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Abstract. We use the post-Newtoniap() order of Liouville’s cally the oscillation frequencies of the= m f-modes of rapidly
equation to study the normal modes of oscillation of a spherétating polytropic neutron stars.
cally symmetric relativistic system. Perturbations that are neu- In this paper we study normal modes of a non-rotating rel-
tral in Newtonian approximation develop into a new sequenadvistic stars inpn approximation through the relativistic Li-
of normal modes. In the firgin order; a) their frequency is ouville’s equation rather than the relativistic hydrodynamics.
an orderg smaller than the classical frequencies, wheig a The reason for doing so is to avoid thermodynamic concepts
pn expansion parameter; b) they are not damped, for there ish@ng incorporated into hydrodynamics. Liouville’s equation is
gravitational wave radiation in this order; c) they are not coupledpurely dynamical theory and free from such complexities.
with the classical modes ifq order; d) because of the spheri-One, of course, pays the price by having to dwell in the six di-
cal symmetry of the underlying equilibrium configuration, theynensional phase space, an elaborate mathematical task, but not
are designated by a pair of angular momentum eigennumbetstrusive. In compiling this work we have relied heavily on the
(4, m), of a pair of phase space angular momentum operatéoowing studies dealing with various aspects of Liouville’s,
(J2,J.). The eigenfrequencies are, howeverindependent. Liouville-Poisson’s and Antonov’s equations.
Hydrodynamics of these modes is also investigated; a) they gen-O(3) symmetry and mode classification of classical Liou-
erate oscillating macroscopic toroidal motions that are neutkdle’s equation for spherically symmetric potentials was stud-
in the classical case; and b) they give rise to an oscillaggry ied by Sobouti (1989a,b). GL(3, c) symmetry, its subgroups, and
component of the metric tensor that otherwise is zero in the lesigenmodes of? potential and O(4) symmetry of ! poten-
perturbed system. The conventional classical modes, whichiad were obtained by Sobouti (1989a,b), Sobouti & Dehghani
their hydrodynamic behaviour emergegeandg modes are, of (1992) and Dehghni & Sobouti (1993). Dynamical symmetry
course, perturbed to order These, however, have not been off Liouville's equation forr? potential was worked out by De-
concern in this paper. hghani & Sobouti (1995). Dynamical symmetry group of gen-
eral relativistic Liouville’s equation was discussed by Dehghani
Key words: methods: numerical — stars: general — stars: oscii-Rezania (1996). In particular they found that in de Sitter's
lations space-time the group is SO(4® SO(4,1).

In applications to self-gravitating systems the pioneering
work was done by Antonov (1962). He reduced the linearized
Liouville-Poisson equations to a self adjoint operation in phase
1. Introduction space. Further elaborations on Antonov’s equation were made
by Lynden-Bell (1966), Milder (1967), Lynden-Bell & Sanitt
o . ; ) 969), Ipser & Thorne (1968). Attempts to solve the lin-
drodynamics is among the pioneering ones. He generalized gl o | jouville-Poisson equation for eigenfrequencies and
lerian equations of Newtonian hydrodynamicgtoorder con-  gjgenmodes of oscillations were made by Sobouti (1984, 1985,

sistent with Einstein’s field equations, and applied them to ,09986). Further and more transparent exposition of mode classi-

tain thepn corrections to the equilibrium and stability of uni+caion and mode calculations were given by Sobouti & Samimi
formly rotating homogeneous masses. Blanchet, Damour %89) and Samimi & Sobouti (1995).

Schafer (1990) studied the gravitational wave generation of a In Sect. 2 we give then order of the linearized Liouville

self gravitating fluid by adding an appropriate termptoequa- o ation that governs the evolution of small perturbations from
tion of hydrodynamics. Cutler (1991) employed ghehydro- an equilibrium state. In Sects. 3 and 4 we extract the equation

dynamics and a perturbation technique to derive an expressign, sequence of new modes that are generated solepy, by

for thepn correction to Newtonian eigenfrequencies. Cutler &, .o ¢ are absent in a classical regime. In Sect. 5 we explore
Lindblom (1992) adopted Cutler's method to calculate numeri-

Chandrasekhar’s (1965a, b) formulation of post-Newtonian
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the O(3) symmetry of the modes and classify them on the baBiguilibrium distribution functions imn approximation can be

of this symmetry. In Sect. 6 we study hydrodynamics of thesenstructed as appropriate functions of these integrals. In paper
modes. In Sect. 7 we seek a variational approach to the caltthe pn models of polytrope were studied in this spirit.

