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Abstract. A systematic study of the symmetries of Liouville’s
equation for an arbitrary potential is presented. The method is
applied to the case of quadratic potentials. The symmetry group
of the latter turns out to be GL(3,c) with the noncompact
subgroup SL(3, ¢). The latter, in turn, has the subgroups SU(3),
and SO(3), SO(3,1) and SU(2,1) of which the first two are
compact and the last two noncompact. Finally, the largest com-
pact and the largest noncompact subgroups of GL(3, ¢) are used
to classify the eigenmodes of Liouville’s equation for quadratic
potentials
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1. Introduction

It is an assumption of traditional stellar dynamics that Liouville’s
equation governs the time evolution of stellar systems. An inevit-
able consequence of such a premise is that (a) at least some modes
of instability of stellar systems may be those of Liouville’s equa-
tion; and (b) stellar systems might undergo periodic changes of
definite patterns in configuration and velocity spaces. For,
Liouville’s equation exhibits eigenmodes of oscillation. While it is
not feasible to observe the astronomically long periods of oscil-
lation, the patterns of changes, i.e. the eigenfunctions, may be
amenable to observation by analyzing the CCD records of
brightness and velocity distributions on the visible disks of
galaxies and globular clusters. This is our motivation for scruti-
nizing Liouville’s equation, if not for its own merits. The work is a
continuation of a series of papers on Liouville’s equation
(Sobouti 1989a, b; Sobouti & Samimi 1989; hereafter Papers I, 1T
and III, respectively). In this paper we introduce a systematic
method for finding the symmetries of Liouville’s equation for an
arbitrary potential, in general, and for quadratic potentials in
some detail.

1t is well known (Jauch & Hill 1940) that the Hamiltonian of
the three-dimensional harmonic oscillator is invariant under
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SU(3). In the quantum-mechanical context, this is the minimal
group that completely spans the state of individual degenerate
levels of the harmonic oscillator, and is often called the degener-
acy group. A larger dynamical group which contains a set of
operators that determine the transition probabilities between
states have also been investigated (see for example Hwa & Nuyts
1966 and Haskell & Wybourne 1973). In Sect. 2 we write down an
algorithm for a systematic study of the symmetries of Liouville’s
equation for an arbitrary potential. In Sect. 3 we find GL(3, ¢) as
the symmetry group of Liouville’s equation for quadratic poten-
tials. Among the notable subgroups of GL(3,c) are the compact
subgroups SO(3) and SU(3), and the noncompact ones SO(3, 1)
and SU (2, 1). These are discussed in Sect. 4. Finally, in Sect. 5 we
introduce a complete set of mutually commuting operators. They
enable one to classify the eigenfunctions of Liouville’s operator
into invariant subspaces.

2. Symmetry transformations

Let (g, p) denote the collection of configuration and momentum
coordinates specifying a dynamical system. Let »# be the Hilbert
space of complex-valued functions f(q, p) in which the inner
product is defined as

(f g)=ff*gdqdp< ©, fgeH. 1
Liouville’s equation on 5 may be written as
Of PI=i[H.fT. & ( 0 aua> o
1—-=LJ=114,] lp, =—W\ Pz~ |
ot ’ P\3a; " 2a; o,
where H=p?/2m+ U(q) is the Hamiltonian, [ ..., ... Jpis the

Poisson bracket, and & is Liouville’s operator. The reason for
including i in Eq. (2) is to render ¥ Hermitian. That is, (£ f, g)
=(f, £L9);f, geH#. See Prigogine (1962) and Paper I for more
details. For a systematic study of the symmetries of Eq. (2) we
follow a procedure parallel to that of Killing to obtain the
isometries of curved spacetimes. We look for those infinitesimal
transformations of (g, p) to (¢, p’) that leave ¥ form-invariant.
Hence, let

(3a)
(3b)

q;=q; +&¢(q, p),
pi=p;+eni(q, p),
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where ¢ is an infinitesimal parameter. It is a matter of straight-
forward calculation to show that % transforms as follows:

d
S’(q',p’)=f(q,p)+s(£t’€,~+i'1.~)5{;

