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Abstract. A dynamical symmetry group of Liouville’s equation
for quadratic potentials is obtained. A complete set of mutually
commuting operators and the ladder operators to generate the
simultaneous eigenfunctions of the set are given.

Key words: stellar dynnamics — methods: analytical

1. Introduction

More often than not astronomers maintain that the equilibrium
distribution functions of stellar systems in dynamical time scales
are governed by Liouville’s equation. This equation, however,
possesses eigensolutions giving rise to time dependent changes
of definite patterns in density, bulk motion and other physical
parameters that may be amenable to observations. Nevertheless,
these eigensolutions are highly degenerate. For, any eigensolu-
tion of Liouville’s equation multiplied by an arbitrary function
of constants of motion is again an eigensolution belonging to the
same eigenvalue. A systematic method of disentangling these
degeneracies can be achieved through the use of the symme-
try group. In a series of papers, Sobouti (1989a, b), Sobouti
& Samimi (1989), Sobouti & Dehghani (1992) and Dehghani
& Sobouti (1993), hereafter referred to as Papers I-V, study
the symmetries of the Liouville and the linearized Liouville-
Poisson equations. In Papers I-III it was shown that for spher-
ically symmetric equilibrium potentials the symmetry group is
O(3). In Papers IV and V a systematic method was introduced
to find the symmetries of Liouville’s equation for an arbitrary
potential. The method was then applied to quadratic and r~!
potentials.

In this paper we seek the dynamical symmetries of Liou-
ville’s equation. In Sects. 2 and 3 we discuss the terms invari-
ance and dynamical groups, write down an algorithm for finding
the dynamical group for quadratic potentials and analyze the
case of spherical symmetry in full details. In Sects. 4 and 5 we
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introduce a complete set of six mutually commuting operators
and give the appropriate ladders to generate the whole set of the
simultaneous eigensolutions of the commuting set.

2. Invariance and dynamical groups of Liouville’s equation

Liouville’s equation may be written as

(2 ) peo e i pl U
sI= (Zat Dg) 0= (plafh 9g; apz‘)’(l)
where (q, p) is the collection of configuration and momentum
coordinates respectively, U(q) is the potential, % is Liouville’s
operator and f(q, p, t) is in general a complex-valued function
of (q, p, t). The latter is a member of a function space, a Hilbert
space F%, in which the inner product is defined as

(f.9)= [ Fgdadp<o0s  frg€ 58, @
The reason for including 4 in Eq. (1) is to render % hermitian.
That is (£ f,g) = (f, L 9); f,g9 € F. See Prigogine (1962),
and Papers I, IV and V for more details. Let {x,, } be the gener-
ators of the invariance group of Liouville’s operator, that is the
set of all operators commuting with %’
[Z,Xal =0. (3a)
We recall from Paper IV that {x,,} have a closed Lie algebra.
ie.
[Xas X681 = CsXvs (3b)
where C) 5 are the structure constants. This algebra contains no
operator which can connect the eigenfunctions of Liouville’s
operator with different eigenvalues. In other words each irre-
ducible representation of the algebra is realized on the solutions
belonging to one and only one eigenvalue.

In analogy, the invariance group of & of Eq. (1), hereafter
referred to as the dynamical group of Liouville’s equation, con-
sists of the set of operators {.%2,,} which commute with & and
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' have a closed algebra

[@a%}b] = 07
[Py, I2,) = C},Fs.

(4a)
(4b)

Each irreducible representation of this dynamical group is real-
ized in the space of all the solutions of Eq. (1). In other words,
78, contains the ladder operators connecting the eigensolutions
belonging to different eigenvalues.

3. Dynamical symmetries for quadratic potentials

In the quantum mechanical context, the invariance group of
the hamiltonian for three dimensional harmonic potential is
SU@B) (Jauch & Hill 1940; Fradkin 1965). This is the mini-
mal group that completely spans the states of a given energy of
a harmonic oscillator. It, however, does not allow transition be-
tween different energy levels. A larger dynamical group which
is free of this limitation has been investigated by Barut (1964,
1965), Hwa & Nuyts (1966), Malkin et al. (1971), and Haskell
& Wybourne (1973). Here we are concerned with the dynamical
group of Liouville’s equation in a six dimensional phase space,
and use a generalized version of the method of Malkin et al. for
Schrodinger’s equation.