lation of pn modes and give numerical values for polytropes. Here we are interested in the time evolution of small devi-
Sect. 8 is devoted to concluding remarks. ations from a static solution. Let — F(e) + dF(x,u,t),

| 6F | F, ¥V x,u,t. Accordingly, the potentials split into
large and small component&y) + 60(x,t), O(r)+IO(x,1)
andén(x,t) wherer = |x|. Both the large and small compo-
Liouville’s equation in the post-Newtonian approximatipn{) nents, can be read out from Egs. (3). Substituting this splitting
for the one particle distribution of a gas of collisionless particlés Eq. (1) and keeping terms linear di” gives

maybe written as

2. Formulation of the problem

9 i%dF = LOF + 0LF(e), (5)
(—ia + E) F(x,u,t)
t where/ is now calculated from Eqgs. (2) with(r), ©(r) and
= <—¢§t + L+ qc"") F(x,u,t) =0, @ m=0-Thus
L = £+ qLcrm, (6a)
where (x,u) are phase space coordinatgds a small post- 9 o 9
Newtonian expansion parameter, the ratio of Schwarzschild r. == (ul oz + ?x’ 8ui> 0" = do/dr, (6b)
dius to a typical spatial dimension of the system, for example. ) P
The classical and post-Newtonian operatat$,and £P", re- ppn — _t {[(u2 —46)0' + 0')2" — 0/ (x - u)ui} _. (6¢)
spectively, are r out
. D 90 Fordo L Egs. (2), similarly, give
LY = —i(u'— + ——=), (2a) .
Ozt ' Ozt Qut 5L = 6L+ qoLP", (7a)
00 . .00 .00 00
prno . 2 P A At c ) 2860
= | g T e T T OLUF(e) = —iFu'5 = Fo=dF/de, (7b)
O On; oni| 0 . , ; 0
g2 J . 2 pn - _ i _
+u (ij &ri) + R (2b) 6LP"F(e) iF, |u 5 (0© — 4000)
The imaginary factoi is included for later convenience. The _ 1}@ 4l 9om; (7¢)

potentialsf(x, t), O(x, ) andn(x, t), solutions of Einstein’s ot ot |

equations irpn approximation, are Egs. (5)-(7) are the generalizations of the linearized classical

Fx,tu) Liouville-Poisson equations . order. The classical case was
0(x,t) = / drv, (32) studied briefly by Antonov (1962). He separatdd into even

!/
| and odd components imand extracted an eigenvalue equation

|x — x

/ !/ !/
n(x,t) = 4 / Mdf’, (3b) for 6F,q,. Sobouti (1984, 1985, 1986, 1989a,b) elaborated on
[x — x| this eigenvalue problem, studied some of its symmetries and ap-
O(x,1) = 1 / PFE(x",t,u")/ot? B dl" proaches to its solution. Sobouti & Samimi (1989), and Samimi
’ 4m |x — x'||x" — x"| & Sobouti (1995) showed that Antonov’s equation has an O(3)
U/QF(XI, tu) symmetry and its oscillation modes can be classified by a pair of
+ 2/ I — x| dr eigennumberg;j, m) of a pair phase space angular momentum

operators(.J2, J,). In analysing Egs. (5)-(7) we have heavily
_ 2/ F(x/’t’u/)F(XH’t’“N>d1~/dp"7 (3c) relied on these studies.

|X _ X/||X/ _ X/l|

wheredl’ = d3zd*u. See Rezania & Sobouti (2000, hereafte3. The Hilbert space
paper |) for details. In an equilibrium stat(x, u) is time-
independent. If, further, it is isotropic im, macroscopic veloci- i
ties along with the vector potentiglvanish. It is also shown in Phase coordinatés;, u)
paper | that the following generalizations of the classical energf/the system:

and classical angular momentum are integralgsraf
H: f(x,u);/f*f\/fng = finite, f(boundary) =0, (8)

Let # be the space of complex square integrable functions of
that vanish at the phase space boundary

e =el4ge = 1u2 —0+q(26° — 9), (4a)
- 2 z where/—g = 14-2¢6 in pn order. Integrations ifi{ are over the

li = eijrpa’u”exp(qd) =~ 177 (1 + qf), volume of the phase space available to the system. In particular
for spherically symmetrié(r) andO(r). (4b) the boundedness of the system sets the upper limitaifthe



Y. Sobouti & V. Rezania: Liouville’s equation in post Newtonian approximation. Il 1117

escape velocity/20, where= (x) is the gravitational potential G+ (x,u) = +G4 (x, +u). (10b)
athg:OL:th(ﬁ \_/ 2£9£le) :ﬁgn of Eqs. (6) is Hermitian irf Considering the fact that bothandd £ are odd inu, Eq. (10a)
e 1 gs- ' splits accordingly:
/ g"(Lf) (14 2¢0)dl LG_ + qwF.u?0 = wG., (11a)
4 0
— /(Eg)*f (1+2q9)df, g,f GH (9) £G+ — ZFEU %[69+q((5®—4969)}
— qwFu'on; = wG_, (11b)

