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Abstract. We use the post-Newtonian (pn) order of Liouville’s
equation to study the normal modes of oscillation of a spheri-
cally symmetric relativistic system. Perturbations that are neu-
tral in Newtonian approximation develop into a new sequence
of normal modes. In the firstpn order; a) their frequency is
an orderq smaller than the classical frequencies, whereq is a
pn expansion parameter; b) they are not damped, for there is no
gravitational wave radiation in this order; c) they are not coupled
with the classical modes inq order; d) because of the spheri-
cal symmetry of the underlying equilibrium configuration, they
are designated by a pair of angular momentum eigennumbers,
(j, m), of a pair of phase space angular momentum operators
(J2, Jz). The eigenfrequencies are, however,m-independent.
Hydrodynamics of these modes is also investigated; a) they gen-
erate oscillating macroscopic toroidal motions that are neutral
in the classical case; and b) they give rise to an oscillatoryg0i

component of the metric tensor that otherwise is zero in the un-
perturbed system. The conventional classical modes, which in
their hydrodynamic behaviour emerge asp andg modes are, of
course, perturbed to orderq. These, however, have not been of
concern in this paper.

Key words: methods: numerical – stars: general – stars: oscil-
lations

1. Introduction

Chandrasekhar’s (1965a, b) formulation of post-Newtonian hy-
drodynamics is among the pioneering ones. He generalized Eu-
lerian equations of Newtonian hydrodynamics topn order con-
sistent with Einstein’s field equations, and applied them to ob-
tain thepn corrections to the equilibrium and stability of uni-
formly rotating homogeneous masses. Blanchet, Damour and
Scḧafer (1990) studied the gravitational wave generation of a
self gravitating fluid by adding an appropriate term topn equa-
tion of hydrodynamics. Cutler (1991) employed thepn hydro-
dynamics and a perturbation technique to derive an expression
for thepn correction to Newtonian eigenfrequencies. Cutler &
Lindblom (1992) adopted Cutler’s method to calculate numeri-

cally the oscillation frequencies of thel = mf -modes of rapidly
rotating polytropic neutron stars.

In this paper we study normal modes of a non-rotating rel-
ativistic stars inpn approximation through the relativistic Li-
ouville’s equation rather than the relativistic hydrodynamics.
The reason for doing so is to avoid thermodynamic concepts
being incorporated into hydrodynamics. Liouville’s equation is
a purely dynamical theory and free from such complexities.
One, of course, pays the price by having to dwell in the six di-
mensional phase space, an elaborate mathematical task, but not
obtrusive. In compiling this work we have relied heavily on the
following studies dealing with various aspects of Liouville’s,
Liouville-Poisson’s and Antonov’s equations.

O(3) symmetry and mode classification of classical Liou-
ville’s equation for spherically symmetric potentials was stud-
ied by Sobouti (1989a,b). GL(3, c) symmetry, its subgroups, and
eigenmodes ofr2 potential and O(4) symmetry ofr−1 poten-
tial were obtained by Sobouti (1989a,b), Sobouti & Dehghani
(1992) and Dehghni & Sobouti (1993). Dynamical symmetry
of Liouville’s equation forr2 potential was worked out by De-
hghani & Sobouti (1995). Dynamical symmetry group of gen-
eral relativistic Liouville’s equation was discussed by Dehghani
& Rezania (1996). In particular they found that in de Sitter’s
space-time the group is SO(4,1)

⊗

SO(4,1).
In applications to self-gravitating systems the pioneering

work was done by Antonov (1962). He reduced the linearized
Liouville-Poisson equations to a self adjoint operation in phase
space. Further elaborations on Antonov’s equation were made
by Lynden-Bell (1966), Milder (1967), Lynden-Bell & Sanitt
(1969), Ipser & Thorne (1968). Attempts to solve the lin-
earized Liouville-Poisson equation for eigenfrequencies and
eigenmodes of oscillations were made by Sobouti (1984, 1985,
1986). Further and more transparent exposition of mode classi-
fication and mode calculations were given by Sobouti & Samimi
(1989) and Samimi & Sobouti (1995).

In Sect. 2 we give thepn order of the linearized Liouville
equation that governs the evolution of small perturbations from
an equilibrium state. In Sects. 3 and 4 we extract the equation
for a sequence of new modes that are generated solely bypn
force but are absent in a classical regime. In Sect. 5 we explore
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the O(3) symmetry of the modes and classify them on the basis
of this symmetry. In Sect. 6 we study hydrodynamics of these
modes. In Sect. 7 we seek a variational approach to the calcu-
lation of pn modes and give numerical values for polytropes.
Sect. 8 is devoted to concluding remarks.

