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Abstract. The stability and normal modes of oscillations of
polytropic stellar systems are investigated using the symme-
tries of the linearized Liouville’s equation. The O(3) symmetry
of this linearized equation was utilized to separate the angle
dependence of the eigenfunctions and hence to reduce the six
dimensional phase-space problem to a two dimensional one in
terms of magnitudes of position and momentum vectors. For
the simplest mode of radial oscillations, the eigenvalue prob-
lem was solved numerically with a Rayleigh-Ritz variational
scheme. Using 125 variational parameters, a high degree of con-
vergence for the lowest eigenvalues was achieved. No negative
eigenvalues were detected for any polytrope.
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1. Introduction

In a series of papers, Sobouti (1989a, 1989b), Sobouti & Samimi
(1989), Sobouti & Dehghani (1992), and Dehghani and Sobouti
(1993), hereafter referred to as Papers I-V, studied the sym-
metries of the Liouville and the linearized Liouville-Poisson
equation. In Paper I it was shown that for spherically symmet-
ric potentials Liouville’s operator has O(3) symmetry and its
eigenfunctions can be chosen as simultaneous with those of an
angular momentum operator in phase space. In Paper II exact
eigensolutions were obtained for simple harmonic potentials.
In order to study the stability of the perturbed stellar systems
many investigators (Antonov 1960; Lynden-Bell 1967, 1969;
Sobouti 1984, 1985, 1986; Barnes et al 1986) have resorted to
the linearized Liouville-Poisson equations. In Paper III it was
shown that for unperturbed spherical potentials these linearized
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equations have likewise the O(3) symmetry and admit the eigen-
functions of an angular momentum operator. In Papers IV and V
a systematic method was presented to study the possible sym-
metries of Liouville’s operator for arbitary potentials and the
method was applied to analyze the full symmetry group for
quadratic and 7~! potentials. In this paper we utilize the O(3)
symmetry of the linearized Liouville-Poisson equation to sepa-
rate the angle dependence of the eigenfunctions on the direction
angles of position and momentum vectors, (q, p). This reduces
the six dimensional phase-space problem to a two dimensional
one in terms of the magnitudes of (g, p) which can be solved
numerically.

In Sect.2 we summarize the results obtained in Paper III
and set up the eigenvalue problem for the linearized Liouville
equation. In Sect. 3 we apply the formulation in a Rayleigh-Ritz
variational scheme to polytropic stellar systems. Numerical re-
sults for the simplest modes of oscillations are given in Sect. 4.
Section 5 is devoted to concluding remarks.

2. Setting up the eigenvalue problem

Let F(F), E = energy integral, be an equilibrium distribution
function. In the notation of paper III, a perturbation on it may
be written in the form 6 F =| dF/dE |'/? f(q,p,t). Using the
linearized Liouville-Possion equation, f was shown to satisfy

i?%iazéf (1a)
Af = Ff+Gsign(Fg) | Fg |'* F

< [ 1R 17 1 la—a' " da'ey, (1b)

8 08U 8 (10

L =—ilp;— — —=—),
s dq; 0g; 5131)
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where Fg = dF/dFE and the potential function U(q, t) was the
solution of Poisson’s equation.

A decomposition of f into an odd function, u, and an even
function, v, of p allowed one to set up an eigenvalue problem
in the form of
At = wtu, (2a)
with eigenvalues w? being real. The even function v was related
tou as
v=t-Fu, (2b)

w

Furthermore, it was shown that for spherically symmetric
equilibrium configurations .-4? commuted with a generalized
angular momentum operator J in phase space. The latter was the
sum of two angular momenta in configuration and in momentum
spaces. Thus, .42, J? and J, constituted a set of three mutually
commuting operators. This in turn allowed a classification of
the eigenmodes of .4 into classes designated by two integers
j and m, the eigenvalues of J? and J,, respectively. The pro-
cedure was to express an eigenfunction of .4 as an expansion
in spherical harmonics of the direction angles of q and p which
were the simultaneous eigenfunctions of J2 and J,. The expan-
sion coefficients were functions of magnitudes of (g, p) and the
problem in the six dimensional phase space was reduced to a
two dimensional one. To handle the eigenvalue problem for .4?
in a variational form, Eq. (2a) was left-multiplied by «* and in-
tegrated over the six-dimensional phase space volume available
to the system. The result was written in the following form:

w? = [W; +sign(Fn)W51/$, (3a)
with
Wl = ($u1 zu) ) (3b)
Wa= G [ | Fe |/ (Fuy | Fy |

x(Zu) |q—q' |7 dqdpdq'dp’, (3c)
S = (u,u), (3d)

where the inner product (¢’, g) stands for the integral of g’*g
over the allowed range of q and p. Next, an expansion of u in
terms of spherical harmonics was assumed. For the j =m =0
modes, the expansion reduced to