The proof is a matter of substitution of Egs. (6) in (9), carrying

out some integrations by parts over thandu coordinates and where

letting the integrated parts vanish on the phase space boundary. Gy (x', )
The termd L is not, in general, Hermitian. Nonetheless, ondd =

may proceed as Antonov did with the classical case and obtain a WG (x, )

second order differential operator (almost squarg éfoL)in 5 = 4 / ————=dI", (12b)

some subspace &f. We are, however, pursuing a much simpler [x —x'|

problem here in whichi L term vanishes identically leaving

. . > wz G (X// u//)
Eq. (5) as an eigenvalue problem governed with the Hermmgy{X’ t) = — +\X, B dr”
operator( alone. dr | |x —x'||x" — x"|
uGL ()
4. The post-Newtonian modes of oscillations * 2/ |x — x| dr (12b)

G (x',u)F(e")+ F(e) G4 (x",u")

x =[x =]

The effect ofpn corrections on the classical solutions of Eq. (5) _ o /
can be analyzed by the usual perturbation techniques. Whatever

the procedure, the first order corrections on the known moc@geraﬂng on Eg.(11a) b and substituting for’G,. from

will be small and will not change their nature. We will not purgq. (11b) gives a second order differential equationdar;
sue such issues here. The main interest of this paper is to study

anew class of solutions of Eq. (5) that originate solely fromthe2_ = ,2G_ + ineuii [60 + q(6© — 4060)]
pn terms and have no precedence in classical theories. It is not o Ot )
difficult to anticipate the existence of such modes. Perturbations + quFeu'omn; — qulFeL(u00). (13a)

on an equilibrium state, that are functions of c!assical integf?\}}\% now seek a solution of Eg.(13a) in the form of clas-
(_energy and angular mome_ntum,say)do n_otdlsturb the gqung%m energy and angular momentum integrals, (x, u) —=

rium qf the system at classical level. That is they do n(_)t mdugjei(ecz’ 1)), In the next section, after we discuss the O(3) of
restoring forces in the system. They, however, do so ithe gq (13a), we show that such solutions can be chosen from
regime, and make the system oscillate aboutptheequilib- 5mong the eigenfunctions of a pair of phase space angular mo-

rium state. Such perturbations may be considered as a clasg,ghium operators,J€, J,). We also show that for such solu-
infinitely degenerate zero frequency modes of the classical sy§qs 59 andse vanish identically reducing Eq. (13a) to
tem. Thepn forces unfold this degeneracy and turn them into a

sequence of non zero frequency modes distinct and uncoupled?— = w* (G- + qFeu’én;) . (13b)

from the other classical modes. We have termed themnas Multiplying Eq. (13b) byG* , integrating over the phase space

moders1. . i is the foll volume of the system, and considering the facts that £ +
A hydrodynamic interpretation gfn modes is the follow- ¢LP" is Hermitian andZe/G_ (¢!, 15!) = 0, gives

ing. In spherically symmetric fluids, toroidal motions are neu-

tral. Sliding one spherical shell of fluid over the other is no/(ﬁG,)*ﬁG,(l + 2¢6)dl
opposed by a restoring force. The forces or for that matter a

small magnetic field or a slow rotation (mainly through Coriolis
forces) gives rigidity to the system. The fluid resists against such
displacements and a sequence of well defined toroidal modes
of oscillation develop. See Sobouti (1980), Hasan & SoboutF « [/ GZG_(1+2¢0)dl’
(1987), Nasiri & Sobouti (1989), and Nasiri (1992) for exam-

ar'dr”,

¢ [ (LP"G_)*LP"G (1 + 2¢6)dT

ples and typical calculations in the case weak magnetic fields +q / G* Fou'dn;(1 + 2q9>dr:| . (14a)
and slow rotations.

In the Fourier time transform of Eq. (5), Eq. (14a) shows that is of the same order of smallness@as
LOF + 6LF(e) = woF, (10a) Thus, eliminating the terms of ordet, w?q and higher reduces