2. Formulation of the problem

Liouville’s equation in the post-Newtonian approximation (pnl)
for the one particle distribution of a gas of collisionless particles
maybe written as
(

−i
∂

∂t
+ L

)

F (x,u, t)

=

(

−i
∂

∂t
+ Lcl + qLpn

)

F (x,u, t) = 0, (1)

where(x,u) are phase space coordinates,q is a small post-
Newtonian expansion parameter, the ratio of Schwarzschild ra-
dius to a typical spatial dimension of the system, for example.
The classical and post-Newtonian operators,Lcl andLpn, re-
spectively, are

Lcl = −i(ui ∂

∂xi
+

∂θ

∂xi

∂

∂ui
), (2a)

Lpn

= −i

[

(u2 − 4θ)
∂θ

∂xi
− uiuj ∂θ

∂xj
− ui ∂θ

∂t
+

∂Θ

∂xi

+ uj(
∂ηi

∂xj
− ∂ηj

∂xi
) +

∂ηi

∂t

]

∂

∂ui
. (2b)

The imaginary factori is included for later convenience. The
potentialsθ(x, t), Θ(x, t) andη(x, t), solutions of Einstein’s
equations inpn approximation, are

θ(x, t) =

∫

F (x′, t,u′)

|x − x′| dΓ′, (3a)

η(x, t) = 4

∫

u′F (x′, t,u′)

|x − x′| dΓ′, (3b)

Θ(x, t) = − 1

4π

∫

∂2F (x′′, t,u′′)/∂t2

|x − x′||x′ − x′′| d3x′dΓ′′

+ 2

∫

u′2F (x′, t,u′)

|x − x′| dΓ′

− 2

∫

F (x′, t,u′)F (x′′, t,u′′)

|x − x′||x′ − x′′| dΓ′dΓ′′, (3c)

wheredΓ = d3xd3u. See Rezania & Sobouti (2000, hereafter
paper I) for details. In an equilibrium state,F (x,u) is time-
independent. If, further, it is isotropic inu, macroscopic veloci-
ties along with the vector potentialη vanish. It is also shown in
paper I that the following generalizations of the classical energy
and classical angular momentum are integrals ofpnl:

e = ecl + qe
pn

=
1

2
u2 − θ + q(2θ2 − Θ), (4a)

li = εijkxjukexp(qθ) ≈ lcl
i (1 + qθ),

for spherically symmetricθ(r) andΘ(r). (4b)

Equilibrium distribution functions inpn approximation can be
constructed as appropriate functions of these integrals. In paper
I thepn models of polytrope were studied in this spirit.

Here we are interested in the time evolution of small devi-
ations from a static solution. LetF → F (e) + δF (x,u, t),
| δF |� F, ∀ x,u, t. Accordingly, the potentials split into
large and small components,θ(r)+ δθ(x, t), Θ(r)+ δΘ(x, t)
andδη(x, t) wherer = |x|. Both the large and small compo-
nents, can be read out from Eqs. (3). Substituting this splitting
in Eq. (1) and keeping terms linear inδF gives

i
∂

∂t
δF = LδF + δLF (e), (5)

whereL is now calculated from Eqs. (2) withθ(r), Θ(r) and
η = 0. Thus

L = Lcl + qLpn, (6a)

Lcl = −i

(

ui ∂

∂xi
+

θ′

r
xi ∂

∂ui

)

θ′ = dθ/dr, (6b)

Lpn = − i

r

{

[(u2 − 4θ)θ′ + Θ′]xi − θ′(x · u)ui
} ∂

∂ui
. (6c)

For δL Eqs. (2), similarly, give

δL = δLcl + qδLpn, (7a)

δLclF (e) = −iFeu
i ∂δθ

∂xi
Fe = dF/de, (7b)

δLpnF (e) = −iFe

[

ui ∂

∂xi
(δΘ − 4θδθ)

− u2 ∂δθ

∂t
+ ui ∂δηi

∂t

]

. (7c)

Eqs. (5)-(7) are the generalizations of the linearized classical
Liouville-Poisson equations topn order. The classical case was
studied briefly by Antonov (1962). He separatedδF into even
and odd components inu and extracted an eigenvalue equation
for δFodd. Sobouti (1984, 1985, 1986, 1989a,b) elaborated on
this eigenvalue problem, studied some of its symmetries and ap-
proaches to its solution. Sobouti & Samimi (1989), and Samimi
& Sobouti (1995) showed that Antonov’s equation has an O(3)
symmetry and its oscillation modes can be classified by a pair of
eigennumbers(j, m) of a pair phase space angular momentum
operators(J2, Jz). In analysing Eqs. (5)-(7) we have heavily
relied on these studies.

3. The Hilbert space

Let H be the space of complex square integrable functions of
phase coordinates(x,u) that vanish at the phase space boundary
of the system:

H : f(x,u);

∫

f∗f
√−gdΓ = finite, f(boundary) = 0, (8)

where
√−g = 1+2qθ in pn order. Integrations inH are over the

volume of the phase space available to the system. In particular
the boundedness of the system sets the upper limit ofu at the
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escape velocity
√

2θ, where= θ(x) is the gravitational potential
atx. Thus,f(x,

√

2θ(x)) = 0.
Theorem : L = Lcl + qLpn of Eqs. (6) is Hermitian inH,
∫

g∗(Lf) (1 + 2qθ)dΓ

=

∫

(Lg)∗f (1 + 2qθ)dΓ; g, f ∈ H (9)

The proof is a matter of substitution of Eqs. (6) in (9), carrying
out some integrations by parts over thex andu coordinates and
letting the integrated parts vanish on the phase space boundary.

