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Abstract. Allowing the energy of a gravitational field to
serve partially as its own source allows gravitating bod-
ies to exhibit stronger fields, as if they were more mas-
sive. Depending on degree of compaction of the body, the
field could be one to five times larger than the newto-
nian field. This is a comfortable range of increase in field
strength and may prove to be of convenience in the study
of velocity curves of spirals, of velocity dispersions in clus-
ters of galaxies and in interpreting the Tully-Fisher or
Faber-Jackson relations in galaxies or systems of galax-
ies. The revised gravitation admits of superposition princi-
ple but only approximately in systems whose components
are widely separated. The revised dynamics admits of the
equivalence principle in that, the effective force acting on
a test particle is derived from a potential, and could be
eliminated in a freely falling frame of reference.
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The only justification for our concepts and system of

concepts is that they serve to represent the complex of

our experiences. Beyond this they have no legitimacy. I

am convinced that the philosophers have had a harmful

effect upon the progress of scientific thinking in remov-

ing certain fundamental concepts from the domain of

empiricism, where they are under our control, to the in-

tangible heights of the a priori. Albert Einstein, 1922.

1. Introduction

The problem of dark matter surrounding spiral galaxies,
wrote Van Albada et al. (1985), is one of the most enig-

matic questions in present day astrophysics. A number of

years of intensive research have brought little or no clari-

fication.

Earlier suggestions to resolve mass discrepancy were
on the conservative side. Bahcall and Cassertano (1985)
spoke of missing mass as synonymous to missing light.
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Tremaine and Lee (1987)with dark matter meant the mat-
ter whose existence was inferred only through its gravita-
tional effects. Critics were vocal. Outstanding among them
Milgrom (1983 a,b,c), the architect of MOND, spoke of
the dark side of the dark matter hypothesis and of its ar-

bitrariness in that one invokes the dark matter in the cor-

rect amount and spatial distribution needed to explain the

mass discrepancy in each and every case for itself (1987).

In the course of the past two decades acurate ob-
servations of velocity curves of spiral galaxies have be-
come available.See, e. g., Begeman et al. (1991), Sanders
(1996), Sanders and Verheijen (1998), Mc Gauph and de
Blok (1998). Credible velocity dispersions of galactic sys-
tems have emerged. See, for example, Tullly et al. (1996)
for data on Ursa Majoris cluster. On the theoretical side
many ingenious and bold candidates for dark matter have
been offered. A list compiled by Ostriker and Steinhardt
(2003) includes items such as cold collisionless dark mat-
ter, strongly self interacting dark matter, warm dark mat-
ter, repulsive dark matter, fuzzy dark matter, self annihi-
lating dark matter, decaying dark matter, etc.

In spite of all these developments, however, there is
no clue as how to detect the dark matter and get to the
physics that it obeys. The issue does not seem less enig-
matic than what von Albada and his colleagues described
in 1985. Arguments pro and con are the same as a quar-
ter of century ago. Proponents of dark matter assume the
validity of Newtonian dynamics at all distance scales and
look for one or another form of hypothetical matter to
provide the missing gravity. Skeptics, on the other hand,
see no logic in resorting to a concept that solves the riddle
of dynamics but remains unamenable to further validation
by any other known physical means.

A historical reminder might be timely. In the closing
decade of the 19th. century, physicists had agreed that
light was an electromagnetic wave. And out of the experi-
ence with waves in other contexts had required a medium
of propagation for it, the ether. Yet ether evaded all at-
tempt of detection no matter how ingeniously the detec-
tion devices were designed. On the other hand the notion
of medium of propagation seemed so obvious to every-
one, that some of the brightest minds of the time invoked
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theories that would have kept the ether, but in a con-
cealed form. The famous transformations of Lorentz were
developed primarily to explain the null results of the ex-
periments of Fiseau, Michelson, Michelson & Morely, etc.,
rather than as a foundation for the special relativity that
emerged later. It was up to Einstein to think and later
to speak out that our concepts have no legitimacy beyond

what the complex of our experiences bestows upon them. If
experiments do not reveal the ether it could be dispensed
with. If experiments show that the speed of light is the
same in all reference frames, that could be a fact to build
the new physics upon it.