Eg.(14a) to
we splitd F' into even and odd terms . Thus,

n * n UJ2 *
dF(x,u) = G_(x,u) + G4 (x,u), /(LP G_)*LPG_dl' = qﬁ/G_G_dF. (14b)
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Eq. (14b) provides a variational expression égrand will be At this stage let us note an important property of Liouville’s
used as such to calculate the allowabfe The frequencies, equation. If a paifw, §F) is an eigensolution of Liouville’s

w, are real meaning that the corresponding deviations framquation(—w, d F*) is another eigensolution. This can be ver-
the equilibrium state are stable oscillation modes. Furthermoifeed by taking the complex conjugate of Eq. (10a). These so-
these perturbations will be different from the conventional clak#tions, being complex quantities, cannot serve as physically
sical modes, for they are excited py terms in the equations meaningful distribution functions. Their real orimaginary parts,

of motion that are absent at classical level. however, can. With no loss of generality we will adopt the real
part. Thus,
5. O(3) symmetry of £ = £ + qLP™ Re 6Fjpn(x, u,t)
For spherically symmetric potentiaé(r) and©(r), both£¢  _ f(e)Re Ay, coswt + z’g/;p"(f(e)Re Ajm)sinwt. (20)
w :

and£P" depend on the angle betweemandu and their magni-

tudes. Simultaneous rotations of thendwu coordinates about ~ The eigenmodes of Eq.(10a) are-independent. Bym-
the same axis by the same angle leaves these operators fipiependence we mean a) the eigenvalue® not depend on
invariant. The generator of such simultaneous infinitesimal rer and are2; + 1 fold degenerate, and b) the expansion co-

tations on the function spaGé is efficients, ¢,,, of Eq.(12) do not depend om. Proof: From
9 9 the Appendix, Eq.(A. 4)J+ = J, £ iJ, are ladder opera-
Ji = Jf = —igijk (zfaxk + ujauk) , (15) tors forAj,,. Operating onf;,, of Eq. (18) by.J,. will give the

modef; »+1 without changing the expansion coefficients. Sec-
which has the angular momentum algebra ondly, substituting/. f;,, = \/(j Fm)(jE£m+1)fjmerin

. Eg. (14a) instead of;,,,, and noting thaf;,,,’'s can be normal-
Ji, ;] = igiinJp. 16) . J . J
[is Ji] = tijndi (16) ized for allm’s, w? will remain unchanged.

Commutation ofJ; with £ was first established by Sobouti
(1989a,b). Here we confine the discussion to the Symme”yé?nydrodynamicsof pn modes

LP". Straightforward calculations reveal that
on Inthis section we calculate the density fluctuations, macroscopic
[£P", Ji} = 0. @) velocities, and the perturbations in the space-time metric gen-

Thus, itis possible to choose the eigensolutichspf Eq. (14b) erated by an mode.
simultaneously with those of? and J,. The eigensolutions  ltwas pointed out earlier that fgran odd integerf;m (x, u)
of the latter pair of operators are worked out in the Appendi®f Ed. (18) is odd whileC?" f;,, is even in bothx andu. The
They are of the fornf (e, I') A ;,.,; j, m integers, wherg is an macro_scopic \{elocities are obtained by multiplying Eq. (20) by
arbitrary function of the classical integrals akg,, is acomplex u and integrating over the u-space. Only the odd component of
polynomial of ordej of the components of the classical angulatjm contributes to this bulk motion,
momentum/¢.. The z andu parity of A;,, is that of j. See
Appendix for proofs this statement. pv = /f(e)Re Ajmud®u coswt. (21)

We are now in a position to point out an interesting feature of
the eigenmodes. Both? and £2 in Eq. (13b) and the integrals!n Appendix, Egs. (A. 11), we show that is a toroidal spher-
in Eq. (14b) are real. Thug;_ can be chosen real or purelyical harmonic vector field. In spherical polar coordinates it has
imaginary. By Eq. (11a), the@',. will be purely imaginary or the following form

real. That is, an eigensolutioit' = G_ + G belonging to a 4 1 9

nonzeraw is a complex function of phase coordinates in which(vr, vy, vy) = 17 G(ves) <0, Re Wa—ij(ﬁ, ©),
both thexz andw parities of the real and imaginary parts are SV o

opposite to each other. This feature is shared by the classical Re OV jm ©) 90)> coswt, (22a)
modes of the classical Liouville’s and Antonov's equation. a0 ’

In Sect. 7 we will take a variational approach to solutiongnere
of Eq. (14b). As variational trial functions we will consider the

Ves

following G(ves) = (e)u! T3 du, (22b)
G- = fjm = f(e)Re Ay, ’
N andv., = /20 is the escape velocity from the potentit).
= Z ¢n(—€)"JReAjm, j = odd, ¢, = consts. (18) The macroscopic density, generated by the even component of
n=j+1 Eq (20)1 iS

Combining this W@th its corresponding even counterpart frorg})(X’ t) = 4 /cpn(f(e)Re Ajm)dPusinwt
Eq. (10a) we obtain w

2=——x- /f(e)Re Ajmudiu sinwt = 0. (23)

q n —iw
(SF‘an(X7 u,t) = (1 + ;ﬁp )fjme t. (19) wr
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The second integral is obtained by an integration by parts. TheVariational solutions of pn modes

vanishing of it comes about because of the fact that the radigl . . . .
vectorx is orthogonal to the toroidal vectps. One also notescwe substitute the trial function of Eq. (18) in Eq. (14b) and turn

thatV - (pv) = 0. It can further be verified that, the continuityIt into a matrix equation. Thus

equation is satisfied at both classical amdevel.