02U > 0 @
jaqjaqi aPi’

where Z(q’, p’) is the same Liouville’s operator in (¢', p’) co-
ordinates. Form-invariance of . for all fes# leads to

—8<$’1i"ié

£ ¢i+in =0, (52)

en-ie, Y o (sb)
0q jaqi

Upon elimination of #, one obtaing

PR L (5¢)
09;04;

As a consequence of these transformations, a phase space
function changes into f(q’,p')=f(q,p)+exf(q,p);fe#, where
the generator y is given by

0 0
X=5ia—qi+’1ia_pi- (6)
One may readily verify that
[, x]1=0, ™
where [ ..., ...]is a commutator bracket. So much for gen-

eralities. Further progress requires specific assumptions with
regard to potential U (q). It is shown in Papers I and II that for
spherically symmetric potentials there are three generators that
obey the angular momentum algebra and it is concluded that the
symmetry group of % is SO(3). Some more symmetry operators
for quadratic potentials are also given there, but not all. Here, we
study the latter case in detail and provide the full symmetry
group. The symmetries of Liouville’s equation for r~! potential
will be presented elsewhere.

3. Maximally symmetric quadratic potentials

The case to be studied, as any aspect of quadratic potentials is
exactly and analytically solvable. It unravels many of the idiosyn-
crasies of questions and answers that arise in the course of
analysis. Apart from their academic merits, however, quadratic
potentials do find important applications. The central regions of
extended stellar systems, the de Sitter and anti de Sitter space-
times are examples. Furthermore, the complete eigensolutions of
Liouville’s equation for quadratic potentials can be used either as
a basis for the function space s# or as approximate solutions for
less-symmetric potentials.
For U=1gq,q;, solutions of Egs. (5a)—(5c) are

(8a)
n= _bijqj"'aijpj’ (8b)

where a;; and b;; are eighteen real constants. The infinitesimal
transformations induced by Egs. (3a), (3b) and (8) are continuous,
linear, one to one and invertible. Thus, they constitute an eigh-
teen-parameter Lie group. At a first glance this is a general linear
group in a 3-dimensional complex space GL(3, ¢). For, one may

§i=a;;q;+by;pjs
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combine Egs. (3a), (3b) and (8) into the following form:
Z;=(5ij+8cij)zj7 ©)

where z;=p;+iq; and ¢;;=a;;+1ib;;. As it is well known and it will
also be discussed below GL(3,¢) is neither simple nor semisimple.
But it has a sixteen parameter semisimple subgroup, SL(3,c¢).
One expects it to contain the invariance group of the Hamil-
tonian as a subgroup. For, if the Hamiltonian remains form-
invariant the Poisson bracket, [ H, f ]p, must also do so. We will
return to this point in Sect. 4.2.2.

The generators of Eq. (6) for the transformations of Egs. (8a)
and (8b) become

i{ ( 4 + 4 )+b ( 0 d )} (10)
X jk q; aqk p} apk ik p} aqk q; apk >

where a=1,2,...,18 correspond to eighteen independent
choices of a;; and b;;. Naturally, y,’s obey a Lie algebra. By
straightforward calculations, one finds

[Xa’ xﬂ]=iczﬂXys &, B’ Y= 1: 29 Y 18, (lla)

where Clg’s are real structure constants and satisfy the Jacobi
identity,

C25C2+C3,C2+C2,Chy=0. (11b)

Like the group itself this algebra is neither simple nor semisimple.

4. Classification of symmetries

For each of the 3 x 3 matrices a;, and by we choose one unit
matrix, three antisymmetric matrices, and five traceless sym-
metric matrices. This allows the following identification of the
subgroups.