In these early years of the 21st. Century, it would not
be unwise to take Einstein’s advice seriously. Accept the
validity of newtonian dynamics in solar and similar sys-
tems, where it has been tested, but look for alternatives
in larger galactic and extragalactic scales, where it has
not been verified. Many researchers have actually adopted
such a point of view before. See Sanders and Mc Gauph
(2002) for a review of Milgrom’s MOND and earlier at-
tempts. Here, we adopt a variational approach to the prob-
lem. We amend the classical action by adding a term to
it that eventually makes provision for the field energy to
serve partially as its own source. The procedure is apt to
a general relativistic generalization, in preparation for a
future presentation.

2. Variational formulation

The system to be considered is a collection of point masses
mi at positions xi, i = 1, · · · , N ; plus the field φ(x) at
point x. Both newtonian equation of motion and equa-
tion of gravitational field are derivable from the following
action integral.

I =

∫

L[xi, φ(x)] dt, (1)

L[xi, φ(x)] =
∑

mi

[

1

2
ẋ2

i + φ (xi)

]

−
1

8πG

∫

|∇φ(x|
2
d3x.

At point x the gravitational energy density is
(8πG)−1|∇φ(x)|2. By Einstein, this energy has an
equivalent mass. We propose to entertain the possibility
of using this mass or a fraction α of it as the source of
extra gravitation on the particles. The effect on mi at
position xi will be αGmi(8πGc2)−1|∇φ(x)|2|x − xi|

−1.
The contribution to the action integral from all space and
all particles will be

Iint =

∫

Lint[xi, φ(x)] dt,

Lint[xi, φ(x)] =
1

8π

α

c2

∑

i

mi

∫

|∇φ(x|2

|x − xi|
d3x. (2)

The dimensionless constant α is of the order of unity. It
is introduced for possible later adjustments. Note that
Gmi/c2 is of the order of the Schwarschild radius of mi.

Before proceeding further, let us emphasize that the
argument given in composing Iint is for mnemonic pur-
poses only. The formal statement of the assumption is the
following: The classical action integral from which New-
ton’s laws are inferred is inadequate in galactic and ex-
tragalactic scales. We propose to amend it by adding Iint

to the classical action. The addition is a scalar, quadratic
in field gradients, and contains the particle coordinates
and masses. It will alter both the field equation and the
equations of motion.

The field equation for φ(x) is obtained by requiring
the functional derivative of the total action, I + Iint, with
respect to φ(x)to vanish. Thus,

δ(I + Iint)

δφ(x)
= ∇.

[

∇φ(x)

{

1 −
αG

c2

∑ mi

|x − xi|

}]

+ 4πG
∑

miδ(x − xi) = 0. (3)

By writing δ(x − xi) = 1

4π
∇2|x − xi|

−1 one immediately
integrates Eq. (3) into

∇φ

{

1 −
αG

c2

∑

i

mi

|x − xi|

}

= −G∇
∑ mi

|x − xi|
. (4)

Denoting the newtonian potential by

φN (x) = −G
∑ mi

|x − xi|
, (5)

Eq.(4) integrates into

φ(x) =
c2

α
ln

[

1 + α
φN (x)

c2

]

= φN

[

1 −
1

2
α

φN

c2
+

1

3
α2

φ2

N

C4
+ · · ·

]

. (6)

Equation of motion for mi is obtained likewise,

δ(I + Iint)

δxi

=

mi

[

ẍi −∇iφ(xi) −
1

8π

α

c2
∇i

∫

|∇φ(x)|2

|x − xi|
d3x

]

= 0. (7)

Newtonian limits in all cases are obtained by letting α = 0.
To elucidate the significance of the proposed amendment
to the classical action and the way it relates to mass dis-
crepancy, several simple examples are worked out in sec-
tion 3.