-1 1/2
wg,p) = £ go;d(zkn)

X Py(cos ©)ux(q, ), (3e)

where cos © = cos 6§ cos a + sin 6 sin a cos(¢p — ) and (6, ¢) ,
(a, B) are the polar angles of q and p, and U is the expansion
coefficient. Here the values of k run over odd integers to insure
the odd p-parity of u. In the expansions for Wy, W,, and S, the
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integrations over the angles were carried out analytically and
the following results were obtained:

1

= 2 1IN Fi. Fil
W = zkj(%_ DaE T3 + 2k = D(Fur, Zar)

£2k(k + 1)( B, Ay) + 2k (k + 12 (A, Aug)]
k(k — 1)
* ; 2k — DVREE DRk =3)

+(k + 1)(E k-2, ATig) — (k — 2)(ATp_2, L)

(Zuy—r, Fuy)

—(k - 2)(k + DAz, Fap)]. @

W, = 165°G / L @Qu@e dg, 5)
1

u)=—= / | Fe |2 w0 dp. ©

S=>" @) 7
k=odd

In these equations Uy is a function of the magnitudes of (g,p)
alone, and the operators % and A are given by

— 8 dU 9

55——(10%—3351—0), (®)

A--i2 -, ©)
g pdg

where U is the spherically symmetric potential function of the
unperturbed system.

Once the eigenvalue problem is solved, for each eigenso-
lution, the perturbed distribution function is found and other
physical quantities such as the volume density variations or bulk
motions are computed.

3. Solution of the eigenvalue problem for polytropes
3.1. Rayleigh-Ritz variational scheme

In order to attempt a numerical solution of our two dimensional
eigenvalue problem, i.e., in order to compute w? from Eq. (3)
and expressions for u and v from Egs. (2), a Rayleigh-Ritz vari-
ational scheme is used. In this scheme a linear expansion of
the unknown two-dimensional function, %, (q, p), in terms of a
complete set of functions {® (g, p)} is assumed. Here we have
used the power set {g?~'p?™~1; I,m = 1,2,3,...} as this
complete set. Hereafter, instead of ¢, p we use the dimension-
less variables z = ¢/R, and y = p/+/=2U., where R and U,
are the physical radius and the equilibrium central potential of
the system. Thus, we write

integer
Uk = (pe/V=U)? Y | Ziam a2 'y?m (10)
l,m=1

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995A%26A...297..707S

FTY9O5ACA - ~297- “7T07S!

J. Samimi & Y. Sobouti: Normal modes of polytropic stellar systems

The dimensionless coefficients of expansion Zi;,, are treated as
variational parameters and calculations are carried out to any de-
sired order of approximation by truncating the series in Eq. (10),
and likewise the series in Eqgs. (4) and (7). The inclusion of the
constant factor in Eq. (10), with p. as the equilibrium central
density, is to give Uy the correct dimension.

3.2. Application to polytropes

For a polytropic stellar system of index n the unperturbed equi-
librium distribution function is written as,

On,

872

where E = % p? + U is the energy integral, and o, is a constant.
Calculating the density, p = [ Fdp from this expression and
inserting the result in the hydrostatic equilibrium and Possion
equations combined together gives the Lane-Emden equation
for the dimensionless polytropic potential, © :

1d [ ,d0\ .
z2dz <m dx)__cne ’

where © = U/U, = (p/ pe)7, Uy, p. are the central potential
and density of the system, x is the dimensionless fractional radial
distance, * = ¢/R, and R is the physical radius of the system.
In Eq. (12), ¢, is the Lane-Emden radius of the polytrope which
is obtained by requiring the boundary condition ©(z = 1) = 0.
The contant a,,, is then related to the Lane-Emden raduis and
the physical parameters of the system:

F.(E)=

(=E)"3/2, (11)

(12)

n = pe4nGpe) ™ (R/Cn) ™"/ Bn (13)
where (,, is a definite integral encountered in the integration
of Eq.(11) over the momentum space. Expresed in terms of
gamma-functions, 3, = 3@ %}1)@

For polytropes, for each basis function z!y™ we can reduce
the terms in Eq. (4) analytically. Thus, simple differentiations
give:

g(xlym) = —i —2U

R
x {1zt ly™ 4+ ;md xlym“> , (14a)
Azly™) = —i> _;Uc
1d
X (l’l—lym+1 +§'§$1ym_l) . (14b)

Using Egs. (14) in the inner product terms appearing in Eq. (4),
the integrations over the momentum space are carried out an-
alytically with the aid of the Lane-Emden equation, Eq. (12).