The termδL is not, in general, Hermitian. Nonetheless, one
may proceed as Antonov did with the classical case and obtain a
second order differential operator (almost square ofL + δL) in
some subspace ofH. We are, however, pursuing a much simpler
problem here in whichδL term vanishes identically leaving
Eq. (5) as an eigenvalue problem governed with the Hermitian
operatorL alone.

4. The post-Newtonian modes of oscillations

The effect ofpn corrections on the classical solutions of Eq. (5)
can be analyzed by the usual perturbation techniques. Whatever
the procedure, the first order corrections on the known modes
will be small and will not change their nature. We will not pur-
sue such issues here. The main interest of this paper is to study
a new class of solutions of Eq. (5) that originate solely from the
pn terms and have no precedence in classical theories. It is not
difficult to anticipate the existence of such modes. Perturbations
on an equilibrium state, that are functions of classical integrals
(energy and angular momentum, say) do not disturb the equilib-
rium of the system at classical level. That is they do not induce
restoring forces in the system. They, however, do so in thepn
regime, and make the system oscillate about thepn equilib-
rium state. Such perturbations may be considered as a class of
infinitely degenerate zero frequency modes of the classical sys-
tem. Thepn forces unfold this degeneracy and turn them into a
sequence of non zero frequency modes distinct and uncoupled
from the other classical modes. We have termed them aspn
modes.

A hydrodynamic interpretation ofpn modes is the follow-
ing. In spherically symmetric fluids, toroidal motions are neu-
tral. Sliding one spherical shell of fluid over the other is not
opposed by a restoring force. Thepn forces or for that matter a
small magnetic field or a slow rotation (mainly through Coriolis
forces) gives rigidity to the system. The fluid resists against such
displacements and a sequence of well defined toroidal modes
of oscillation develop. See Sobouti (1980), Hasan & Sobouti
(1987), Nasiri & Sobouti (1989), and Nasiri (1992) for exam-
ples and typical calculations in the case weak magnetic fields
and slow rotations.

In the Fourier time transform of Eq. (5),

LδF + δLF (e) = ωδF, (10a)

we splitδF into even and odd terms inu. Thus,

δF (x,u) = G−(x,u) + G+(x,u),

G±(x,u) = ±G±(x,±u). (10b)

Considering the fact that bothL andδL are odd inu, Eq. (10a)
splits accordingly:

LG− + qωFeu
2δθ = ωG+, (11a)

LG+ − iFeu
i ∂

∂xi
[δθ + q(δΘ − 4θδθ)]

− qωFeu
iδηi = ωG−, (11b)

where

δθ =

∫

G+(x′,u′)

|x − x′| dΓ′, (12b)

η = 4

∫

u′G−(x′,u′)

|x − x′| dΓ′, (12b)

Θ(x, t) =
ω2

4π

∫

G+(x′′,u′′)

|x − x′||x′ − x′′|d
3x′dΓ′′

+ 2

∫

u′2G+(x′,u′)

|x − x′| dΓ′ (12b)

− 2

∫

G+(x′,u′)F (e′′) + F (e′)G+(x′′,u′′)

|x − x′||x′ − x′′| dΓ′dΓ′′,

Operating on Eq. (11a) byL and substituting forLG+ from
Eq. (11b) gives a second order differential equation forG−:

L2G− = ω2G− + iωFeu
i ∂

∂xi
[δθ + q(δΘ − 4θδθ)]

+ qω2Feu
iδηi − qωFeL(u2δθ). (13a)

We now seek a solution of Eq. (13a) in the form of clas-
sical energy and angular momentum integrals,G−(x,u) =
G−(ecl, lcl

i ). In the next section, after we discuss the O(3) of
Eq. (13a), we show that such solutions can be chosen from
among the eigenfunctions of a pair of phase space angular mo-
mentum operators, (J2, Jz). We also show that for such solu-
tionsδθ andδΘ vanish identically reducing Eq. (13a) to

L2G− = ω2
(

G− + qFeu
iδηi

)

. (13b)

Multiplying Eq. (13b) byG∗
−, integrating over the phase space

volume of the system, and considering the facts thatL = Lcl +
qLpn is Hermitian andLclG−(ecl, lcl

i ) = 0, gives
∫

(LG−)∗LG−(1 + 2qθ)dΓ

= q2

∫

(LpnG−)∗LpnG−(1 + 2qθ)dΓ

= ω2

[
∫

G∗
−G−(1 + 2qθ)dΓ

+ q

∫

G∗
−Feu

iδηi(1 + 2qθ)dΓ

]

. (14a)

Eq. (14a) shows thatω is of the same order of smallness asq.
Thus, eliminating the terms of orderq3, ω2q and higher reduces
Eq. (14a) to
∫

(LpnG−)∗LpnG−dΓ =
ω2

q2

∫

G∗
−G−dΓ. (14b)
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Eq. (14b) provides a variational expression forω2 and will be
used as such to calculate the allowableω2. The frequencies,
ω, are real meaning that the corresponding deviations from
the equilibrium state are stable oscillation modes. Furthermore,
these perturbations will be different from the conventional clas-
sical modes, for they are excited bypn terms in the equations
of motion that are absent at classical level.