4.1. Abelian invariant subgroups

There are two such subgroups:

(a) For a;;=0 and b;;=9,;, the generator y, turns out to be
Liouville’s operator % itself. The corresponding coordinate
transformations are

4i=qi+epi, Pi=pi—eq;- (12)

Here, the mass of the oscillator and the force constant are set
equal to one. This gives ¢;=p; and p,= —dU/dq;= —q;. Hence,
the transformations of Eq. (12) express the time evolution of the
system along a phase trajectory during the time interval ¢. They
may also be interpreted as rotations in g—p; planes through the
infinitesimal angle ¢ The transformation of Eq. (12) form an
Abelian invariant subgroup of GL(3, ¢). For, its generator ¥
commutes with all other y,’s.
(b) For a;;=4;; and b;;=0, the generator y, is

iy

F i ( 0 + 0 ) (13)
= —1 L — — .
P p; @ dq;
The corresponding transformation is
qi=q;+eq;, pi=pi+ep; (14)

This is a scale transformation with Jacobian=1+6¢# 1. This
transformation is the only one which does not preserve the
volume of phase space. The operator F commutes with & and
with the remaining sixteen y,’s. Hence, the scale transformation
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also constitutes an Abelian invariant subgroup of GL(3,¢). The
two together form an ideal for the Lie algebra. Hence, the Lie
algebra and its associated group are neither simple nor semi-
simple.

4.2. The compact subgroups

4.2.1. Rotation invariance subgroup; SO(3)

The three transformations for which aj =¢;; (Levi Civita sym-
bols), i=1,2,3 and b, =0 are

45=9;+ ek, qk=9x—E4; - (153)
Pi=Dj+&Pxs DPrx=Dx—¢D;. (15b)

There are three sets of Egs. (15a) and (15b) corresponding to the
pairs (j, k)=(1, 2), (2, 3) and (3, 1). These are simultaneous rota-
tions in (q;-¢,) and (p;—p,) planes. They leave q* and p? and,
consequently, both the Lagrangian, $(p?—g?), and the Hamil-
tonian, 4(p?+¢?), invariant. The three generators are

Ji=JiY=_i8ijk<pji+qji)s (15¢)
opi 0qy

with the angular momentum algebra

[Ji, J]=ieJ;. (16)

The corresponding Casimir operator, i.e. the operator that com-
mutes with all members of the algebra, is J 2. Sobouti (1989a, b)
has shown that this SO(3) symmetry holds true for any spheri-
cally symmetric potential. Sobouti & Samimi (1989) have
demonstrated the same for the linearized Liouville equation of
the spherically symmetric stellar systems and utilized in the
computations of normal modes of oscillations.

4.2.2. Invariance subgroup of Hamiltonian; SU(3)

This group has been considered by many authors and mainly for
quantum-mechanical and field-theoretic purposes. Notable are
the investigations of Jauch & Hill (1940), Fradkin (1964), Barut
(1965) and Hwa & Nuyts (1966). Invariance of the Hamiltonian,
H=4%(p*+4?), is realized by anti-symmetric a; and symmetric
by’s. The former is already discussed. The latter, the symmetric
bj, can be chosen as one identity matrix and five traceless
symmetric matrices. The identity, b;=4;, was discussed in
Sect. 4.1(a). Of the five symmetric matrices three are chosen as b,
=by;=|¢;3|; the transformations are

q;=4q;+epx, Pi=DPi—ed;, (17a)

three sets for (j, k)=(1, 2), (2, 3) and (3, 1). These are rotations in
(g;-py) planes. The corresponding generators , are

Li=L}= —i'gijk|<pji_qji>~
0qy Opy,

A fourth symmetric traceless matrix can be chosen the diagonal,
byy=—b,,=1and by;=0. The transformation and its generator
are

(17b)

(18a)
(18b)

P1=p1—¢q;,
P2=p>+¢q;,

q1=q;+epy,
45=q,—¢p,,

P d 0 d d
M=M'=—-i| py——pr——q1—+q— | (18¢c)

0q, 0q, op; 0p,
Finally, for the last of the traceless symmetric b;;, we choose b,
=b,, =2b33=1, and all other elements zero. The corresponding
transformations are similar to those of Egs. (18a) and (18b). Its
generator is