Let us consider the quadratic potential, U = %kij(t)qiqj.
The time dependence of k;; is, at this stage, of academic interest
only. And it will be retained as long as it does not give rise to
serious mathematical complications. Liouville’s operator of Eq.
(1) may be written as

Z =Q'MQ, (52)
where Q is the following column vector
.0 .0\
(Q1,Q2,..,Q12) = (qg',pj, ~2§1; - Z-é;]-) ;
J=12,3, (5b)
and M is the real 12 x 12 matrix, below
0 00 —k
110 010
M=310100 (5¢)
-k00 O

Here, 0,1 and k are the 3 x 3 zero, unit and k;; matrices. Let
us examine the linear hermitian operators,

'%;t =Ap,u(t)QV; urv=172..12 6)
as possible members of the dynamical group. We shall deter-
mine A, by, requiring Eq. (4a) to be satisfied. Later we shall
see that because of the full integrability of Liouville’s equation
in this case, there are twelve such operators. To determine A we
proceed as follows. The components of Q satisfy the commu-
tation rules

[Qu, Q] = _iAuu, (72)
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where

A= (7b)

ocmoo
—_—-—o oo
|
s |
|
ce Lo

Using these commutators and the invariance requirement of Eq.
(4a), we obtain the following evolution equation for A

OA
= = AONG),
where N = AM + M.
By construction the operators .72, of Eq. (6) are members
of the dynamical group. They do not, however exhaust all pos-
sibilities. Any linear combination of the pair products .%8,,.72,,
belongs to this algebra. In particular there is a subalgebra of
time independent combinations which constitute the invariance
group of %, as discussed in Paper IV. There is no need to con-
sider products of three or more .#2,,s. For, they do not have a
closed Lie algebra and do not provide new information.
For the case of spherically symmetric potential with time
independent coefficients, U = %qiqi, one obtains

®

0-10 0
0 01
Equation (8) then gives
A=eNt=1cost +Nsint, (10)

where we have used the relations N2* = (—1)?1 and N?**! =
(—1)™N and have expanded the exponential term. From this, the
twelve hermitian operators .%2,, follow

I8; = q; cost — p; sint, (11a)

Ibiv3 = q; sSint + p; cost, (11b)
0 0

Iire = —1COSt— +isint—, (11¢c)
0q; Op;

0

S0 = —iSint— +icoSt—. (11d)

0q; Op;

Instead of .%2’s, however, we find it convenient to use the fol-
lowing non hermitian combinations along with their complex
conjugates and adjoints

1 .
T; = ?—5[%“3 + Pive — 1(T8; + Fis0)]
1 . o 9\ a4
= % (p, ig; + B — Zaqi) e'. (12)

By virtue of Egs. (7) or by direct manipulations, one obtains

(T;, T}1= 6, (77,711 = 65, (13a)
(L, T = T3, T = [T, T4 = [T}, T}] = 0. (13b)
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The dynamical group now contains the twelve operators
Ti, TJ, T, T*j and their various pair products. From the pair
products we will construct sets of hermitian and mutually com-
muting operators. The non hermitian 7”s themselves will serve
as ladders to go from one eigensolution to others.

4. A complete set of mutually commuting operators

A typical eigenfunction of %, of the form Hf s (Pi +

1q;)" (p; — iqj)"3‘ , is characterized by six eigenvalues n; and
n;; 1,7 = 1,2,3, and belongs to the highly degenerate eigen-
value Z;l(ni — n;). To unravel such degeneracies one needs
a set of six mutually commuting operators. One such set was
introduced in Paper IV which can be easily expressed in terms
of the T" operators. Here we introduce a second and a more el-
egant alternative, by exploring two possible subgroups of the
dynamical group.