5. O(3) symmetry of L = L
cl + qL

pn

For spherically symmetric potentials,θ(r) andΘ(r), bothLcl

andLpn depend on the angle betweenx andu and their magni-
tudes. Simultaneous rotations of thex andu coordinates about
the same axis by the same angle leaves these operators form
invariant. The generator of such simultaneous infinitesimal ro-
tations on the function spaceH is

Ji = J†
i = −iεijk

(

xj ∂

∂xk
+ uj ∂

∂uk

)

, (15)

which has the angular momentum algebra

[Ji, Jj ] = iεijkJk. (16)

Commutation ofJi with Lcl was first established by Sobouti
(1989a,b). Here we confine the discussion to the symmetry of
Lpn. Straightforward calculations reveal that

[Lpn, Ji] = 0. (17)

Thus, it is possible to choose the eigensolutions,G− of Eq. (14b)
simultaneously with those ofJ2 and Jz. The eigensolutions
of the latter pair of operators are worked out in the Appendix.
They are of the formf(ecl, lcl

i )Λjm; j, m integers, wheref is an
arbitrary function of the classical integrals andΛjm is a complex
polynomial of orderj of the components of the classical angular
momentum,lcl

i . The x andu parity of Λjm is that of j. See
Appendix for proofs this statement.

We are now in a position to point out an interesting feature of
the eigenmodes. Bothω2 andL2 in Eq. (13b) and the integrals
in Eq. (14b) are real. Thus,G− can be chosen real or purely
imaginary. By Eq. (11a), thenG+ will be purely imaginary or
real. That is, an eigensolutionδF = G− + G+ belonging to a
nonzeroω is a complex function of phase coordinates in which
both thex andu parities of the real and imaginary parts are
opposite to each other. This feature is shared by the classical
modes of the classical Liouville’s and Antonov’s equation.

In Sect. 7 we will take a variational approach to solutions
of Eq. (14b). As variational trial functions we will consider the
following

G− = fjm = f(e)Re Λjm

= [
N

∑

n=j+1

cn(−e)n]ReΛjm, j = odd, cn = consts. (18)

Combining this with its corresponding even counterpart from
Eq. (10a) we obtain

δFjm(x,u, t) = (1 +
q

ω
Lpn)fjme−iωt. (19)

At this stage let us note an important property of Liouville’s
equation. If a pair(ω, δF ) is an eigensolution of Liouville’s
equation,(−ω, δF ∗) is another eigensolution. This can be ver-
ified by taking the complex conjugate of Eq. (10a). These so-
lutions, being complex quantities, cannot serve as physically
meaningful distribution functions. Their real or imaginary parts,
however, can. With no loss of generality we will adopt the real
part. Thus,

Re δFjm(x,u, t)

= f(e)Re Λjm cos ωt + i
q

ω
Lpn(f(e)Re Λjm) sinωt. (20)

The eigenmodes of Eq. (10a) arem-independent. Bym-
independence we mean a) the eigenvaluesω do not depend on
m and are2j + 1 fold degenerate, and b) the expansion co-
efficients,cn, of Eq. (12) do not depend onm. Proof: From
the Appendix, Eq. (A. 4),J± = Jx ± iJy are ladder opera-
tors forΛjm. Operating onfjm of Eq. (18) byJ± will give the
modefj,m±1 without changing the expansion coefficients. Sec-
ondly, substitutingJ±fjm =

√

(j ∓ m)(j ± m + 1)fj,m±1 in
Eq. (14a) instead offjm, and noting thatfjm’s can be normal-
ized for allm’s, ω2 will remain unchanged.

6. Hydrodynamics of pn modes

In this section we calculate the density fluctuations, macroscopic
velocities, and the perturbations in the space-time metric gen-
erated by apn mode.