Y=Y'= _i<P1 i‘*‘Pz i—2p3 i
3 0q, dq, 0q;
0 0 0
—4q; a—fh a‘*‘z%a) (19)

The transformations of Egs. (18a)-(18c) and (19) may also be
understood as rotations in real phase space, or as time evolutions
forward and backward in time. See the interpretation of Eq. (12).
The set {J;,L;,M,Y} has the SU(3) algebra, expressed in
Eq. (16) and below

[L;, L;]= —igJy, [M,Y]=0, (20a)
[Jy, L]=i(M=3Y), [J,,L,]=1(M+3Y),

[J5: L3]=—2iM, (20b)
[Ji, Ly)=—iLs, [J,,L3]=—iL,, [J;,L,]=—iL,, (20c)
[J;,M]=—iL,, [J,,M]=—iL,, [J,, M]=+2L;, (20d)
[Jy, Y]=+iL,, [J,,Y]=—iL,, [J5, Y,]=0, (20e)
[L,M]=+1J,, [L,,M]=+iJ,,

[Ly, M]==2iJ,, (20f)
[L,Y]=—-iJ,, [L,, Y]=+iJ,, [Ls, Y]=0. (20g)
The quadratic Casimir operator for this algebra is
H=(J2+L*+M?>+3Y?). (21)
4.3. Noncompact subgroups
4.3.1. Invariance subgroup of Lagrangian,
the Lorentz group SO(3, 1)

The transformations for by =e¢;; and a; =0 are
4;=q;+¢Ps  Pi=Dit+eq; (22a)

three sets for (j, k)=(1,2),(2,3) and (3,1). These are boosts,
similar to those of Lorentz’, in the (¢;-p) plane. As is known they
are not unitary transformations. The parameter ¢, if interpreted
as imaginary rotation angle, does not have a finite range. These
transformations together with those of Egs. (15a)—(15¢) leave the
Lagrangian form-invariant. The corresponding generators in
addition to J;’s are

. 0 0 R
I;=1g;5 Pja—qk—%a—pk #I7.

The generators are not Hermitian. For, the underlying coordin-
ate transformations of Eq. (21) are not orthogonal. One readily
verifies that the set { J;, I;} has the closed Lie algebra of SO(3, 1).
That is, in addition to Eq. (16),

[Ji, ;]=ie 1y, (23a)
[L, ;1= (23b)

The two Casimir operator of this subgroup are J2—12 and J- I.

(22b)

—1guJy.
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4.3.2. A further subgroup; SU(2, 1)

The symmetries belonging to the five traceless symmetric a;,’s
remain to be discussed. Three of these are induced by a; =a,;
=|g;ul, and b;, =0, the transformations are

q5=q;+&q, qx=aqcteq;, (24a)
P;=pj+epk, Pi=Dpi+e4;, (24b)

three sets for (j, k)=(1, 2), (2, 3) and (3, 1). As in Egs. (22a) and
(22b), these transformations cannot be interpreted as rotations
through real angles. They, too, resemble Lorentz boosts, and are
not orthogonal. The bilinear forms kept invariant under these
transformations are the three expressions H;—H,=3[p?+q?
—(pE+qd)1. (. k)=(1, 2),(2,3) and (3,1). The corresponding
generators are

) 0 0
Ki=—1lg;l Pj'a?'*qj'a .
k k

The fourth transformation induced by a,,= —a,,=1is a scale
expansion in ¢,-, p,-directions and a scale contraction by the
same factor in ¢q,-, p,-directions. This is area-preserving but not
orthogonal. The transformation and its generator, are

(24c)

q1=4,+¢q,, py1=p)+epy, (25a)

42=42—¢4s, Pr=P2—¢P2, (25b)

R=—i<Pli—Pzi+‘11_a——‘hi)' (25¢)
op, dp,  0q, " 0q,

Finally, for the last of the traceless symmetric a;;’s, let a,, =a,,=
—3a33=%, and all other elements zero. These are scale ex-
pansions in 1- and 2-directions and a scale contraction by twice
as much in 3-direction. The corresponding generator is

$ i< 8+ 0 ) 0
T3\ P, P, TR0,

N 0 N 0 5 0 )
M oa Poq, Pog,)

The algebra of the set { J;, K;, R, S} is closed and isomorphic to
SU (2, 1). This is given in Eq. (16) and below.