709
The results are:

R(-2U,)/?

2. 1 .m' ol my _
(Friy™, Lay™) = (M + (M +3)

x {[I(M+ DM +3) — Um+m/I)(L+1)(M +1)

+mm' L(L +1)] Qr m4s +mm/'QY pr } (15a)
— - R(-2U,)/?
. m L,my _ ¢
Az ™, ATY™) = G Dar+3)
x {[(M +1)(M +3) —2(L+ 1)(M +1)
+L(L+ D] QrL,m+5 + Q'L,M} ) (15b)
— , R(—2U )5/2
' m L omy _ c
Fe Y™ ATV = Grinares)
x {[V(M +1)(M +3) — (' +m/)(L + 1)(M + 1)
+m L+ D] Qrpes +m' QL ar} - (15¢)
In these equations L =1 +1’, M =m+m/, and
Lty M/2
QL’Mz—M/(; -0 dx, (16a)
1
QIL,M = %C}L/ T L+2@ M/2+n+3/2d$C. (16b)
0

Now by substituting Egs. (15) into Eq. (4), for any assumed set
of indices, (W1)k/1/m’ kim can be reduced to single integrals
over z only . The resulting expression is too lenghthy to be
given here.

For each basis function, the integration over the momentum
space appearing in Eq. (6) is also carried out analytically and
the result is subtituted in Eq. (5). For an assumed set of indices
kim, k''m’, we get:

)5/2271_3/2 In—3/2|
36

X6k,1 Ok 1 AmAm QL a1 »

W)krirm kim = R(=2U,
17

where Q’L7 a is givenin Eq. (16b), and A, is a factor depending
on m and the polytropic index n:

n/2 —1/4)I'(m+3/2)

_ n/2-1/aL(
Am = (1/2) T'(n/2+m+5/4)

(18)

The p-integrations for the elements of the S matrix in Eq. (6), is
also straightforward. Thus,

(S)krvrms im = R(—2U)> 261 k1 Qraz ps3 - (19)
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Fig. 1. Convergence of eigenvalues for polytrope of

index 1.0, for a index [, b index m, ¢ index k
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3.3. Matrix formulation for numerical computations

Let us denote the order of truncation of the set of indices klm
in the series appearing in Egs. (3e and 10) by a set of maximum
values k, , I, and m,,. We can use a single index, a, to replace
the set of the three indices. A simple choice for a is.
a=lpympytk—1D+mpl—1)+m. (20)

The single index a takes on all integer values from 1 to
Om = Kkmlmmyy,. Now the set of variational parameters, Zi;,,
of Eq.(10), can be expressed as the components of an an,-
dimensional vector. Thus, Eq. (3a) can be written in a matrix
form:

WZ =uw?’SZ. #3))

where W and S are a,,, X a,, matrices whose components are
given by

MWat,a = WDrtrme kim
+sign(dF/dEYW2)r1'm! kim »

(S)a,’,a = (S)k'l'm',klm P

(22a)
(22b)

and Z is the vector of the variational parameters.

4. Numerical results

Numerical computations were carried out for different assumed
orders of truncation of the series, i.e., different assumed values
for kp,, Ly, My, ranging from 1 to 8, and for different values
of the polytropic index n > 1/2. First, the integrations over the
configuration space, Eqgs. (16), were carried out with © being
the numerical solution of Eq. (12). Then the results were sub-
stituted in Egs. (15), (17), and (19), to compute the components
of the two matrices in Eqgs. (22), ignoring the multiplicative fac-
tors involving the physical quantities [the factor R(—2U,)%/?
in Eqs. (15) and (17), and the factor R*(—2U.)*/? in Eq. (19)].
As seen from Eq. (21) droping these multiplicative factors in W
and S matrices merely sets a unit for the eigenvalues w?. For the
present problem this unit is