It was pointed out earlier that forj an odd integer,fjm(x,u)
of Eq. (18) is odd whileLpnfjm is even in bothx andu. The
macroscopic velocities are obtained by multiplying Eq. (20) by
u and integrating over the u-space. Only the odd component of
δFjm contributes to this bulk motion,

ρv =

∫

f(e)Re Λjmud3u cos ωt. (21)

In Appendix, Eqs. (A. 11), we show thatρv is a toroidal spher-
ical harmonic vector field. In spherical polar coordinates it has
the following form

ρ(vr, vϑ, vϕ) = rjG(ves)

(

0, Re
−1

sin ϑ

∂

∂ϕ
Yjm(ϑ, ϕ),

Re
∂Yjm

∂ϑ
(ϑ, ϕ)

)

cos ωt, (22a)

where

G(ves) =

∫ ves

0

f(e)uj+3du, (22b)

andves =
√

2θ is the escape velocity from the potentialθ(r).
The macroscopic density, generated by the even component of
Eq. (20), is

δρ(x, t) = i
q

ω

∫

Lpn(f(e)Re Λjm)d3u sin ωt

= 2
q

ω

θ′

r
x ·

∫

f(e)Re Λjmud3u sin ωt = 0. (23)
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The second integral is obtained by an integration by parts. The
vanishing of it comes about because of the fact that the radial
vectorx is orthogonal to the toroidal vectorρv. One also notes
that∇ · (ρv) = 0. It can further be verified that, the continuity
equation is satisfied at both classical andpn level.

To complete the reduction of Eqs. (13) we should also show
thatδθ andδΘ vanish. The former is zero becauseδρ = 0. For
the latter, from Eq. (3c) and Eq. (20) forδF , one has

δΘ =
ω2

4π

∫

δθ(x′)

|x − x′|d
3x′

− 2

∫

ρ(r′)δρ(x′′) + δρ(x′)ρ(r′′)

|x − x′||x′ − x′′| d3x′d3x′′

+ 2

∫

d3x′

|x − x′|

∫

u
′2δF (x′,u′)d3u′ = 0. (24)

The vanishing of the first two terms is obvious. The third term
vanishes because the integral overu′ has the same form as in
δρ except for the additional scalar factoru′2. Like δρ it can be
reduced to the inner product of the radial vectorx and a toroidal
vector. QED.

The toroidal motion described here slides one spherical shell
of the fluid over the other without perturbing the density, the
Newtonian gravitational field and, therefore, the hydrostatic
equilibrium of the classical fluid. In doing so, it does not af-
fect and is not affected by the conventional classical modes of
the fluid at this firstpn order.

Nonetheless, thepn modes are associated with space time
perturbations. From Eq. (8c) of paper I and Eq. (3b) of this paper,
g0i component of the metric tensor is

g0i = ηi = 4

∫

ρvi(x
′)

|x − x′|d
3x′. (25)

In spherical polar coordinates, one obtains

ηr = 0, (26a)

ηϑ = −ajRe
1

sin ϑ

∂

∂ϕ
Yjm(ϑ, ϕ) cos ωt, (26b)

ηϕ = ajRe
∂Yjm

∂ϑ
(ϑ, ϕ) cos ωt, (26c)

where

aj =
16π

2j + 1















(r/R)jyj(R) for r < R

+(2j + 1)rj
∫ R

r
r′−j−1

yj(r
′)dr′

(R/r)j+1yj(R) for r > R,

(26d)

yj(r) = r−j−1

∫ r

0

r′2j+2
G(θ(r′))dr′, (26e)

G(θ(r)) =

∫ ves

0

f(e)uj+3du

=
2j/2+1Γ(j/2 + 2)Γ(n + 1)θ(r)n+j/2+2

Γ(n + j/2 + 3)
, (26f)

whereR is the radius of the system andΓ(n) is the gamma
function. The remaining components of the metric tensor remain
unperturbed.

7. Variational solutions of pn modes

We substitute the trial function of Eq. (18) in Eq. (14b) and turn
it into a matrix equation. Thus

C†WC =
ω2

q2
C†SC, (27)

whereC = [cn] is the column matrix of the variational co-
efficients of Eq. (18), and the elements ofS andW matrices
are

Spq =

∫

(−e)p+q|Re Λjm|2dΓ, (28a)

Wpq =

∫

(Lpn(−e)pRe Λjm)∗(Lpn(−e)qRe Λjm)dΓ. (28b)

Minimizing ω2 with respect to variations ofC gives the follow-
ing matrix equation

WC =
ω2

q2
SC. (29)

Eigenω’s are the roots of the characteristic equation

|W − ω2

q2
S| = 0. (30)

For eachω, Eq. (29) can then be solved for the eigenvector
C. This completes the Rayleigh-Ritz variational formalism of
solving Eq. (14a). In what follows we present some numerical
values for polytropes.

