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Abstract. A systematic study of the symmetries of
Liouville’s equation for r~!-potential is presented. The
canonical transformations in phase space which leave the
hamiltonian invariant turn out to be the full symmetry
transformations of Liouville’s operator, as well. The sym-
metry group is SO(4) . A maximal set of mutually commut-
ing operators, and subsequently, a classification of the
eigensolutions of Liouville operator is proposed. The Kus-
taanheimo—Stiefel transformation is used to show that this
SO(4) is isomorphic to a constrained SU(4) and contains
all symmetries of Liouville’s equation for r~!-potential.
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1. Introduction

The symmetry group of Schrodinger equation for hydro-
gen atom has been considered by many investigators. It is
known that the minimal group which has representations
completely spanning the states of individual degenerate
levels of hydrogen atom is SO(4) (Fock 1935). Also a larger
group which removes the degeneracies of the energy levels,
and contains a set of operators determining the transition
probabilities between the states has been considered by
Bander & Itzykson (1966), Barut & Kleinert (1967), Engle-
field (1972), Wybourne (1974), and others.

In Paper IV of this series (Sobouti & Dehghani 1992)
a systematic method was developed to explore the sym-
metries of Liouville’s equation for an arbitrary potential
and was applied to explore the details for quadratic poten-
tials. In this paper we do the same for r~!-potential and
find that the symmetry group is SO(4) . Kustaanheimo—
Stiefel (KS) transformation (Kustaanheimo & Stiefel 1965)
maps the three dimensional Kepler problem into a re-
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stricted four dimensional harmonic oscillator problem.
The map is of course nonbijective. We use KS transforma-
tion to show that the SO(4) is indeed the largest symmetry
group of Liouville’s equation for r~!-potential. The sym-
metry operators in KS transformation have simpler form
and are ecstatically appealing.

In Sect.2 we outline some pertinent points from
Paper IV. In Sect. 3 we find six canonical transformations
in phase space which leave Liouville’s equation invariant.
In Sect. 4 we elaborate on the invariance of hamiltonian
under these transformations, and associate each trans-
formation with one constant of motion. The latter are of
course the six components of angular momentum and of
Runge-Lenz vector of Kepler’s problem. In Sect. 5 we
derive the SO(4) symmetry of Liouville’s equation and use
KS transformation to show that SO(4) is indeed the largest
symmetry group. The details of KS transformation, the
isomorphism of SO(4) and the constrained SU(4) , and the
associated generators are presented in the appendix.
Section 6 contains closing comments.

2. Background review

Let Liouville’s equation be written as

of [ 8 U a
9 ——ilp L2 7 , 1
a < ‘(”'aqi aq,-ap,-> M

where (g, p) is the collection of configuration and mo-
mentum coordinates respectively, U(q) is the potential,
& is Liouville’s operator and f(q, p, t) is in general a com-
plex-valued function of (¢, p, t) . The latter is a member of
function space, a Hilbert space &, in which the inner
product is defined as

(f9)=[f*9dgdp<co, fget. ®)
The reason for including i in Eq. (1) is to render % her-
mitian. That is, (&f, g)=(f, L9); f, ge#. See Prigogine
(1962) and Sobouti (1989a) for more details. As in
Paper IV we look for infinitesimal transformations of the

Pf=i
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type
q;i=q;+&&i(q, p), (3a)
pi=pi+eni(q, p), (3b)

which leave Liouville’s operator form-invariant, where ¢ is
an infinitesimal parameter. The form-invariance of
Liouville’s operator leads to the following differential
equation for &; and #;.

gét+1’11=0a (43.)