3. Applications

3.1. Gravitational field of spheres

Consider a sphere of uniform density ρ, radius R, and total
mass M : From Eqs. (5) and (6) the outside solution is

φ(r) =
GM

s
ln

r − s

r
= −

GM

r

(

1 +
1

2

s

r
+ · · ·

)

, r ≥ R

dφ

dr
=

GM

r(r − s)
, r ≥ R, (8)
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where s = αGM/c2 is of the order of Schwarschild
radius of M . For the inside, noting that φN (r) =
− 1

2

GM
R3

(

3R2 − r2
)

, one obtains

φ(r) =
c2

α
ln

[

1 −
3

2

s

R
+

1

2

s

R

r2

R2

]

, r ≤ R,

dφ

dr
=

GM

R2

r

R

[

1 −
3

2

s

R
+

1

2

s

R

r2

R2

]−1

, r ≤ R. (9)

3.2. Motion of test satellites

Equation of motion is obtained by substituting Eqs. (8)
& (9) in Eq. (7) and reducing it. The result is

mr̈ = −
GmM

r2

[

1 + u
( s

R

)

+
s

r − s

]

r

r
, (10)

where u(s/R) is derived, numerically calculated, and plot-
ted in the Appendix. As the central body contracts and
R reduces from an initially large value to its allowed min-
imum 3

2
s; u(s/R) increases from zero to 4. The first term

on the right hand side of Eq. (10) is recognized as the clas-
sical expression. The second term, u(s/R), is the pivotal
one and as mentioned it could be four times as large as
the classical term. In newtonian parlance this amounts to
saying that a compact object may, gravitationally, present
itself up to five times more massive than the same object
in a diffuse state. This is what we propose as a partial
answer to mass discrepancy!
The third term in Eq. (10) arises from deviations of the
force law from r−2. It is infinitesimal compared with the
previous two terms, though it may observably perturb el-
liptical orbits in secular time scales.

3.3. N-body problem

Consider a collection of spheres each of mass Mi, radius
Ri, and positions xi. Assume the system members are well
separated such that |xi − xj | = rij ≫ Ri for all i 6= j. It
is demonstrated in the Appendix, that on account of this
assumption, the integral appearing in Eq. (7) splits into a
sum given by Eq. (A. 7). Thus, one finds

ẍi − G
∑

M eff

j

(xi − xj)

|xi − xj |3

]

= 0. (11)

where M eff
j = Mj(1+uj), uj = u(sj/Rj). Actually a term

of the order G
∑

j Mjsj |rij−sj|
−1, is neglected in Eq (11),

a) because of the extra small factor sj and b) because of
its steeper, r−3, decrease with distance compared with r−2

dependence of the retained terms.
Albeit the approximations, Eq. (11) is identical with

the newtonian many body equation of motion, except
that instead of the classical masses, the effective masses,
M eff

j = Mj(1 + uj), play the role. Depending on the de-
gree of compactness of the constituent bodies, the effective
masses could, in the case of uniform densities, be 1 to 5

times larger than the classical ones. Having noted this, it
is easy to write the first integrals of Eq. (11):

Momentum : P =
∑

M eff

i ẋi = const. (12)

Angular momentum : L =
∑

M eff

i xi × ẋi = const. (13)

Energy : E = T + V = const., (14)

T =
1

2

∑

i

M eff

i ẋ2

i , V = −
1

2
G

∑

i,j

M eff

i M eff

j /rij

Virial theorem : 2T̄ + V̄ = 0, (15)

where ’bars’ on T and V indicate averages over system
members or over time periods.

Increased effective mass in Eq. (11) and the virial the-
orem may prove useful in explaining the missing mass or
missing gravity issues, in the velocity curves of galaxies
and/or velocity dispersions in clusters of galaxies.

4. Concluding remarks

... it is contrary to the mode of thinking in science to

conceive of some thing that can act itself, but which

cannot be acted upon. Albert Einstein, 1922.

The quotation is from Einstein’s argument to set the
stage for the rejection of absolute space-time continuum
of special relativity in the presence of matter, and his
admiration of Mach’s reservation to ascribe an absolute
meaning to inertia irrespective of matter elsewhere. In an
attempt to amend newtonian dynamics, we have followed
Einstein’s advice and tried to alter the laws of gravity
and of motion simultaneously. The interaction lagrangian
of Eq. (2) contains both the particle coordinates, xi, and
the field gradient, ∇φ.

Noteworthy in Lint is the field energy that eventually
appears as the increased effective mass, M eff = M(1 + u)
in Eqs. (10-15). We recall that the main issues in the
analysis of the velocity curves of spirals are: a) insuffi-
ciency of the observed and/or estimated stellar masses
to provide the required dynamical effect, and b) the flat-
ness of the velocity curves beyond what the distribution
of observed masses would permit. Similarly, in clusters of
galaxies, again the observed masses are much smaller than
the virial ones, inferred from the velocity dispersion in the
cluster. The increased effective mass discussed above could
provide a partial answer in both cases of luminous mass
deficiency. The flatness of the rotation curves is a mat-
ter of the distribution of effective masses. For example, if
there are enough low luminosity collapsed faint objects in
the outskirts of spiral arms the velocity curves could be
flattened enough.