7.1. pn Modes of polytropes belonging to (j, m) = (1, m)

We analyse the casem = 0, only. From them-independence
of eigenmodes (see theorem of Sect. 5) the eigenvalue and the
expansion coefficients,cn, for m = ±1 will be the same. From
Eqs. (A. 9),Λ1 0 = lz = ru sin ϑ sin α sin(β−ϕ), where (ϑ, ϕ)
and (α, β) are the polar angles ofx, of u, respectively. Substi-
tuting this in Eqs. (28) and integrating over directions ofx and
u vectors and over0 < u <

√
2θ gives

Spq =

∫ 1

0

θp+q+2.5x4dx, (31a)

Wpq = πGρc

{

(16apq − bpq)

∫ 1

0

θ′2θp+q+3.5x4dx

+ (1 − 8apq)

∫ 1

0

Θ′θ′θp+q+2.5x4dx

+ apq

∫ 1

0

Θ′2θp+q+1.5x4dx

}

, (31b)

apq =
pq(p + q + 2.5)

(p + q)(p + q − 1)
,

bpq =
4(p + q)2 + 9(p + q) − 13

(p + q − 1)(p + q + 3.5)
, p, q = 2, 3, · · · . (31c)

Polytropic potentialsθ andΘ were obtained from integrations
of Lane Emden equation and Eqs. (28) of paper I, respectively.
Eventually, the matrix elements of Eqs. (31), the characteristic
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Table 1. pn modes of polytrope n=2, belonging to(j, m) = (1, 0). Eigenvalues are in unitsπGρcq
2, cn’s are the linear variational parameters

of Eq. (18). A numbera × 10±b is written asa ± b. To appraise the accuracy of the computations two sets of data with six and seven variational
parameters are given. The first three eigenvalues are reliable up to three figures. Characteristically, the accuracy deteriorates as one goes to
higher order modes.

ω2 .1825+01 .4973+01 .6448+01 .1216+02 .3425+02 .1686+03

c1 .3113+02 -.8912+02 .1663+03 .1344+03 .7545+01 -.1399+04
c2 .3908+02 .1045+04 -.3234+04 -.9746+03 -.2392+04 .8484+04
c3 -.1420+03 -.6649+04 .1801+05 .4514+04 .7952+04 -.9647+04
c4 .5803+03 .1804+05 -.4351+05 -.7014+04 -.2607+03 -.2251+05
c5 -.9110+03 -.2210+05 .4724+05 .8324+03 -.1811+05 .5188+05
c6 .5252+03 .1020+05 -.1874+05 .2882+04 .1317+05 -.2717+05

ω2 .1823+01 .4865+01 .5895+01 .9113+01 .1465+02 .4228+02 .3226+03

c1 .3028+02 -.7086+02 .1529+03 -.3129+02 .1561+03 -.4624+02 .2042+04
c2 .4812+02 .6908+03 -.2810+04 .1313+04 -.1513+04 -.2762+04 -.1461+05
c3 -.1305+03 -.3993+04 .1702+05 -.5686+04 .6685+04 .1077+05 .2271+05
c4 .2576+03 .8181+04 -.4788+05 .3425+04 -.3673+04 .1875+04 .4154+05
c5 .1303+03 -.3086+04 .6823+05 .2433+05 -.2910+05 -.4718+05 -.1496+06
c6 -.7534+03 -.7924+04 -.4771+05 -.4855+05 .5132+05 .5873+05 .1425+06
c7 .5475+03 .6707+04 .1302+05 .2568+05 -.2386+05 -.2120+05 -.4423+05

pn1 pn2 pn3 pn4 pn5 pn6 pn7

Eq. (30) and the eigenvalue Eq. (29) were numerically solved
in succession. Tables 1-4 show some sample calculations for
polytropes 2, 3, 4, and 4.9. Eigenvalues are displayed in lines
marked by an asterisks. The column following an eigenvalue is
the corresponding eigenvector, i.e. the values ofc1, c2, · · ·, of
Eq. (18). To demonstrate the accuracy of the procedure, calcu-
lations with six and seven variational parameter are given for
comparison. The first three eigenvalues can be trusted up to two
to four figures. Convergence improves as the polytropic index,
i.e. the central condensation, increases. Eigenvalues are in units
of πGρcq

2 and increase as the mode order increases.

8. Concluding remarks

Linear perturbations of phase space distribution functions have
been studied. Their evolution in both classical andpnorder takes
place through an eigenvalue equation. The eigensolutions of the
latter are the normal modes of oscillation of the system. If the
underlying potentials are spherically symmetric, the evolution
equation is O(3) symmetric. The modes can be characterized by
a pair of angular momentum eigennumbers,(j, m). The eigen-
valuesωj are, however,(2j + 1) fold degenerate.

Perturbations that are functions of classical energy and clas-
sical angular momentum are neutral in classical approximation,
but not inpn order. Neutral, here, means to belong to zero fre-
quency modes. The weakpn forces generate a sequence of low
frequency modes from such perturbations. In their hydrody-
namic behavior, they constitute a sequence of low frequency
toroidal modes. There is an oscillatoryg0i component of the
metric tensor associated with these modes. From a conceptual
point of view, they are similar to toroidal modes of slowly rotat-
ing fluids generated by Coriolis forces or to the standing Alfven
waves of a weakly magnetized fluids.

