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Abstract. The post-Newtonian approximation of the general
relativistic Liouville’s equation is presented. Two integrals of
motion, generalizations of the classical energy and angular mo-
mentum, are obtained. Polytropic models are constructed as an
application.
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1. Introduction

Solutions of general relativistic Liouville’s equation (grl) in a
prescribed space-time have been considered by some investiga-
tors. Most authors have sought its solutions as functions of the
constants of motion, generated by Killing vectors of the space-
time in question. See for example Ehlers (1971), Ray & Zim-
merman (1977), Mansouri & Rakei (1988), Ellis et al. (1983),
Maartens et al. (1985), Maharaj et al. (1987), Maharaj (1989),
and Dehghani & Rezania (1996).

In application to self gravitating stars and stellar systems,
however, one should combine Einstein’s field equations and
grl. The resulting nonlinear equations can be solved in cer-
tain approximations. Two such methods are available; thepost-
Newtonian (pn) approximationand theweak-field one. In this
paper we adopt the first approach to study a self gravitating sys-
tem imbedded in an otherwise flat space-time. In Sect. 2, we
derive thepn approximation of the Liouville equation (pnl).
In Sect. 3 we find two integrals ofpnl that are thepn general-
izations of the energy and angular momentum integrals of the
classical Liouville’s equation. Post-Newtonian polytropes, as
simultaneous solutions ofpnl and Einstein’s equations, are dis-
cussed and calculated in Sect. 4. Sect. 5 is devoted to concluding
remarks.

The main objective of this paper, however, is to set the stage
for the second one in this series (Sobouti & Rezania 2000).
There, we study a class of non static oscillatory solutions of
pnl, which in their hydrodynamical behavior are different from
the conventionalpandgmodes of the system. They are a class of
toroidal motions driven bypn force terms and are accompanied
by oscillatory variations of certain components of the space-
time metric.

2. Liouville’s equation in post-Newtonian approximation

The one particle distribution function of a gas of collisionless
particles with identical massm, in the restricted seven dimen-
sional phase space

P (m) : gµνU
µUν = −c2 (1)

satisfiesgrl:

LUF = (Uµ ∂

∂xµ
− Γi

µνU
µUν ∂

∂U i
)F (xµ, U i) = 0, (2)

where(xµ, U i) is the set of configuration and velocity coordi-
nates inP (m),F (xµ, U i) is a distribution function,LU is Liou-
ville’s operator in the(xµ, U i)coordinates,Γi

µν are Christoffel’s
symbols, andc is the speed of light. Greek indices run from 0 to
3 and Latin indices from 1 to 3 (Ehlers 1971). The four-velocity
of the particle and its classical velocity are related as

Uµ = U0vµ; vµ = (1, vi = dxi/dt), (3)

whereU0(xµ, vi) is to be determined from Eq. (1). Inpn ap-
proximation, we need an expansion ofLU up to the order(v̄/c)4,
wherev̄ is a typical Newtonian speed. To achieve this goal we
transform(xµ, U i) to (xµ, vi). Liouville’s operator transforms
as

LU = U0vµ(
∂

∂xµ
+
∂vj

∂xµ

∂

∂vj
) − Γi

µνU
02

vµvν ∂v
j

∂U i

∂

∂vj
, (4)

where∂vj/∂xµ and∂vj/∂U i are determined from the inverse
of the transformation matrix (see appendix A). Thus,

∂vj

∂xµ
= −U0

2Q
vj ∂gαβ

∂xµ
vαvβ , (5a)

∂vj

∂U i
=

1

Q
vj(g0i + gikv

k); for i /= j,

(5b)

= − 1

Q
(U0−2

+
∑

k /=i

vk(g0k + gklv
l)); for i = j,

where

Q = U0(g00 + g0lv
l). (5c)
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Substituting Eqs. (5) in Eq. (4) gives

LUF = U0LvF = 0, (6a)

or

LvF (xµ, vi) = 0, (6b)

where

Lv = vµ(
∂

∂xµ
− U0

2Q
vj ∂gαβ

∂xµ
vαvβ ∂

∂vj
)

