeed, this is shown to be the case
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for #. See Paper I, Sect. 5, for an expression of % in terms of
cos(q, p). For o/ we leave it as a conjecture.

A corollary to the Theorem (20b) and Eq. (19b) is the mutual
commutation of the following set of operators

[£2,J%,J,]=0 (21)

The implication of Eq. (21) is obvious. The eigenfunctions of /2,
Eq. (13), can simultaneously be the eigenfunctions of J? and J,.
In other words, the eigenfunctions of /2 get classified into
classes specified by the appropriate eigennumbers j, m of the J>
and J,. Section 4 deals with this classification.

3.1. Relations to integrals of motion

For future reference and also for familiarization with the angular
momentum operators we investigate their effects on the energy,
and the angular momentum integrals, E=31p?+ U(q) and
h; = €;3.4; Py, respectively. One may easily verify that

L.E=K,E=J,E=0. (22

The same holds for any F(E). The interpretation is that E
depends on the magnitudes of g and p alone. Rotations of g or p
or both coordinates leave these magnitudes and therefore the
energy invariant. For A one finds

Lihj=i(q pdi;—a:p;), (23a)
Kihj= —i(q pdi;—q;p:), (23b)
Jihj= —iehy, (24a)
J;h;= 0, no summation on i. (24b)

Proof is straightforward. We observe that h = ¢ x p depends on
the individual orientations of ¢ and p vectors. Thus independent
rotations of g and p coordinates by L; and K; in general will not
leave h invariant. This is the essence of Eqgs. (23) and (24a). If,
however, both coordinates are rotated by the same angle and
about an axis perpendicular to (g, p) then & will remain invariant.
This is the meaning of Eq. (24b).

4. Classification of eigenfunctions

From a formal point of view, J; is the sum of two angular
momentum vector operators analogous to L-S or J-J coup-
lings that one encounters in many quantum mechanical appli-
cations. The following are extracted from Paper I, Sect. 4.

Simultaneous eigenfunctions can be found for {J2, J,,
L?, K?}, for they mutually commute.

In the conventional notation let |jmlk > be their eigen-
function with eigenvalues j(j + 1), m, I(l + 1) and k(k + 1) for J?,
J,, L? and K2, respectively. Restrictions are j, k, | = non-negative
integers, || — k| <j <l + k,and —j < m < j. The set|jmlk > may
in turn be expressed as

Limlk > = 3 Y1(0, ) Yi* (o, B) Iy k| jmlk >,

m

m=m-—nm,

(25)

where (0, ¢) and (a, B) are the polar angles of ¢ and p, respecti-
vely, and ¢ ...|...) is a Clebsch-Gordan coefficient. The pro-
ducts of spherical harmonics are the simultaneous eigenfunctions
of {L? L,,K? K,} with the respective eigenvalues I(I + 1),
my, k(k + 1), and m,. The parity of a spherical harmonic Y7" under
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coordinate reflection is (—1)'. From Eq. (25) it is now clear that
the g and p parities of | jmlk > are (— 1)' and (— 1)*, respectively.

4.1. Eigenmodes of {/%,J%,J,}

An eigensolution of Egs. (13), or equivalently of Egs. (15), will be
specified by a pair of definite values of j and m, the eigenvalues of
{J?,J,}, and its odd p-parity. The essence of this assertion is that
u(g, p) satisfying Eq. (13a) should have an expansion in terms of
|jmlk > with the expansion coefficients depending only on the
magnitudes of g and p. Thus,

u(g, p) = Y u(g, p) = Y |jmlk > u,(q, p),
k,1 k,1

j=0,1,2 ...,

k=1,35...,

I=1k=jllk—=jl+1,....k+].

(26)

For specified values of eigennumbers j, m, the values of k runs
over odd integers to ensure the odd p-parity of u, and [ is
restricted as prescribed by the triangle rule for non-vanishing of
the Clebsch-Gordon coefficients. In general / can be even or odd
for u(g, p) may not have a definite g-parity.