To complete the reduction of Egs. (13) we should also sh

thatéf andd© vanish. The former is zero becauge= 0. For
the latter, from Eg. (3c) and Eq. (20) f6F', one has

f 66(7{,) 3 .0
4m
. 2/ p(r')op(x") + dp(x")p(r") B d3x"

x =[x =]

3./
+2/ |d$//u’25F(x/,u’)d3u’ =0.
X —x

00 =

[x — x|

(24)

The vanishing of the first two terms is obvious. The third ter
vanishes because the integral owéhas the same form as in
dp except for the additional scalar factaf’. Like dp it can be

2
Siwe = %CTSO,

(27)
whereC' = [¢,] is the column matrix of the variational co-

efficients of Eq. (18), and the elements.®fand W matrices
are

Spy = /(—e)p+q|Re Ay, (28a)
W,y = /(Lp"(—e)pRe Ajm)* (L™ (—€)7Re A;p)dT. (28b)

Minimizing w? with respect to variations af gives the follow-

'mg matrix equation

2

w
reduced to the inner product of the radial vect@nd a toroidal we = qﬁSC' (29)
vector. QED. . , - .
The toroidal motion described here slides one spherical sh jpenws are the roots of the characteristic equation
of the fluid over the other without perturbing the density, the w?
Newtonian gravitational field and, therefore, the hydrostatHfV - QTS | =0. (30)

equilibrium of the classical fluid. In doing so, it does not af- )
fect and is not affected by the conventional classical modestél”_€achw, Eq.(29) can then be solved for the eigenvector

the fluid at this firspn order.

Nonetheless, then modes are associated with space ti

C. This completes the Rayleigh-Ritz variational formalism of

meplving Eq. (14a). In what follows we present some numerical

perturbations. From Eq. (8c) of paper | and Eq. (3b) of this pap&R/Ues for polytropes.

goi component of the metric tensor is

pvi(x) 4 7.1. pn Modes of polytropes belonging to (5, m) = (1, m)
goi =1; =4 —d (25) )
x — x| We analyse the case = 0, only. From them-independence
In spherical polar coordinates, one obtains of eigenmodes (see theorem of Sect. 5) the eigenvalue and the
—0 (26a) expansion coefficients,,, form = 41 will be the same. From
=5 5 Egs. (A.9)A1 o =1, = rusindsin asin(8— ), where ¢, )
ny = —ajRe —— ——Y;m (¥, ) coswt, (26b) and @, 3) are the polar angles of, of u, respectively. Substi-
sind O tuting this in Egs. (28) and integrating over directionscagnd
n, = ajRe 81‘}”1 (9, ) cos wt, (26c) U vectors and oveb < u < v/26 gives
1
where _ Spy = / gra+2.5,4 4, (31a)
(r/R)y,(R) forr < R 0 )
. i (R _—j5— / /
0 = 21'T1 +H(2f+ )7 [T Ty () dr W,y = 7Gp. {(mam —byg) [ 07%Pra3SAgy
J ) 0
(R/r)7 1y, (R) forr > R, 1
(26d) + (1 - 8apq) . @/9/9p+q+2'5$4d$
ro 1
yi(r) = 77971 / PG dr (26e) + apg / 9’29”‘1“‘%%} 7 (31b)
O 0
e - pq(p+q+2.5)
G(r)) = 73q Upg = ;
0 = [ e SRR CEE)
3/241 (5 n+j/2+2 4p+q¢)?+9(p+q)—13
_ 2G4 2)I‘.(n +1)0(r) 260 be = (P+a)*+9p+aq g =23 (310
T(n+j/2+3) (p+q-1)(p+q+3.5)

where R is the radius of the system adin) is the gamma Polytropic potentialg and© were obtained from integrations
function. The remaining components of the metric tensor remaifiLane Emden equation and Egs. (28) of paper I, respectively.

unperturbed.