Appendix A: eigensolutions of J2 and Jz

As pointed out earlier,Ji’s of Eq. (15) have the angular momen-
tum algebra,

[Ji, Jj ] = iεijkJk. (A.1)

Therefore, the simultaneous eigensolutions ofJ2 and Jz,
Λjm(x,u), obey the following

J2Λjm = j(j + 1)Λjm, j = 0, 1, · · · , (A.2)

JzΛjm = mΛjm, −j ≤ m ≤ j. (A.3)

The ladder operators,J± = Jx ± iJy, raise and lower them
values:

J±Λjm =
√

(j ∓ m)(j ± m + 1)Λjm±1. (A.4)

In particular

J±Λj,±j = 0. (A.4a)

The effect ofJi on classical energy integral,e = u2/2 − θ(r),
and the classical angular momentum integral,li = εijkxjuk,
are as follows

Jie = Jil
2 = Jif(e, l2) = 0, (A.5a)

Jilj = iεijklk. (A.5b)

Theorem 1:

Λj,±j = lj± = (
1

2
)j(lx ± ily)j . (A.6)

Proof:

Jzl
j
± = jlj−1

± (Jzl±) = ±jlj±,

by (A.5b), (A.7a)

J2lj+ = (J−J+ + J2
z + Jz)l

j
+ = j(j + 1)lj+,

by (A.4a) and (A.7a), (A.7b)

J2lj− = (J+J− + J2
z − Jz)l

j
− = j(j + 1)lj−, (A.7c)
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Table 2. Same as Table 1.n = 3 and(j, m) = (1, 0).

ω2 .1534+01 .4836+01 .9473+01 .1938+02 .4083+02 .1128+03

c1 .9752+02 -.6975+02 .2464+03 -.2246+03 -.9102+03 .3169+04
c2 .3284+02 -.8725+03 -.1121+04 -.2590+04 .1713+05 -.2631+05
c3 .2096+03 .3859+04 .5591+04 .1444+05 -.1023+06 .6390+05
c4 -.5354+03 -.5728+04 -.1216+05 -.9903+04 .2599+06 -.3406+05
c5 .3941+03 .2528+04 .5215+04 -.2221+05 -.2933+06 -.4814+05
c6 .1803+01 .1125+04 .3307+04 .2153+05 .1208+06 .4268+05

ω2 .1533+01 .4688+01 .7993+01 .9068+01 .1124+02 .1909+02 .1093+03

c1 .9318+02 -.1440+03 -.1202+03 -.1069+04 -.5706+03 -.5482+02 .3703+04
c2 .1121+03 .6997+03 .5482+04 .1856+05 .7685+04 -.5626+04 -.3381+05
c3 -.2118+03 -.4506+04 -.2955+05 -.1063+06 -.4112+05 .3078+05 .1007+06
c4 .2709+03 .9777+04 .5298+05 .2726+06 .7791+05 -.4371+05 -.1109+06
c5 .1206+03 -.9309+03 -.6283+04 -.3375+06 -.1278+05 -.7049+03 .1239+05
c6 -.7005+03 -.1574+05 -.7154+05 .1894+06 -.9027+05 .3228+05 .4581+05
c7 .5309+03 .1200+05 .5087+05 -.3511+05 .5945+05 -.1218+05 -.1722+05

pn1 pn2 pn3 pn4 pn5 pn6 pn7

Table 3. Same as Table 1.n = 4 and(j, m) = (1, 0).

ω2 .7569+00 .2822+01 .5661+01 .8814+01 .1519+02 .6952+02

c1 .6291+03 -.1067+04 .2143+04 -.1949+04 -.6870+04 .1400+05
c2 -.9217+02 .1770+04 -.1693+05 .1131+05 .8373+05 -.2337+06
c3 .4162+03 .2808+04 .5682+05 -.3654+04 -.3195+06 .1293+07
c4 -.3883+04 .5860+04 -.1184+06 -.2807+05 .4791+06 -.3112+07
c5 .6427+04 -.2303+05 .1257+06 -.4668+04 -.2545+06 .3371+07
c6 -.3089+04 .1612+05 -.4514+05 .3416+05 .1251+05 -.1344+07

ω2 .7569+00 .2813+01 .5021+01 .8747+01 .1272+02 .3322+02 .7683+02

c1 .5590+03 -.8716+03 .2653+03 -.2421+04 .1881+04 .1412+05 .3376+05
c2 .1189+04 -.2018+04 .1406+05 .1926+05 -.7436+04 -.2356+06 -.5191+06
c3 -.6377+04 .2349+05 -.1057+06 -.4732+05 -.5363+05 .1298+07 .2528+07
c4 .9376+04 -.3509+05 .2059+06 .6165+05 .2228+06 -.3112+07 -.4750+07
c5 .5449+03 -.4645+04 -.2977+05 -.4272+05 -.7106+05 .3356+07 .2298+07
c6 -.1192+05 .4364+05 -.2533+06 -.3854+05 -.4046+06 -.1333+07 .2455+07
c7 .7228+04 -.2275+05 .1775+06 .5845+05 .3227+06 -.1382+03 -.2085+07

pn1 pn2 pn3 pn4 pn5 pn6 pn7

Table 4. Same as Table 1.n = 4.9 and(j, m) = (1, 0).