For variational purposes, there remains to substitute Eq. (26)
in Egs. (16) and (17), carry out integrations over the direction
angles of ¢ and p, and reduce the problem to a two dimensional
one in terms of the magnitudes g, p. The two dimensional prob-
lem may then be analyzed variationally. The general case of
arbitrary j and m is very lengthy. Here we present the case of
j=m=0 as the simplest example.

4.2. Modes belonging to (j, m) = (0, 0)

From Eq. (26),l = k=1,3,5 .. . In this special case, since l is also
odd u will have odd parities both in p and ¢. By Eq. (13b) the
corresponding v(g, p) will then have even parities in both. Equa-
tions (26) reduces to

1
ug.p)= Y. 2k + D' Py (cos ©)u(q, p), 27)

T k=odd
where one subscript in u is suppressed for brevity.
In order to exploit the spherical symmetry of the potential we
have written % in spherical polar coordinates of ¢ and p,
operated it on Eq. (27), and have obtained (Paper I, Sect. 5)

fu(q,p)=;:— Y @k+ )7 {| Ly~ kAn ]k + 1)

T k=o0dd

X Py s (cos ®) + [ L, + (k + 1) A, ]

x kP, _,(cos @)}, (28)
where
— d dU 0
3’=—t<p——————> (29a)
0q dq Op
- 1dU
A= — (B___> (29b)
q pdq

We remind that all barred quantities depend only on the magni-
tudes of ¢ and p. Substituting Egs. (27) and (28) in Eq. (17a) and
integrating over the angles- gives

w =Y (2K + 2k — 1)(Lay, Liy)

T 2k— 1Dk +3)
+ 2k(k+1) (L iy, Atty) + 2k* (k + 1)2(A 11, A1,)]
k(k — 1)
v kT D@k-3)
+(k+ D (L iy, AR) — (k= 2) (At 5, L i)
—(k=2)(k+ 1)(Aih_,, Ai,). (30)

Orthogonality of the Legendre polynomials eliminates all terms
in the double summation appearing in W, except (k, k) and
(k, k +2) terms.

Reduction of W,, Eq. (17b), leads to a surprisingly simple
result. It is given in Appendix B. Thus,

W, =1672G [ u* (@) u(q)q> dg,

(L s, L i)

(31a)

ulg) = %IIFEI”ZE p*dp. (31b)

Unlike W,, W, depends only on u,, which is a consequence of

Jj=0. The fact is that j = 0 mode induces spherically symmetric

density variations and radial macroscopic motions. In this re-

spect u(g) of Eq. (31b) is actually the density times the macro-

scopic radial velocity. See Eq. (34) in the subsequent section.
The expression for S is simple.

S= Z (ak’ak)

k=odd

(32)

Let us point out that the inner products involving barred quanti-
ties in Egs. (30)32) do not contain angular integrations, i.e.

(%, W) = [Ww*W q* dap* dp. (33)

4.3. Macroscopic quantities and dynamics of eigenmodes

Eigensolutions of Eqs. (15) are exact solutions of the linearized
Liouville equation. They should satisfy macroscopic evolution
equations such as the equations of continuity, of hydrodynamics,
etc. Here we study the eigenmodes of (j, m)=(0,0) from this
point of view, and point out some of their characteristics.

a) The macroscopic velocity field associated with a mode
f=u+ivis pV;= [|Fg|"?up,dp. The integral over vp; vanishes
because of its odd p-parity. Substituting Eq. (27) for u and
expressing p; in terms of Y7 (a, B) we see that only the k = 1 term
in the expansion of u(q, p) survives. Thus,

1 R “
pV=— v[|I’El”212xp3dp(sin 0 cos @i + sin fsin ¢j + cos Ok),

NG

cartesian coord,

= % |Fg|Y?u, p*dpf, polar coord.
The motion is radial, a consequence of j = 0, and could be written
as the gradient of a scalar potential.

b) The macroscopic density variation is 6p = [ fdp =i [ vdp.