Eventually, the matrix elements of Egs. (31), the characteristic
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Table 1. pn modes of polytrope n=2, belonging t¢, m) = (1, 0). Eigenvalues are in unitsGp.q>, c,.’s are the linear variational parameters

of Eq. (18). A numben x 10%? is written asz -+ b. To appraise the accuracy of the computations two sets of data with six and seven variational
parameters are given. The first three eigenvalues are reliable up to three figures. Characteristically, the accuracy deteriorates as one goes to
higher order modes.

w? .1825+01  .4973+01  .6448+01  .1216+02  .3425+02  .1686+03

c1 .3113+02  -.8912+02  .1663+03  .1344+03  .7545+01 -.1399+04
c2 .3908+02  .1045+04 -.3234+04 -.9746+03 -.2392+04  .8484+04
c3  -.1420+03 -.6649+04  .1801+05  .4514+04  .7952+04 -.9647+04
c4 .5803+03  .1804+05 -.4351+05 -.7014+04 -.2607+03 -.2251+05
cs  -.9110+03 -.2210+05 .4724+05  .8324+03 -.1811+05 .5188+05
Co 5252403  .1020+05 -.1874+05  .2882+04  .1317+05 -.2717+05

w?  .1823+01  .4865+01  .5895+01 .9113+01  .1465+02  .4228+02 .3226+03

c1 .3028+02 -.7086+02  .1529+03 -.3129+02  .1561+03 -.4624+02 .2042+04
c2 4812+02  .6908+03 -.2810+04  .1313+04 -.1513+04 -.2762+04 -.1461+05
c3 -.1305+03 -.3993+04 .1702+05 -.5686+04  .6685+04 .1077+05  .2271+05
c4 .2576+03  .8181+04 -.4788+05  .3425+04 -.3673+04  .1875+04  .4154+05
cs .1303+03 -.3086+04  .6823+05 .2433+05 -.2910+05 -.4718+05 -.1496+06
cg  -.1534+03 -7924+04 -4771+05 -.4855+05 .5132+05 .5873+05 .1425+06
cr 5475+03  .6707+04  .1302+05  .2568+05 -.2386+05 -.2120+05 -.4423+05

pni pn2 pns png pns pne pny

Eg. (30) and the eigenvalue Eq. (29) were numerically solvéghpendix A: eigensolutionsof JZ and J.,
in succession. Tables 1-4 show some sample calculations for . .
polytropes 2, 3, 4, and 4.9. Eigenvalues are displayed in Iir{‘e%npg:ngesr;m earliet/;’s of Eq. (15) have the angular momen-
marked by an asterisks. The column following an eigenvalue N a9 '

the corresponding eigenvector, i.e. the values,ofcy, ---, of [J;, J;] = ig;juJk. (A.1)
Eq. (18). To demonstrate the accuracy of the procedure, Calgygrefore, the simultaneous eigensolutions JBf and J,,
lations yv|th SiX an.d seven vgrlatlonal parameter are given fgrm(x7 u), obey the following

comparison. The first three eigenvalues can be trusted up to two o .

to four figures. Convergence improves as the polytropic indek, Ajm = J(J + D Ajm,  j=0,1,---, (A-2)
i.e. the central condensation, increases. Eigenvalues are in uglziﬁjm —mAjm,  —j<m<j. (A.3)

of 1Gp.q* and increase as the mode order increases. .
The ladder operatorsiy = J, +iJ,, raise and lower then

8. Concluding remarks values:

Linear perturbations of phase space distribution functions havs m = VUFm)GEm+ DA, (A-4)

been studied. Their evolution in both classical andrder takes In particular

place through an eigenvalue equation. The eigensolutions OfyleAj,ij —0. (A.d4a)
latter are the normal modes of oscillation of the system. If the . ) )
underlying potentials are spherically symmetric, the evolutiof'® €ffect of/; on classical energy integral,= u*/2 — 6(r),
equation is O(3) symmetric. The modes can be characterize the classical angular momentum integtak= ;5 ;ur,
a pair of angular momentum eigennumbégsin). The eigen- 2r€ as follows

valuesw; are, however(2; + 1) fold degenerate. Jie = Jil* = Jif(e,1*) =0, (A.5a)
Perturbations that are functions of classical energy and clas;  _ icijnln- (A.5b)

sical angular momentum are neutral in classical approximation,’

but not inpn order. Neutral, here, means to belong to zero fréheorem 1.

quency modes. The weak forces generate a sequence of lov . =1 = (})j(lm +il,). (A.6)
frequency modes from such perturbations. In their hydrody—J - Y

namic behavior, they constitute a sequence of low frequerfésoof:

toroidal modes. There is an oscillatogy; component of the T = jlfl(Jyli) _ ijlfk,

metric tensor associated with these modes. From a conceptual §

point of view, they are similar to toroidal modes of slowly rotat- by (A.5b), ) ) (A-7a)
ing fluids generated by Coriolis forces or to the standing AlfveR’ . = (J-Jy + J2 + ) = j(j + DI,

waves of a weakly magnetized fluids. by (A.4a) and (A.7a), (A.7b)

JW = (JyJ_+ I =T =G+ 1D, (A.7c)
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Table2. Same as Table k. = 3 and(j,m) = (1, 0).