U

iv4di

Or, on eliminating #; between the two equations,
*U
i—¢ jﬁzo-
q;04;
As a consequence of these transformations, the infinitesi-

mal change in a phase space function is icy f (¢, p, t); fe #,
where the generator y is given by

P

. 0 0
X__1<§ia—qi +""a—p,.>' (5a)
It satisfies the following commutation rule:
[Z, x1=0. (5b)
3. Symmetry transformation for r~ '-potential
For U= —r"'=—(q;*¢:)~*'%, Eq. (4c) becomes
& 3(g-8)q
g = M) (6a)
r r
where
(3 qi 6
“ilri ) @

Equations (6a) and (6b) have solutions linear and quad-
ratic in ¢; and p;. These are discussed separately in the
following sections.

3.1. Solutions linear in q; and p;

From Papers I and IV we know the following solutions:

()
(7a)

(7b)

Interpreting ¢ of Egs. (3a) and (3b) as an infinitesimal time
interval and noting that p; and — q;/r® are the velocity and
acceleration, respectively (mass=1), the transformation
induced by Eqgs. (7a) and (7b) turns out to be an infinitesi-

mal time evolution along a phase space trajectory. The
generator x, corresponding to Egs. (7a) and (7b) is the
Liouville’s operator itself.

(b)
&= € ks (8a)
N = &ijicPk» (8b)

where ¢, is the Levi Civita symbol. There are three inde-
pendent sets of Eqs.(8a) and (8b) for the free index
i=1,2,3. Equations (8a) and (8b) express infinitesimal
rotation of the configuration and momentum coordinates
about the ith axis by an angle e. The corresponding gener-
ators, y of Eq. (5a), are

0 0
J=Jdt=—g. {p.—+g,— .
i i suk <P1 apk +q1 6(Ik> (93)
They have the SO(3) algebra
[Ji, J;] =i8ijk']k‘ (9b)

The corresponding Casimir operator is J2, with [J2, J;]
=0. These three transformations form a subgroup of the
full symmetry group. They hold for any spherically sym-
metric potential (Papers I and II) and also for the lin-
earized Liouville equation pertaining to self gravitating
system (Paper III).

3.2. Solutions quadratic in q; and p;
Now we consider solutions of the type
Ci-':aijkCIij‘*'bijkCIj‘Ik+Cijkpjpk- (10)

One finds that there exist only three independent solutions
of this kind as follows

& =(q°p) 81+ padi—2qpis a=1,2,3. (11a)
The corresponding #\’s are
1 N

The transformations belonging to these three different
solutions are

qi=q:€.[(q° p)Of + padi—29api], (12a)

1 a'i
p§=pi+8a[<p2—;> 5?—pap,-+qr;1] (no sum on a).
(12b)

There are three sets of Egs. (12a) and (12b) for a=1, 2, 3.
One may easily verify that these transformations are
canonical, that is

Lgi, gj1e=Lpi, Pj1p=0, (13a)
[qi, pjlp=0ij, (13b)

where [ .. .,...]pis the Poisson bracket. The correspond-
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ing generators, y, are

A —A’-—i{(q'p)iﬂ)q R
S aq; ' oq; g

1\ @ o q 0
I [ I L O 14
+<p r) o, pib; ap,+r3q’ ap,} (14)

4. Symmetry transformations of hamiltonian

In addition to Liouville’s operator, the hamiltonian is also
invariant under the canonical transformations of Sect. 3. It
is well known that canonical transformations which leave
hamiltonian unchanged lead to constants of motion
(Goldstein 1980). The constant corresponding to Egs. (7a)
and (7b) is the hamiltonian itself. Those for Egs. (8a) and
(8b) are the three component of angular momentum.
Finally the constants for the quadratic transformations of
Egs. (11a) and (11b) are the three components of the
Runge-Lenz vector. They are as follows:
ai=£ijkpjlk_%=<p2—%>qi_(q'p)pia (15)
where [, is the kth component of angular momentum. To
the best of our knowledge the canonical transformations
which lead to the constancy of Runge-Lenz vector has not
been pointed out before.