−Γi
µνU

0vµvν{
∑

j /=i

1

Q
vj(g0i + gikv

k)
∂

∂vj

− 1

Q
(U0−2

+
∑

k /=i

vk(g0k + gklv
l)
∂

∂vi
}, (6c)

We caution that the post-Newtonian hydrodynamics is ob-
tained from integrations of Eq. (6a) over thev-space rather
than Eq. (6b) (see appendix B). Next we expandLv up to order
(v̄/c)4. For this purpose, we need expansions of Einstein’s field
equations, the metric tensor, and the affine connections up to
various orders. Einstein’s field equation with harmonic coordi-
nate conditions,gµνΓλ

µν = 0, yields (Weinberg 1972):

∇2 2g00 = − 8πG

c4
0T 00, (7a)

∇2 4g00 =
∂2 2g00
c2 ∂t2

+ 2gij
∂2 2g00
∂xi∂xj

−
(

∂ 2g00
∂xi

) (

∂ 2g00
∂xi

)

−8πG

c4
(

2T 00 − 2 2g00
0T 00 + 2T ii

)

, (7b)

∇2 3gi0 =
16πG

c4
1T i0, (7c)

∇2 2gij = −8πG

c4
δij

0T 00. (7d)

The symbolsngµν andnTµν denote thenth order terms in̄v/c
in the metric and in the energy-momentum tensors, respectively.
Solutions of Eqs. (7) are

2g00 = −2φ/c2, (8a)
2gij = −2δijφ/c

2, (8b)
3gi0 = ξi/c

3, (8c)
4g00 = −2(φ2 + ψ)/c4, (8d)

where

φ(x, t) = −G

c2

∫

0T 00(x′, t)

|x − x
′| d3x′, (9a)

ξi(x, t) = −4G

c

∫

1T i0(x′, t)

|x − x
′| d3x′, (9b)

ψ(x, t) = −
∫

d3x′

|x − x
′|

[

1

4π

∂2φ(x′, t)

∂t2
+G 2T 00(x′, t)

+G 2T ii(x′, t)
]

, (9d)

where a bold character denotes a three-vector. These solu-
tions, Eqs. (8) and (9), satisfy the harmonic gauge conditions

in the firstpn order (Weinberg, pp. 212-220, 1972). Substitut-
ing Eqs. (8) and (9) in (6c) gives

Lv = Lcl + Lpn

=
∂

∂t
+ vi ∂

∂xi
− ∂φ

∂xi

∂

∂vi

− 1

c2
[(4φ+ v

2)
∂φ

∂xi
− ∂φ

∂xj
vivj − vi ∂φ

∂t
+
∂ψ

∂xi

+(
∂ξi
∂xj

− ∂ξj
∂xi

)vj +
∂ξi
∂t

]
∂

∂vi
(10)

whereLcl andLpn are the classical Liouville operator and its
post-Newtonian correction, respectively. Eq. (6b) for the distri-
bution functionF (xµ, vi) becomes

(Lcl + Lpn)F (t, xi, vi) = 0. (11)

The classical Liouville’s equation and its symmetries have been
studied extensively by Sobouti (1984, 1985, 1986, 1989a, b);
Sobouti & Samimi (1989); Samimi & Sobouti (1995); Sobouti
& Dehghani (1992); Dehghani & Sobouti (1993, 1995).

The three scalar and vector potentialsφ, ψ andξ can now
be given in terms of the distribution function. The energy-
momentum tensor in terms ofF (xµ, U i) is

Tµν(xλ) =

∫

UµUν

U0
F (xλ, U i)

√−gd3U, (12)

whereg = det(gµν). For various orders ofTµν one finds

0T 00(xλ) = c2
∫

F (xλ, vi)d3v, (13a)

2T 00(xλ) =

∫

(v2 + 2φ(xλ))F (xλ, vi)d3v, (13b)

2T ij(xλ) =

∫

vivjF (xλ, vi)d3v, (13c)

1T 0i(xλ) = c

∫

viF (xλ, vi)d3v. (13d)