(26)

[Ki7 Kj] = +i8ijk Jk7 [R9 S] =O’ (273)
[Ji, K]=1(R-3S), [J,, K;]=i(R+35),
[ J3, K3]=—2iR, (27b)
[JpKz]z‘iKs’ [J:, K3]=—iK,, [J3»K1]=—iK2»

(27¢)
[Jy,R]=—iK,, [J;,R]==iK,, [Js, R]=+2iK;,

(27d)
[J.,S]=+iK,, [J,,S]=—iK,, [J5,5]=0, (27¢)
[Ky,R]=—1J;, [K,,R]=-1iJ,, [K;,R]=+2iJ;,

(27f)
[Kl,S]=+iJ1’ [KZ’S]=_iJZ’ [K37S]=0 (278)

The quadratic Casimir operator for this subalgebra is J2— K2
—R?-38%.

Let us close this section by summarizing that (1) all ortho-
gonal transformations of Sects. 4.1(a) and 4.2 are canonical,
constitute compact subgroups and lead to Hermitian generators,

131

and (2) The nonorthogonal transformations of Sects 4.1(b) and
4.3 are not canonical, constitute noncompact subgroups and lead
to non-Hermitian generators.

5. Normal modes

The eigenvalue equation . f,=n f, has a highly degenerate spec-
trum. For, any f, multiplied by an arbitrary function of the
constants of motion (energy, angular momentum, etc.) is again an
eigenfunction belonging to the same n. To unravel the degeneracy
we must introduce along with &, a set of mutually commuting
operators, and seek their simultaneous eigensolutions. The fol-
lowing two alternatives are proposed.

5.1. Normal modes through SU (3)

The largest compact subgroup of symmetries of & is SU(3). It is
of rank 2. That is, it has two mutually commuting and two
independent Casimir operators at most. For a commuting set of
four we choose {&, #,4M, Y}. The SU(3) group has been
studied extensively in other branches of physics and notably in
connection with elementary particles. In its application to the
present problem we will borrow notations and terminologies
from the latter discipline. See, for example, Greiner & Muller
(1989). The smallest representations of SU (3) are a triplet and an
antitriplet of modes. Here, they could be chosen as follows

[Bl:{fi=p:+iq; i=1,2,3}, (28a)
[B31: {f=rF}. (28b)
As they are, f and f; are not square-integrable. However, multi-
plied by e %, E=%1(p*+q?), they become so and become a
member of the Hilbert space s#. Nonetheless, we will not include
e~ F explicitly as part of the modes. Instead we will modify the
inner product of Eq. (1) to read as
0 g)=jf*ge‘”dqdp~ (29
With this inner product f and f; requires a factor (2z) ~!/2 to
become normalized. We will not, however, attend to this question
at this stage. The set of the eigenvalues, (n, k, m, y) of the opera-
tors { &, A", 1M, Y} for different modes may be read from the
following equations

Lfi=f, Lfi=—f, (30a)
Hi=%f A [=%F, (30b)
sMfi=3fi, IMfi=—3f, IMf=0, (30¢)
IMfi=—4f1, IMh=+1f,, iMf=0, (30d)
Yfi=4f, Yh=-%3h Yh=-3f, (30¢)
Yi=—=%fi, Yh=+3h YhA=+34 (30f)

Figure 1 depicts the modes in a $m-y diagram. The two
triplets are the exact analogs of the quark and antiquark triplets
in elementary particles. The eigenvalues m and y play the role of
the isospin and hypercharge, respectively. Larger representation
of the group, that is the higher-order modes, may be constructed
by the direct products of the triplets and antitriplets. The proce-
dure could be the same as the construction of composite particles
from quarks and antiquarks. Two examples are given below.