w? .1534+01  .4836+01  .9473+01  .1938+02  .4083+02 .1128+03

c1 9752+02 -.6975+02  .2464+03 -.2246+03 -.9102+03 .3169+04

c2 .3284+02 -.8725+03 -.1121+04 -.2590+04 .1713+05 -.2631+05

c3  .2096+03  .3859+04  .5501+04  .1444+05 -.1023+06  .6390+05

cs -5354+03 -5728+04 -.1216+05 -.9903+04  .2599+06 -.3406+05

cs .3941+03  .2528+04  .5215+04 -.2221+05 -.2933+06 -.4814+05

ce  .1803+01  .1125+04  .3307+04  .2153+05 .1208+06  .4268+05

w?  .1533+01  .4688+01 .7993+01  .9068+01 .1124+02 .1909+02  .1093+03

c1 .9318+02  -.1440+03 -.1202+03 -.1069+04 -5706+03 -.5482+02 .3703+04

cz  .1121+03  .6997+03  .5482+04  .1856+05 .7685+04 -5626+04 -.3381+05

c3 -.2118+03 -.4506+04 -.2955+05 -.1063+06 -.4112+05 .3078+05 .1007+06

c4 .2709+03  .9777+04  .5298+05  .2726+06  .7791+05 -.4371+05 -.1109+06

cs .1206+03 -.9309+03 -.6283+04 -.3375+06 -.1278+05 -.7049+03 .1239+05

cg -.7005+03 -.1574+05 -.7154+05 .1894+06 -.9027+05 .3228+05  .4581+05

cr .5309+03  .1200+05 .5087+05 -.3511+05 .5945+05 -.1218+05 -.1722+05
pni pn2 pns PNy pns pne pnr

Table3. Same as Table . = 4 and(j,m) = (1, 0).

w?  .7569+00  .2822+01 .5661+01  .8814+01 .1519+02  .6952+02

c1 .6291+03 -.1067+04 .2143+04  -.1949+04 -.6870+04 .1400+05

c2 -9217+02  .1770+04 -1693+05 .1131+05 .8373+05 -.2337+06

c3 4162+03  .2808+04  .5682+05 -.3654+04 -.3195+06  .1293+07

cs4 -.3883+04  .5860+04 -.1184+06 -.2807+05 .4791+06 -.3112+07

cs .6427+04 -2303+05 .1257+06 -.4668+04 -.2545+06  .3371+07

c¢ -.3089+04  .1612+05 -.4514+05 .3416+05 .1251+05 -.1344+07

w?  .7569+00  .2813+01 .5021+01 .8747+01  .1272+02  .3322+02  .7683+02

c1 .5590+03 -.8716+03  .2653+03 -.2421+04 .1881+04 .1412+05 .3376+05

cz  .1189+04 -2018+04  .1406+05 .1926+05 -.7436+04 -.2356+06 -.5191+06

c3 -.6377+04  .2349+05 -.1057+06 -.4732+05 -5363+05 .1298+07 .2528+07

c4 .9376+04 -.3509+05 .2059+06 .6165+05 .2228+06 -.3112+07 -.4750+07

cs  .5449+03 -.4645+04 -.2977+05 -.4272+05 -7106+05 .3356+07 .2298+07

ce -.1192+05  .4364+05 -.2533+06 -.3854+05 -.4046+06 -.1333+07 .2455+07

cr .7228+04  -.2275+05  .1775+06  .5845+05 .3227+06 -.1382+03 -.2085+07
pni pn2 pns pny pns pne pny

Table4. Same as Table = 4.9 and(j, m) = (1,0).