Substituting Eqs. (13) in (9) gives

φ(x, t) = −G
∫

F (x′, t,v′)

|x − x
′| dΓ′, (14a)

ξ(x, t) = −4G

∫

v
′F (x′, t,v′)

|x − x
′| dΓ′ (14b)

ψ(x, t) =
G

4π

∫

∂2F (x′′, t,v′′)/∂t2

|x − x
′||x′ − x

′′| d
3x′dΓ′′

− 2G

∫

v
′2F (x′, t,v′)

|x − x
′| dΓ′

+ 2G2

∫

F (x′, t,v′)F (x′′, t,v′′)

|x − x
′||x′ − x

′′| dΓ′dΓ′′, (14c)

wheredΓ = d3xd3v. Eqs. (11) and (14) complete thepn order
of Liouville’s equation for self gravitating systems embedded
in a flat space-time.

3. Integrals of post-Newtonian Liouville’s equation

In a static equilibrium state,F (x,v) is time-independent.
Macroscopic velocities along with the vector potentialξ vanish.
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Eqs. (10) and (11) reduce to

(Lcl + Lpn)F (x,v)

=

[

(vi ∂

∂xi
− ∂φ

∂xi

∂

∂vi
) − 1

c2

(

∂φ

∂xi
(4φ+ v2)

− ∂φ

∂xj
vivj +

∂ψ

∂xi

)

∂

∂vi

]

F = 0, (15)

One easily verifies that the following, a generalization of the
classical energy integral, is a solution of Eq. (15)

E =
1

2
v2 + φ+ (2φ2 + ψ)/c2. (16)

Furthermore, ifφ(x)andψ(x)are spherically symmetric, which
actually is the case for an isolated nonrotating system in an
asymptotically flat space-time, the following generalization of
angular momenta are also integrals of Eq. (15)

li = εijkx
jvk exp(−φ/c2) ≈ εijkx

jvk(1 − φ/c2), (17)

whereεijk is the Levi-Cevita symbol. Static distribution func-
tions maybe constructed as functions ofE and even functions of
li. The reason for restriction to even functions ofli is to ensure
the vanishing ofξi, the condition for validity of Eq. (15).

4. Polytropes in post-Newtonian approximation

As in classical polytropes (Eddington 1916) we consider the
distribution function for a polytrope of indexn as

Fn(E) =
αn

4π
√

2
(−E)n−3/2; for E < 0,

= 0 for E > 0, (18)

whereαn is a constant. By Eqs. (13) the corresponding orders
of the energy-momentum tensor are

0T 00
n = αnβnc

2(−U)n, (19a)
2T 00

n = 2αnβnφ(−U)n + 2αnγn(−U)n+1, (19b)
2T ii

n = δij
2T ij = 2αnγn(−U)n+1, (19c)

1T 0i
n = 0, (19d)

where

βn =

∫ 1

0

(1 − ζ)n−3/2ζ1/2dζ

= Γ(3/2)Γ(n− 1/2)/Γ(n+ 1), (20)

γn =

∫ 1

0

(1 − ζ)n−3/2ζ3/2dζ

= Γ(5/2)Γ(n− 1/2)/Γ(n+ 2), (21)

andU = φ + 2φ2/c2 + ψ/c2 is the gravitational potential in
pn order. It will be chosen zero at the surface of the stellar con-
figuration. With this choice, the escape velocityve =

√
−2U

will mean escape to the boundary of the system rather than to
infinity. Einstein’s equations, Eqs. (7), (8) and (9), lead to

∇2φ =
4πG

c2
0T 00 = 4πGαnβn(−U)n, (22)

∇2ψ = 4πG(2T 00 +2 T ii) = 8πGαnβnφ(−U)n

+ 16πGαnγn(−U)n+1. (23)

Expanding(−U)n as

(−U)n = (−φ)n[1 + n(2φ+
ψ

φ
)/c2], (24)

and substituting it in Eqs. (22) and (23) gives

∇2φ = 4πGαnβn

[

(−φ)n − 2n(−φ)n+1/c2

− n(−φ)n−1ψ/c2
]