(1) The direct product of a triplet and an antitriplet is the
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Fig. laand b. 1/2m-y diagram of (a) triplet and (b) antitriplet modes. See
Egs. (26) and (30)

Fig. 2. 1/2m-y diagram of [3] ® [3] multiplet. See Eq. (31), and com-
ments thereof

direct sum of a sextet and a triplet as follows:
®{fifi Lo i fa }- (€39)

In Fig. 2, the sextet modes occupy the corners of the hexagon.
The remaining three are at the center. Thus, the center is three-
fold degenerate. To remove this degeneracy one might invite in
one or more operators from the noncompact group SU (2, 1). For
example the R operator of Eq. (25¢) gives iR f, fi =f, f;, iR f, [, =

—f,/, and iR f; f;=0. The effect of & and A on these sextet and
triplet is

Z{[31®[3]}=0, (32a)
A [3]1=8[3], (32b)
A [6]=12[6]. (32¢)
The eigenvalues for $ M and Y may be read from Fig. 2.

(2) The direct products of the two triplets is a nonet
B1®BYAffhhfifas s fas o fas o fos i oo i Jas o s} (33)
One has
Z{[31® [31}=2{[31®[31}, (34a)
A {[3]e [B1}=%{[31® [3]}. (34b)

Their m and y eigenvalues may be read from Fig. 3. The reduc-
tion technique above may be extended to obtain the higher-order
modes.

Fig. 3. 1/2m-y diagram of [3] ® [3] multiplet. See Eq. (33), and com-
ments thereof

5.2. Normal modes through SL(3, c)

The largest noncompact semisimple subgroup of symmetries of
& is SL(3,¢). It is of rank 4. That is, it has four mutually
commuting operators and four Casimir operators, eight together.
However, only six of this set of eight operators can be indepen-
dent. We proposes the set { &, A, A ., % .}, where

A=i(J-I+L-K+./3MR+./3YS), (35a)
=% (M £iR), (35b)
=1(Y £iS). (35¢)

The common eigenfunctions of this set are

f;',‘,f;_zlzzzﬂ‘{"'zz“zg‘”, (36a)

z;=p;+iq;, j=1,2,3, (36b)
with the following eigenvalues

L iy =L+ B+y—(A+p+v)1/i8, (37a)

Afay=4{la+B+y—(A+p+v)]

+% [(a—B+7)2=(A+p+v)21} i), (37b)

M [y =5(a—B) S35, (37¢)

M =50 =) a8 (37d)

Y. fafy =5+ B=29)f2f, (37¢)

Y_fuhy=3Qi—n—v)f2f;. (37f)

It was mentioned in Paper II that the Hilbert space, 5, has two
analytic and coanalytic subspaces, spanned by the analytic and -
coanalytic functions of z; and z}, respectively. One may note that
the eigenvalues of .# _ and % _ are zero in the analytic subspace
and those of # , and % , are zero in the coanalytic one. The two
subspace, are invariant under the symmetry group SL(3, ¢). Of
course, the full space is larger than the analytic and coanalytic
subspaces and contains the nonanalytic functions of z;z¥ as well.

Appendix: Constants of motion and symmetry transformations

As for Killing’s vectors in general relativity where &;4;=¢;p; are
constants along geodesics, here one can show, using Egs.
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(5a)-(5c), that &;q;+mn;p;=&:p;—n;q; are constants along the
phase space orbits. Using Eqgs. (8a) and (8b), one gets eighteen
constants of motion. Nine of them, corresponding to symmetric
a;;’s and antisymmetric b;;’ s, are zero. The rest of them belonging
to antisymmetric a;s and symmetric b;’s are components of
angular momentum, /;=¢;;q;p,, and the symmetric tensor 4;;
=q,q;+p;p;- These constants, of motion correspond to the nine
canonical transformations of Sect. 4.2.2 which leave the Hamil-
tonian invariant (Goldstein 1980).
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