R(=2U.** -2U, )
R3(—2Ucc)3/z =g = 87Gpe/Cr-

Equation (21) involves the simultaneous diagonalization of
matrix W into the matrix of the eigenvalues and matrix S into the
unit matrix. This can be achieved by first computing the matrix
S!/2 (and its inverse S~1/2), defined as S = S1/28'/2, using
the standard techniques. Then, Eq. (21) is transformed into the
standard from:

(S™12 W S~1/2)S1/2 7) = w?(S'/2Z). (23)
Next, the components of the matrix S~/2 W $~'/2 were com-
puted and the eigenvalues (w?) and the eigenvectors (S!/2 Z)
of this matrix were obtained using the standard subroutines of

J. Samimi & Y. Sobouti: Normal modes of polytropic stellar systems

Table 1. Period of fundamental modes and maximum amplitudes of
small oscillations of some polytropes

Polytropic index 1.0 25 225 4.0
Fundamental period in R3jyM; ™' x 10°yr 22 47 12 02
Amplitude (8p)max X 107/ p. 17 10 54 .02

the Math Science Library of our CDC mainframe. Finally, mul-
tiplying S~/ into the eigenvectors (S'/2Z), we computed the
vector of the variational parameters, Z, for each eigenvalue w?
and each assumed set of orders of truncations.

Since the numerical solution of the eigenvalue problem by
the Rayleigh-Ritz approximation method has involved tremen-
dous amount of computations, before presenting the numerical
results for the physical quantities, we will discuss the conver-
gence of the eigenvalues with increasing orders of truncations
which can be regarded as a test of the validity of the approxi-
mation method and the numerical results.

4.1. Convergence of eigenvalues
with increasing the orders of truncations

For the three different indices klm appearing in the series of
Eqgs. (4), (7) and (10), we can have three different orders of
truncations which correspond to a desired order of approxima-
tion. As the order of approximation is increased the number
of eigenvalues to be computed (the same as the size of the
square matrices, @, X G.,) increases. The rule is that for an
n X n matrix the n approximate eigenvalues interleave the n
actual eigenvalues of the system from above. That is, if we
denote the ith actual and approximate eigenvalues by €, and
efw, respectively, they obey the following increasing sequence

€, < €, < €l < €. Moreover, the approximate
values should converge to the actual ones from above as the
order of approximation is increased. As a test of validity of the
computational procedure, we demonstrate the convergence of
the lowest eigenvalues with increasing each of the three orders
of truncations for few typical polytropes in Figs. 1-3.

Figure 1a demonstrates the convergence of the lowest eigen-
values with increasing the order of truncation k,,, while the other
two orders of truncations are kept fixed, at [,, = m,, = 3. In
Figs. 1b and 1c, {,,, or m,,, respectively, are varied while the
other two are kept fixed. Figures la—c are for the polytropic
index n = 1.0. Similar considerations hold for Figs.2 and 3
for polytropes 2.5 and 4.0, respectively. In all of these figures
it is seen that as the different orders of truncation are increased
not only the lowest eigenvalue converges to a certain value for
each polytrope, but also the first 10 lowest eigenvalues are al-
most identical for the value of the various orders of truncation
> 5. Thus, based on the examination of Figs. 1-3, and similar
figures for other polytropes, we are led to the conclusion that
fixing all three orders of truncations at 5, will result in a desir-
ably high degree of convergence, and a desireably high order of
approximation at least for the first 10 lowest eigenvalues.
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polytropic index n=2.5

0.4 0.6

fractional radial distance
10

0.8 1

Fig. 8. Projected surface density variations for the
lowest eight eigenvalues for polytrope of index 2.5

polytropic index n=4.0

S S |

0.4 0.6

fractional radial distance

Thus in the pursuing calculations of the physical quantities
we have truncated all three series at the fifth order; k,, = [,,, =
My = 5. This has made matrix manipulations feasible with the
reasonable size of 125 x 125 for the matrices.