, (25)

∇2ψ = 4πGαnβn(4
γn

βn
− 2)(−φ)n+1. (26)

For further reduction we introduce the dimensionless quantities

x ≡ a ζ, (27a)

−φ(x) ≡ λθ(ζ), (27b)

−ψ(x) ≡ λ2Θ(ζ), (27c)

−ξi(x) ≡ λ3/2ηi(ζ), (27d)

where, in terms ofρc, the central density,λ = (ρc/αnβn)1/n

anda−2 = 4πGρc/λ. Eqs. (25) and (26) reduce to

∇2
ζθ + θn = qn(2θn+1 − θn−1Θ), (28a)

∇2
ζΘ + (4

γn

βn
− 2)θn+1 = 0, (28b)

where∇2
ζ = 1

ζ2

d
dζ (ζ2 d

dζ ). The dimensionlesspn expansion
parameterq emerges as

q =
4πGρca

2

c2
=
Rs

R

1

2ζ1 | θ′(ζ1) | , (29)

whereRs is the Schwarzschild radius,R = aζ1 is the radius of
system, andζ1 is the first zero ofθ(ζ), θ(ζ1) = 0. The order of
magnitude ofq varies from10−5 for white dwarfs to10−1 for
neutron stars. For future reference, let us also note that

− U = λ[θ + q(Θ − 2θ2)]. (30)

We use a forth-order Runge-Kutta method to find numerical
solutions of the two coupled nonlinear differential Eqs. (28). At
the center we adopt

θ(0) = 1; θ′(0) =
dθ

dζ

∣

∣

∣

∣

0

= 0. (31)

In Table 1, we summarize the numerical results for the New-
tonian and post-Newtonian polytropes for different polytropic
indices andq values. Thepn corrections tend to reduce the ra-
dius of the polytrope. The larger the polytropic index and/orq
the larger this reduction.

5. Concluding remarks

We have studied Liouville’s equation inpnorder and have found
two integrals of motions. They are generalizations of the clas-
sical energy and angular momentum integrals. We have con-
structed static polytropic models as simple powers of the gener-
alized energy integral. Linear deviations ofpn polytropes and
their evolution into normal modes of oscillation of the system
and of the space time metric are studied in a subsequent paper.
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Table 1. A comparison of the Newtonian and post-Newtonian poly-
tropes at certain selected radii forn=1, 2, 3, 4 and 4.5, and different
values ofq.

n Polytropic Newtonian pn polytrope,θ + q(Θ − 2θ2)

radius,ζ polytrope,θ q = 10−5 q = 10−3 q = 10−1

0.0000000 1.00000 1.00000 1.00000 1.00000
1.0000000 0.84147 0.84147 0.84156 0.85043
2.0000000 0.45465 0.45465 0.45470 0.46069

1 3.0383400 0.03393 0.03392 0.03358 0.00000
3.1403800 0.00039 0.00038 0.00000
3.1415800 0.00001 0.00000
3.1415930 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000
2.0000000 0.52984 0.52984 0.53005 0.55904
4.0000000 0.04885 0.04884 0.04858 0.02500

2 4.1451500 0.02776 0.02775 0.02746 0.00000
4.3501500 0.00035 0.00033 0.00000
4.3528000 0.00001 0.00000
4.3529000 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000
2.0000000 0.58286 0.58286 0.58315 0.61848
4.0000000 0.20929 0.20929 0.20931 0.21125
6.0000000 0.04374 0.04373 0.04338 0.01817

3 6.2838000 0.02854 0.02853 0.02816 0.00000
6.8862000 0.00044 0.00043 0.00000
6.8964000 0.00001 0.00000
6.8967000 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000
3.0000000 0.44005 0.44005 0.44022 0.46949
6.0000000 0.17838 0.17838 0.17818 0.17746
9.0000000 0.07955 0.07954 0.07919 0.06496

4 12.5013000 0.02350 0.02349 0.02304 0.00000
14.0000000 0.00802 0.00801 0.00753
14.8625000 0.00051 0.00050 0.00000
14.9705000 0.00001 0.00000
14.9713400 0.00000