5. Structure of the symmetry group

The six operators J; and A; commute with Liouville’s
operator. It is a matter of straightforward calculation to
show that

[Ah AJ] = —2i8,'jk(HJk+lkg),
and
[Ji, Aj]=i8ijkAk-

If one defines M; as

(16a)
(16b)

1 a;
= ——— A. —
M; \/TH< '+2H$>’

where q; is the ith component of Runge-Lenz vector, then
it is easy to verify

(M, Mj] =i8ijk-]k,
[Ji, Mj]=i£ijkMk~

(17)

(18a)
(18b)

Thus, the symmetry group of Liouville’s equation for r ™ !-

potential has SO(4) algebra as expressed in Egs. (9b) and
(18). The corresponding Casimir operators are J2+M?
and J- M.

In Sect. 3 we explored linear and quadratic solutions of
Eq. (6a) and arrived at the SO(4) symmetry of Liouville’s
operator. One may ask whether there are other solutions
to Eq. (6a) and, therefore, a larger group of symmetries. To

show that the solutions of Sect. 3 are complete and SO(4)
is indeed the largest group, we have investigated the prob-
lem once more by means of Kustaanheimo—Stiefel trans-
formation. This transformation maps a six dimensional
phase space (¢, p) to an eight dimensional phase space
(u, v), simplifies the form of Liouville’s operator, and allows
the procedure of Paper IV for the three dimensional oscil-
lators to be used profitably. We have been able to find
fifteen operators commuting with Liouville’s operator in
(», v) space. They obey the SU(4) algebra. But KS trans-
formation is not one to one. This imposes a constraint on
both solutions of four dimensional oscillator and its sym-
metry transformations. This aspect is worked out explicitly
in the appendix and it is shown that the constrained SU(4)
is isomorphic to SO(4).

6. Closing comments

This section reflects a contemplation on a future follow up
of the line of thought pursued in this series of papers. What
are the eigensolutions of Liouville’s equation good for and
what possible astronomical purpose they might serve?

Let us concentrate on the zero eigenvalue of . This is
highly degenerate with any arbitrary function of the con-
stants of motion (energy, angular momentum, Runge-
Lenz vector) as a time independent eigenfunction and,
thus, an equilibrium state of the system. To unravel the
degeneracy, that is, to impose some sort of classification on
the possible equilibrium configurations one may intro-
duce, along with, .Z, a set of mutually commuting oper-
ators, and seek their simultaneous eigensolutions. One
alternative is the following.

For a group of rank /, one can introduce 27 mutually
commuting operators. Half of them are a set of operators
from the generators of the group and the other half are the
¢ Casimir operators. The eigenvalues of Casimir operators
classify the eigensolutions. Indeed the eigensolutions with
the same eigenvalues for Casimir operators form an invari-
ant subspace. The continuous group, SO(4), is of rank 2.
Thus, one can introduce four operators which commute
with each other and with .#. If one defines K; =%(J;+ M;)
and K;=4%(J;—M,), then

[Ki, Kj] =i8iijk, [Ki, Kﬂ=i8iij;n
[K:, K}1=0.

(192)
(19b)

That is, K; and K; both have an angular momentum
algebra. Thus, one can choose {K? K'?, K3, K4} as the
commuting set. The simultaneous eigenfunctions of this set
are

K25 =k(k+1) fu™,  Kafia™ =mf&", (20a)
K2fin™ =k K+ D) &, Kb fo =m'fu" (20b)

The dimension of the invariant subspace labeled by k and
k' is evidently (2k + 1) (2k' + 1) . The whole set of functions
belonging to an invariant subspace may be obtained from
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any one by stepping through the set with raising and
lowering operators K. =K, +iK, and K. =K +iK5.

In summary, any function of the constants of motion
that satisfies Egs. (20) is a possible equilibrium state of the
system, characterized by the discrete parameters
(k, m, k', m'). For example, based on symmetry consider-
ations, any spherically symmetric and isotropic distribu-
tion will belong to (0,0,0,0) class. Spheroidal and ellip-
soidal configurations with non-isotropic distribution of
momenta will have a different set of parameters. We hope
to present this type of analysis in the near future. .