4.2. Volume and surface density variations

The volume density change is obtained by integrating the per-
turbation in the distribution function, §F, over the momentum
space. Making use of the decomposition into odd and even func-
tions of p; that is, §F =| Fg |'/2 f =| Fg |'/2 (u + iv), the
integral over the odd function u vanishes. For the non-vanishing
integral, first the even function v was calculated in terms of u via

0.8 1

Fig. 9. Projected surface density variations for the
lowest eight eigenvalues for polytrope of index 4.0

Eq. (2b) and then the integration over the angles were carried
out. The result is:

0@)= = [ | P |2 (Fmy + 2007 ap. 24
V3w

Using Eq. (10) for %;, we may write
integers

5p()= > Zitm 6pum(2), (25)

l,m=1

where
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pc/? 1 ve 1/2
Pe F
(—Uo)'7? \/§w/0 | Fel

X(Z +2A8)z? !y’ (—2U) Py dy

opim(x) =

(26a)

For polytropes, using Egs.(8) and (9), the integration in
Eq. (26a) is carried out analytically:

. 2

_ e w —1/2 tAn/2-3/2 |, _ 1/2
5 = TWfep__ ¥ ) n—3/2
Pim(T) r—37r[87TGPc/€72,,] [ , / |

x/\m/\/’ﬁ—n]xﬂ—ze%wn—%

x[Q2L+1)®+(n/2+m+ 1/4)x§]. (26b)

The density change of Eq. (24) depends only on the radial
distance from the center and in this sense the oscillation of the
system is a radial one. The nonradial oscillations of the system
should be sought in modes belonging to j > 1, the eigenvalue
of the generalized angular momentum operator.

For each eigenvalue w? and the corresponding normalized
eigenvector Z of Eq. (21), the volume density variation ép(x)
were computed from Eqgs. (25) and (26b). Typical results for the
lowest eight eigenvalues are given in Figs. 4-6 for polytropes of
indeces 1.0, 2.5, and 4.0, respectively. In each of these figures
the volume density has its highest amplitude at the center(that
is, the center is an antinode of the oscillation) and the largest
changes correspond to the lowest eigenvlaue.

The physical quantity which could be subject to direct ob-
servations is the projected surface density changes rather than
volume density changes. Utilizing the spherical symmetry, the
volume density variation, §p(z), was integrated to obtain the
projected surface density variation, §o(z’),

bo(z') = 2/
0

where ' is the projection of the radial distance z on the surface
of sky and z-axis is along the line of sight to the cluster. Figures
7-9 show projected surface density variations as functions of =’
for the lowest eight eigenvalues for three typical polytropes. As
expected, the larger surface densities correspond to the lower
eigenvalues.

bplx =Vr?2+22)dz, 0<z' <1, 27)

5. Discussion and concluding remarks

In an earlier study by Sobouti (1984) the antisymmetric-in p
function, u(q, p) of Eq. (2a) was assumed u = £; (q)p;, where
& (q) was a vector field subjected to variational calculations.
The present work can be viewed as an expansion of that earlier
work with u = & p; + nijk D; Pj Px + . .., Where n;1(q), . ..
are additional tensor fields. The number of the variatinal pa-
rameters of the present work (125), however, far exceeds that
of Sobouti (8).
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The results of numerical calculations show that up to approx-
imation considered here, no negative eigenvalues are detected
in the class of modes belonging to j = 0. This is in accord with
the general stability theorems proved by Sobouti (1984), and
Doremus et al. (1971). The frequencies of j = 0 modes increase
with any of the three mode orders k, [, m. The analog of g modes
in stars whose frequencies decrease with increasing the radial
mode order is not observed here. There is no apriori guarantee,
however, that such an spectrum will not be encounteredin j > 1
modes.

The periods of oscillations (27 /w) are, as ecpected, of the
order of free fall time scales. For a globular cluster of mass Mg
(in units of 10°M,), of physical radius Ry (in units of 102 cm)
and of polytropic structure, the priods of the fundamental (the
lowest order) modes are given in Table 1.

The largest amplitude of the density variations occurs at the
center. The ratio of this largest amplitude to the central density
of the polytrope for the normalized fundamental mode is also
given in Table 1. The small values of this parameter (~ 1077)
ensures the validity of the perturbation approximations adopted
throughout this paper. It should be noted that these dimension-
less amplitudes are independent of the vlaues of the physical
mass and physical radius, Mg and Ry. It is also seen that both
the fundamental period and the maximum amplitude decrease
with increasing polytropic index.

Finally it is worth emphasizing that the utilization of the
symmetries of the linearized Liouville’s equation (as developed
in Paper II1.) has enabled us to reduce the 6-dimensional eigen-
value problem to a 2-dimensional one which was subsequently
solved numerically by the Rayleigh-Ritz variational technique.
It is thus suggestive that these symmetries could also be used
in stability problems of other natures or in other applications of
the linearized Liouville’s equation, especially where numerical
computations are to be employed.
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