0.0000000 1.00000 1.00000 1.00000 1.00000
5.0000000 0.28480 0.28480 0.28482 0.29394
10.0000000 0.11894 0.11894 0.11862 0.10940

4.5 12.2000000 0.08779 0.08779 0.08743 0.00000
15.0000000 0.06125 0.06125 0.06085
20.0000000 0.03231 0.03230 0.03185
25.0000000 0.01498 0.01492 0.01444
30.0000000 0.00334 0.00333 0.00284
31.2256000 0.00107 0.00106 0.00000
31.7847000 0.00001 0.00000
31.7878400 0.00000

Appendix A: derivation of Eqs. (5)

Consider a general coordinate transformation(X,U) =
(Xµ, U i) to (Y, V ) = (Y µ, V i). The corresponding partial
derivatives transform as
(

∂/∂X
∂/∂U

)

= M

(

∂/∂Y
∂/∂V

)

,

=

(

∂Y/∂X ∂V/∂X
∂Y/∂U ∂V/∂U

) (

∂/∂Y
∂/∂V

)

, (A.1)

whereM is the7×7 Jacobian matrix of transformation. Setting
X = Y = xµ, V = vi andU = U i for our problem, one finds

M =

(

∂xµ/∂xν ∂vi/∂xν

∂xµ/∂U j ∂vi/∂U j

)

, (A.2a)

and

M−1 =

(

∂xµ/∂xν ∂U i/∂xν

∂xµ/∂vj ∂U i/∂vj

)

. (A.2b)

One easily finds

∂xµ/∂xν = δµν ; ∂xµ/∂vj = 0, (A.3a)

∂U i/∂xν = vi∂U0/∂xν =
U03

vi

2

∂gαβ

∂xν
vαvβ , (A.3b)

∂U i/∂vj = U0δij + vi∂U0/∂vj

= U0δij − U03
vigjβv

β . (A.3c)

Inserting the latter inM−1 and inverting the result one arrives
atM from which Eqs. (5) can be read out.

Appendix B: post-Newtonian hydrodynamics

Mathematical manipulations in composing this work have been
difficult. To ensure that no error has crept in during the course of
the calculations we try to derive the post-Newtonian hydrody-
namical equations from the post-Newtonian Liouville equation
derived earlier. From Eq. (6a) one has

Lpn
U F = U0(Lcl + Lpn)F

= [(c2 + φ+
1

2
v

2)Lcl + Lpn]F, (B.1)

whereLcl andLpn are given by Eq. (10). We integrateLpn
U F

over thev-space:
∫

Lpn
U Fd3v =

∫

[(c2 + φ+
1

2
v

2)Lcl + Lpn]Fd3v. (B.2)

Using Eqs. (12) and (13), one finds the continuity equation

∂

c∂t
( 0T 00 + 2T 00)

+
∂

∂xj
( 1T 0j + 3T 0j)

− 0T 00 ∂φ

c3∂t
= 0, (B.3)

which is thepn expansion of the continuity equation

T 0ν
;ν = 0, (B.4)

Next, we multiplyLpn
U F by vi and integrate over thev-space:

∫

viLpn
U Fd3v

=

∫

vi[(c2 + φ+
1

2
v

2)Lcl + Lpn]Fd3v. (B.5)
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After some calculations one finds

∂

c∂t

(

1T 0i + 3T 0i
)

+
∂

∂xj

(

2T ij + 4T ij
)

+ 0T 00

(

∂

∂xi
(φ+ 2φ2/c2 + ψ/c2) +

∂ξi
c∂t

)

/c2

+ 2T 00 ∂φ

c2∂xi
+1 T 0j

(

∂ξi
∂xj

− ∂ξj
∂xi

− 4δij
∂φ

c∂t

)

/c3

+ 2T jk

(

δjk
∂φ

∂xi
− 4δik

∂φ

∂xj

)

/c2 = 0. (B.6)

The latter, thepn expansion of

T iν
;ν = 0; i = 1, 2, 3, (B.7)

is the same as that of Weinberg (1972), QED.
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