Here the integral over the u term vanishes because of its odd
p-parity. Substituting for v from Eq. (13b), and for Zu from
Eq.(28), and carrying out the integrations over angles, gives

(34)
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1 _ _
op(q) = ijlFEI‘/Z(YﬁI +244u,)p*dp. (35a)
)
Substituting for & and A from Egs. (29) and after simple mani-
pulations, one gets

(35b)

Considering that for an e ™' time dependence /0t = — iw, Eq.
(35b) is the equation of continuity. The remarkable feature of
Egs. (34) and (35) and the resulting equation of continuity is their
dependence on only u, (g, p) oc u, P, (cos ®).

c) A similar pattern will show up in higher order moments.
The second moment, m;; = | fp;p,;dp, and the third one, Qi =
jfp,»pjpkdp will depend on u, and u; only. The former will be
expressible in terms of the harmonics Y7 (6, ¢) and Y9, and will
give the hydrodynamics equation. The latter will be in terms of

% (0, ¢), and will give the energy flow equation. The two
equations will lead to the same relation between u, and u5. This
consistency condition will be met every time one adds a pair of
odd and even moments to one’s list of macroscopic quantities.

4.4. A scheme for variational calculations

Numerical solution for (0, 0) modes of polytropes is in progress
and will be presented elsewhere. Here we outline the steps toward
such computations. In a Rayleigh-Ritz variational scheme, a
complete set {®;;(¢,p)} is assumed. Power sets {q'p’;i,j =
integers} usually are effective ones. The i, of Eq. (26) is expanded
in terms of this basis, and the coefficients of expansion are treated
as variational parameters, and w? of Eq. (16) is minimized. A
matrix equation emerges in the process and the problem reduces
to simultaneous diagonalization of the matrix corresponding to
W, + sign (F;) W, into the matrix of eigenvalues w? and the
matrix of S to the unit matrix. Computation can be carried out in
various orders of truncation of the matrices and the convergence
of the results watched in different orders of approximations.

5. Concluding remarks

An eigenvalue problem for the linearized Liouville-Poisson equa-
tion exists. The eigenfunctions are in general complex functions
of the phase space coordinates. The eigenvalues can all be real, or
purely imaginary or a combination of both, but never complex.
The linearized operator, 7, is not hermitian. However, 2/2 on
functions odd in p is hermitian.

The linearized equation does not conserve energy. However,
it conserves angular momentum and therefore has 0(3) symmetry.
An angular momentum operator in phase space, J;, exists which
commutes with . This classifies the eigensolutions into classes
designated by a pair of eigennumbers (j, m) belonging to (J2, J,).
Furthermore the class designation enables one to write the
dependence of the eigenfunction on the direction angles of ¢ and
p as eigenfunctions of (J2, J,). A subsequent integration over the
angles then reduces the six dimensional phase space problem to a
two dimensional one in terms of the magnitudes of ¢ and p.
Variational computations then become tractable.

The (0, 0) modes lead to spherically symmetric macroscopic
densities and macroscopic radial motions. Equation of continu-
ity, of hydrodynamics, and the higher order equations are satis-

97

fied by the various p-moments of the eigensolutions. In stability
problems, many authors have spoken of radial perturbations.
See, for example, Antonov (1962), Lynden-Bell and Sanitt (1969),
Doremus and Feix (1973), and Gillon et al. (1976). This paper
provides a proof of the existence of such modes for isotropic
distributions. It is a consequence of the 0(3) symmetry of the
linearized equations for F(E). Likewise axially symmetric modes
exist. They are (j # 0, m = 0) modes. Whether spherically and
axially symmetric modes exist for anisotropic distributions is still
an open issue.