ω2 .4481+00 .1827+01 .4078+01 .6515+01 .1170+02 .1391+03

c1 -.2888+02 .1663+03 -.2794+03 .1593+03 .1405+03 .1081+05
c2 -.2440+03 -.7593+04 .2050+05 -.2099+05 .2665+05 -.2129+06
c3 .4933+05 -.2772+04 -.1400+06 .1883+06 -.3467+06 .1344+07
c4 -.1722+06 .1443+06 .2902+06 -.5138+06 .1372+07 -.3583+07
c5 .2124+06 -.2675+06 -.2194+06 .4871+06 -.2092+07 .4207+07
c6 -.8916+05 .1394+06 .5712+05 -.1179+06 .1073+07 -.1790+07

ω2 .4380+00 .1805+01 .4006+01 .6190+01 .7980+01 .1439+02 .8964+02

c1 -.1701+02 .1379+03 -.3341+03 .3427+03 -.3020+03 .7695+03 .8642+04
c2 -.6649+03 -.6322+04 .2326+05 -.3097+05 .2196+05 -.1111+05 -.1534+06
c3 .5135+05 -.1143+05 -.1601+06 .2940+06 -.2552+06 .1349+06 .8174+06
c4 -.1667+06 .1599+06 .3264+06 -.9227+06 .1022+07 -.9712+06 -.1565+07
c5 .1694+06 -.2551+06 -.1784+06 .1132+07 -.1574+07 .3018+07 .4968+06
c6 -.1770+05 .8656+05 -.9582+05 -.4879+06 .7432+06 -.3959+07 .1421+07
c7 -.3646+05 .3341+05 .9586+05 .2938+05 .8318+05 .1819+07 -.1047+07

pn1 pn2 pn3 pn4 pn5 pn6 pn7
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QED. Combining Eqs. (A. 6), (A. 4) and (A. 5) one obtains

Λjm = af(e, l2)Jj+m
+ lj− = bf(e, l2)Jj−m

− lj+, (A.8)

wheref(e, l2) is an arbitrary function of its arguments, anda
and b are normalization constants. Examples: Aside from an
arbitrary factor of classical constants of motion, one has

Λ1 0 = lz, (A.9a)

Λ1 ±1 = l±, (A.9b)

Λ2 0 = 2l+l− − l2z =
1

2
(3l2z − l2), (A.9c)

Λ2 ±1 = l±lz, (A.9d)

Λ2 ±2 = l2±. (A.9e)

Theorem 2: The vector fieldVjm =
∫

ΛjmudΩ is a toroidal
vector field belonging to the spherical harmonic numbers (j, m),
where integration is over the directions ofu.

Preliminaries: Let (ϑ, ϕ) and (α, β) denote the polar angles
of x, of u, respectively, andγ be the angle between (x,u).
Also choose magnitudes ofx andu to be unity, for only in-
tegrations over the direction angles are of concern. One has
cos γ = cos ϑ cos α + sinϑ sin α cos(ϕ − β)

ur = cos γ, (A.10a)

uϑ = − sin ϑ cos α + cos ϑ sin α cos(ϕ − β), (A.10b)

uϕ = − sin α sin(ϕ − β), (A.10c)

l+ = i(sinϑ cos α eiϕ − cos ϑ sin α eiβ). (A.10d)

Proof: By induction, we show that a)Vjj is a toroidal field and
b) if Vjm is a toroidal field, so isVj m−1.
a) Direct integrations overα andβ gives

V jj
r =

∫

lj+urdΩ = 0, dΩ = sinα dα dβ, (A.11a)

V jj
ϑ =

∫

lj+uϑdΩ = − 1

sin ϑ

∂

∂ϕ
Yjj(ϑ, ϕ), (A.11b)

V jj
ϕ =

∫

lj+uϕdΩ =
∂

∂ϑ
Yjj(ϑ, ϕ). QED. (A.11c)

b) SupposeVjm is a toroidal vector field and calculate
Vj m−1 =

∫

(J−Λjm)udΩ, whereJ± = L± + K±, L± =
±e±iϕ( ∂

∂ϑ ± icotgϑ ∂
∂ϕ ), K± = ±e±iβ( ∂

∂α ± icotgα ∂
∂β ).

Again direct integrations gives

V j m−1
r = L−V jm

r = 0,

if V jm
r = 0, (A.12a)

V j m−1

ϑ = − 1

sin ϑ

∂

∂ϕ
Yj m−1(ϑ, ϕ),

if V j m
ϑ = − 1

sin ϑ

∂

∂ϕ
Yj m(ϑ, ϕ), (A.12b)

V j m−1
ϕ =

∂

∂ϑ
Yj m−1(ϑ, ϕ),

if V j m
ϕ =

∂

∂ϑ
Yj m(ϑ, ϕ). (A.12c)

QED.
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