w? 4481400 .1827+01  .4078+01  .6515+01 .1170+02  .1391+03

¢ -.2888+02  .1663+03 -.2794+03 .1593+03  .1405+03 .1081+05

c2  -.2440+03 -7593+04  .2050+05 -.2099+05 .2665+05 -.2129+06

c3 4933+05 -.2772+04 -.1400+06  .1883+06 -.3467+06  .1344+07

cs -1722+06  .1443+06  .2902+06 -.5138+06  .1372+07 -.3583+07

cs 2124406  -.2675+06 -.2194+06  .4871+06 -.2092+07  .4207+07

cs -.8916+05  .1394+06  .5712+05 -.1179+06  .1073+07 -.1790+07

w?  4380+00 .1805+01  .4006+01  .6190+01  .7980+01  .1439+02  .8964+02

¢ -1701+02  .1379+03 -.3341+03 .3427+03 -.3020+03 .7695+03 .8642+04

ca  -.6649+03 -.6322+04  .2326+05 -.3097+05 .2196+05 -.1111+05 -.1534+06

c3 5135+05 -.1143+05 -.1601+06 .2940+06 -.2552+06  .1349+06  .8174+06

cs -1667+06  .1599+06  .3264+06 -.9227+06 .1022+07 -.9712+06 -.1565+07

cs .1694+06 -.2551+06 -.1784+06  .1132+07 -.1574+07 .3018+07 .4968+06

ce -1770+05 .8656+05 -.9582+05 -.4879+06  .7432+06 -.3959+07  .1421+07

cr  -.3646+05  .3341+05 .9586+05 .2938+05 .8318+05 .1819+07 -.1047+07
pni pn2 pn3 pny pns pne pny
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QED. Combining Egs. (A. 6), (A. 4) and (A. 5) one obtains Again direct integrations gives

Njm = af(e, 1) T = bf(e,12)J7 ™1, (A8) VIm—l — [_vim =y,

seoyIm
where f (e, [?) is an arbitrary function of its arguments, amd if V7™ =0, (A-12)

andb are normalization constants. Examples: Aside from gy mt — _ 1 ﬁyj m—1(9, ),
arbitrary factor of classical constants of motion, one has sind Oy
; 1 9
: Jm __
it Vv “imd g Y; m (9, ), (A.12b)
Ao = 12, (A.99) o 3
Jgm—L __
A = L, (A9b) Ve = 7gYim-100,9),
1 )
Apo = 2,0 —12= 5(315 —1?), (A.9c) if VIm= 8819 5 m (9, 9). (A.12c)
A2 +1 = lilm (A.9d) QED.
AQ 49 = lzi (AQE)

Theorem 2: The vector fieldV/™ = [ A;,,udQ is a toroidal References

vector field belonging to the spherical harmonic numbgrsid,  Antonov V.A., 1962, Vestnik Leningrad gos. Univ. 19, 69
where integration is over the directionswf Blanchet L., Damour T., Séifer G., 1990, MNRAS 242, 289

Preliminaries; Let (9,¢) and ¢, 3) denote the polar anglesChandrasekhar C., 1965a, ApJ 142, 1488
of x, of u, respectively, andy be the angle betweenx(u). Chandrasekhar C., 1965b, ApJ 142, 1513
Also choose magnitudes of andu to be unity, for only in- Cutler €., 1991, ApJ 374, 248

tegrations over the direction angles are of concern. One @%‘;Lgﬂl I&ngblgrzzlgr’“lag\?z’l'ggé 3'32’6\63385 379

cosy = cost cosa + sind sina cos(ip = ) Dehghani M.H., Sobouti Y., 1993, A&A 275, 91
(A.10a) Dehghani M.H., Sobouti Y., 1995, A&A 299, 293

Uy = COS7Y, 3
Hasan S.S., Sobouti Y., 1987, MNRAS 228, 427

uy = —sind cosar + cos? sina cos(p — ),  (A.10D) |pser J.R., Thorne K.S., 1968, ApJ 154, 251
u, = —sino sin(p — 3), (A.10c) Lynden-Bell D 1966, In: Ehlers J. (ed.) Relativity and Astrophysics.
I, = i(sind cosa e — cos® sina elﬂ). (A.10d) 2. Galactic Structure. Am. Math. Soc.

Lynden-Bell D., Sanitt N., 1969, MNRAS 143, 167

Milder M., 1967, Thesis, Harvard University

Nasiri S., 1992, A&A 261, 615

Nasiri S., Sobouti Y., 1989, A&A 217, 127

Rezania V., Sobouti Y., 2000, A&A, in press, (paper I)
- . Samimi J., Sobouti Y., 1995, A&A 297, 707

Vi = / VupdQ=0, dQ=sinadadB, (Alla) gopoutiy. 1980, AGA 89, 314

Sobouti Y., 1984, A&A 140, 821

Proof: By induction, we show that &7 is a toroidal field and
b) if Vi™ is a toroidal field, so i&/7 ™1,
a) Direct integrations ovex and gives

Vil / Pugd = ——— 2y (9.0), (A.11b) Sobouti Y., 1985, AGA 147, 61
sind dp Sobouti Y., 1986, A&A 169, 95
: ) Sobouti Y., 1989a, A&A 210, 18
— J — .. ! ' !
Vo' = /l+“wd9 = 5g (%, ¥). QED. (A-11€)  Sobouti Y., 1089b, A&A 214, 83

_ Sobouti Y., Dehghani M. H., 1992, A&A 259, 128
b) SupposeV’™ s a toroidal vector field and calculateSobouti Y., Samimi J., 1989, A&A 214, 92

Vim=t = [(J_Ajp,)udQ, whereJy = Ly + K=+, Ly =
et (2 £ icotgz?%), Ky = £e*(2 &+ icotga%).
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