We wish to avail this opportunity to point out a confusion in
the literature regarding the stability of isotropic distributions
F(E). For realistic situations dF/dE > 0 is a rarity and it is a
common sense to assume dF/dE < 0. Many pioneer investi-
gators have done so. In later works, however, this common sense
assumption is misinterpreted as a condition under which conclu-
sions of the earlier papers hold. Included among these misconclu-
sions is the necessity of dF /dE < 0 for stability. The fact is that
instability is suspected only when dF/dE <0. Otherwise
dF/dE > 0 is a sufficient condition for the stability of any F(E).
Such monotonically increasing distributions have of course to be
truncated at some maximum energy, the boundary of the phase
space. Exactly this drop to zero could be the cause of instability.
Sobouti (1984), and Kandrup and Sygnet (1985) have addressed
this edge effect. Sobouti gives the criterion F|Fy|~!/? =0 at the
boundary as the condition to neglect the edge effect. The fact that
this is in opposition to analogous plasma problems lies in the
attractive nature of the gravitational interaction. We argue that if
the interparticle gravitational forces are responsible for instabili-
ties then distributions providing with favourable situations for
effective interactions should also favour instabilities, and vice
versa. Gravitational interactions are effective if two particles can
enjoy each others company from closer distances and for longer
times. A closer fly by means smaller gravitational potentials, and
longer flight times requires smaller relative velocities. The two
together result in smaller total energies. Thus more particles with
smaller energies, that is, dF /dE < 0, favours more effective in-
terparticle interactions and therefore a favourable environment
for instabilities. Vice versa.
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Appendix A: proof of [/, J.] =0

The commutation holds for spherically symmetric potentials. For
brevity let g = sign (Fg)G = + G and o(E) = |Fg|'/?. The defin-
ing Eq. (6b) is now written as

Af=Lf+go¥ [af|q—q| "dr, (A1)
where the primed quantities are to be evaluated at the phase
space point (¢, p'). We first reduce [ <7, L;] term

[ L1f=[L L1f+go% [o'(Lif)lg—q'| ' dv

—goL, ¥ [o'f'|g—q'|" " dr". (A2)
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We note that L;=L{=—L*¥%=%" L,o(E)=0, and
&0 (E)=0. The second and third terms of Eq. (A2) are reduced
below

2nd term =-—go & (o' ' Li|lq —q'| ' dr’

=ieu g0l [o'f 'qialq—q'|>dr, (A3)
where we have substituted L;= —ie;; q;0/0q,, carried out the
necessary differentiations and used ¢, qjq; = 0.

3rd term = [, L]go [o'f'|qg—q'| ' dr’
~go &L Jo'flg—q| " dv.

Again taking L; under the integral sign and differentiating

lg—q'|"" gives

3rd term = [, L;]go [o'f'|q—¢'| " 'd7’

(A4)

—igugoZ [o'f qiqlg —q'| > dr. (AS)
Combining Egs. (A2), (A3) and (AS5) gives
[, L1f=[% L1{f+go[o'f'lg—q'| " dr'} (A6)

Next we reduce [/, K], K; = —i¢;; p;0/0p,. Again we note that
K =K'and Ko(E)=0

[, K1f=[%,K1f+g0¥ [o'f' Ki*lg—q'|"'d7
~goK; % [a'f'|q—q'| " dv
=[Z,K]1{f+go[o'f'lg—q| 'dr"}
+90 2 [of Ki*lg—q| " dv
—go LK fo'f'|lg—q'|" dr'. (A7)

However, both the second and third terms on the right side of
Eq. (A7) vanish for K operating on functions of g alone gives zero.
Adding Egs. (A6) and (A7) gives

(L, J1f =1L, J]{f+go[o'f'lg—q| 'dr'}. (A8)
But from Paper I, Sect. 4, |.%, J;] = 0, therefore
[«,J;]1=0,QED. (A9)

Appendix B: reduction of W,, Eq. (17b)

From Eq. (13b), |Fg|'? Pu = iw|Fg|"?v. This, integrated over p,
is iwdp = V- (p¥) by the equation of continuity, Eq. (35). Equa-
tion (17b) then becomes:

0p*(q)dp(q’
szGw*wJ P*(q) //J(q)d ,
lg—q'l
1
=GJV'(0V)*V"(pV)’ ~dqdq’. (B1)
lg—q'l

By partial integrations on both V operators one obtains
V2|g—¢'|"' =4nd(q — q') from which one immediately gets
Wy =4nG [(p¥V)*-(pV)dg. (B2)

The flux density is given in Eq. (34) and is radial. With minor
change in notation and integrations over the angles one obtains

Wy =16n2G [ u* (@) n(9)9*da, (B3)
where R is the physical radius of the system, and

1 _
/t(q)=pV,=$JlFEI”2u1p3dp. (B4)
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