Non-zero spectrum of % is continuous. See Prosser
(1969) and Spohn (1975). The corresponding eigenfunc-
tions represent time dependent states, which according to
Prosser eventually relax to some static state. Any such
solution may still be designated by a set (k, m, k', m') and
keep this designation unchanged in the course of time
evolution.
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search Council of Shiraz University.

Appendix: constrained SU (4) as the symmetry group
of Liouville’s equation

The Kustaanheimo-Stiefel (KS) transformation connects
a three dimensional Kepler problem with that of a re-
stricted four dimensional harmonic oscillator (Kibler
& Winternitz 1988; Kibler et al 1986; Chen 1985; Cerdeira
1985; Boiteux 1973, 1974, 1982); the transformation is

i=1,2,3, a=1,23,4, (Ala)

where A, is the following 4 x 4 matrix

qi=Aiaua,

Uy —uy Uy, —uy
Uy Us U, [Z5%
Au)= . (Alb)
Uy U, —uz —Uy
U, —Uy —Uy Ujs
The corresponding momentum transformation is
1
pi=;4—2Aiava, (AIC)

where v, denotes the canonical momentum conjugate to
u,. Liouville’s operator in this eight dimensional space
becomes

_v2—8
To8u?

Y=—%<v,i +8Hu i), H (A2)

ou, * dv,
The transformation from (¢, p) to (, v) is not one to one.
All points in (uy, u,), (ug, us), (v1, v;) and (v4, v3)-planes,
obtained one from another by rotations through an arbit-
rary angle ¢, represent one and the same point in (g, p)
space. A function f'(u, v, t) to be single-valued in (g, p) space
should remain invariant under such rotations. The corres-

ponding generator and the constraint is as follows:

( 0 0 0 0
—1{ Uy '—u——uz —+u4———u3 P

a 2 5141 5143 0144
0 0 ) 0
+vla vza—l)l+v4a_3_vsév—4>f=Rf=0- (A3)

Thus, f(u, v, t), in addition to being a solution of Egs. (1)
and (A2), should also satisfy Eq. (A3).

Following the procedure of Paper IV, we have been
able to introduce fifteen operators, y,, u=1,2,...,15,
commuting with Liouville’s operator of Eq. (A2). They
obey SU(4) algebra. From [ %, y,]=0, we note that if fis
a solution of Liouville’s equation then so is y,f The
constraint conditions for these solutions are

Rf=0, (Ada)
R(1,./)=0. (Adb)

Operating on Eq. (A4a) by y, and subtracting it from
Eq. (A4b), we obtain

(RXu - XMR)fz [R, Xu] f=0. (AS)

That is, the operators of symmetry group should commute
with both % and R. Thus, one must look for the largest
subalgebra of SU(4) which commutes with R. We have
found that of the fifteen y, only six commute with R, and
have a closed algebra. They are no other than the J; and
M; of Egs. (9a) and (17). Once more, we arrive at the
conclusion that the largest symmetry group is SO(4),
a subgroup of SU(4). Expressed in (#, v) coordinates J; and
M; are

J—i gl v —a—+u 2 +vi
21\ Y ou, T Vo, ) o,

0 0 0 }
U4t U Uy

vy Ouy Ou;
+8H<ulaiv3+“3a%—“2£—4—u4%>
Mz_—__:i_{vz—‘a—-kvai“’l_6“4”"‘i
2/ =2H " Ous T 0uy - us 0wy
estfun L v L )
_4i<u2u3+u1u4+%%{ﬂ%)g}’
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: 0 0 0 0
+8H(u1 év—l+u2 6—02—143 %3-—1/& 6—04>

2,2 2 2
, v4+v3—v3—v
—21(uf+u§—u§—ui+—l~—%>$}.
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