(i) The operator
+ 3
IE=T)T; + 3 (14)

and its complex conjugate .7 * form an abelian subgroup.
(ii) The operators

Fi = —ieT) Tk

1 0? 0 d
= S€ijk {(ijk - m) - Z@jb?k +Qj5;1;)},(15)

and their complex conjugates form a second subgroup. They
have a SO(4) ~ SO(3) & SO(3) algebra. Thus,

LZ, Z5] = i€ijk Prs
(Z" Z = —i€ij T
(%, Z1=0

Evidently % and Z;* have angular momentum algebras with

the Casimir operators Z2 and Z*>. Thus a complete set of
mutually commuting operators may be written as

(16a)
(16b)
(16c)

(5,96, 7°, 7, P T3’} an
Liouville’s operator in the notation of this section is & = .98 —

FE*. It, obviously, commute with the set of Eq. (17) and its
eigensolutions will be given in terms of those of the commuting
set.

5. Simultaneous eigensolutions of the commuting set

Let fo 7, '™’ be the eigensolutions in question satisfying the re-
latlons

i 1l

n'j'm’ _ n'j'm
.%fmm = nfpim (18a)
7 ’ 1 ’
* enJm n'j'm
‘% njm - ’I‘L nkm (18b)
2 n/]/ml

§G + DFI™ § = positive integer,

njm

(18¢)

nJm
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i = mfpi =i <m <, (184)
=5+ 1)f,7:]fnm ;4" = positive integer, (18¢)

T frit g <m! < (18f)

Equations (18a,b) are definitions for n and n'. Their allowed
values will be discussed shortly. The limitations on j, m, 5/, and
m' in Eqgs. (18c,d) are dictated by the fact that Z; and Z;* have
the angular momentum algebras. It is worthwhile to mention
that J; = Z — Z* is itself an angular momentum operator. Its
eigennumbers are integer and range from | j — j' [to j + 5’ in
integer steps. Similarly the eigenvalues of J3 are m — m/.

We now proceed to the calculation of the eigensolutions

f:;ﬁ,;m/. The twelve operators T; and T*; and their hermitian
adjoint together with the identity element, F, form a closed Lie
algebra. The group associated with it is commonly referred to
as the Heisenberg group and is designated by N (6). Members
of N(6) commute with & but not with %. The following com-

mutators show the ladder properties of the T-operators.

(FH#,T] = -1y, [F*,T*:] = T4, (192)
(9%,T]] = T] (g, ] = T*T, (19b)
[F#,T] = 0, [(9E*,Ts] = 0, (19¢)
[(96,T*1] = 0, [(95*,Ti1 = o, (19d)
(o, 7 = 21, [, 71 = 21t (19%)
(o, 711 = 0, (%*, T = 0, (19f)
where T? = T,T; and Ty = T + iT», with similar relations

for T*’s. Also it is easy to see that the operator 7; is a class-T
operator for Z; but commutes with Z;*. While T*, is a class-T
operator for Z;* but commutes with %;. This fact and Egs. (19),
by standard arguments, lead to

Pt 1

TTf:Jinm S f:ﬁ,;’:—l m+1) (20a)
T*Tf:ﬂnm f::]:rl’] +1,m +1 (20b)
Thus, using Egs. (19)~(20) one may write f77 ™
y njm
. Y
fram o grd=mOat! (T**z) ¥
njm
X Z- G- M)TTJ(TT2 fooo, @1)

where f% is a generating function and happens to be the lowest
eigenfunction for the positive definite operator .F%. Since the
2 . )

power of 77" must be integer, n and j must both be even or
odd integers and n > j. Similar restrictions hold for n’ and j'.
To find f3%, we note that F# is positive definite. For, (%) =
(F | TITi+3 | £) = (Tif | Tif) + 3(f | £) 2. Since Ty is a
lowering ladder for 7% (see Eq. (19a)) one must have

I P
Tifoo():%( it o= (22a)

. .9\ Lo00
iq; — za—(h) fooo =0.
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The most general solution of this equation is

1
fo@p=e"  E=-@+d). (22b)

The eigensolutions of Eq. (21) are also the simultaneous
eigensolutions of & = .9 — FE* and F = FE +.F%*. Thus,

FIA™ = (- )i, (232)
FrI™ = () frim, (23b)

The % operator, first introduced in Paper Il and elaborated on by
Khalesi (1990), has an interesting interpretation. It is the sum of
two Schrodinger like hamiltonian operator, one in configuration
representation and the other in the momentum representation.
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