The field in Eq. (6), unlike the Newtonian one, is not
proportional to the mass of the constituent members and
does not admit of superposition principle. Even in the
case of approximate superposition in systems with widely
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separated components, the field of each component is a
highly nonlinear function of its mass. This nonlinearity
could prove useful in discussions of Tully-Fisher relation
in spirals, an empirical relation between the brightness of
the galaxy and the asymptotic orbital speed at the flat
end of the velocity curve. The Tully-Fisher relation, with
the assumption of a further empirical mass to light ra-
tio for the galaxy, translates into a power law between
the asymptotic speed and the total mass, vasymp ∝ Mβ ,
2.5 < β < 3.5. In the present dynamics, β will sensitiv-
ity depend on the compaction factor, the fraction, and
the distribution of the compact members of the galaxy.
Same considerations and reservations holds for the Faber-
Jackson relation, another empirical relation between the
velocity dispersion in cluster of galaxies and the luminos-
ity of the cluster.

In section 3.3, conservation laws were derived for the
case of approximate superposition. One can, however, do
better. The total lagrangian, L + Lint, is invariant under
time translations, coordinate translations, and coordinate
rotations. Therefore, seven first integrals of motion, cor-
responding to energy, momenta, and angular momenta,
should exist. This point of view will be presented else-
where.

Birkhof’s theorem states that in newtonian and rela-
tivistic regimes the gravitational field of a spherically sym-
metric system is independent from the internal structure
of the system. This is not the case in the present theory
as it is highlighted by the presence of u(s/R) in Eq. (10).
This may open the possibility of studying the history of
contraction or collapse of an object by logging the external
gravitational field of the object as it evolves.

From Eq.(7), the effective force on a test particle is
derived from a potential. It could be eliminated in a freely
falling frame of reference, meaning that the dynamics
developed here admits of equivalence principle. This is
hardly surprising. For, in the action integrals of Eqs. (1)
and (2) one single mass mi is used to compose the kinetic
and the gravitational potential energies of the system.

Finally a criticism: a) The mass equivalent of energy
is a relativistic concept. Yet, a gravitational effect was at-
tributed to it through the law of gravity of Newton. b) The
effective mass attains its full significance when the source
object shrinks into sizes of the order of Schwarzschild ra-
dius. Logically, a covariant general relativistic approach
should be adopted. Presently, we are looking for a field
equation and a geodesic one in which some sort of mu-
tual interactions between distant points, similar to one in
Lint are taken into account. As in Eq. (2), there will be a
free parameter α in the formulation. We will require the
emerging dynamics to reduce a) to the general relativistic
one in the limit α → 0; b) to the present dynamics in the
limit of weak fields but α 6= 0, and c) to the newtonian
one in the limit of zero α and weak field. This will be
presented elsewhere.

Appendix A: Reduction of Lint, Equation(2)

We have already seen the formal role of the interaction
lagrangian, Lint in altering the equations of motion and
of the field. Its numerical values are needed in the study
of orbits, Eq.(7); virial theorem, Eq. (15), etc. Here, we
calculate it a) for a single uniform spherical mass, and b)
for a collection of unform spheres.

a)For a spherically symmetric field the non newtonian
integral appearing in Eq. (7) is

lint(r) =
1

8π

α

c2

∫

|dφ(r′)/dr′|2

|r − r′|
d3r′. (A.1)

In an expansion of [r − r′]−1 in Legendre polynomials,
only the l = 0 term will have non vanishing contribution;
for dφ/dr′ has no directional dependence. We carry out
angular integrations and split the radial range of the in-
tegration into three intervals 0 < r′ < R, R < r′ < r and
r < r′ < ∞. Thus,

lint =
α

2c2

[

1

r

∫ R

0

∣

∣

∣

∣

dφ(r′)

dr′

∣

∣

∣

∣

2

r′2dr′ +
1

r

∫ r

R

∣

∣

∣

∣

dφ(r′)

dr′

∣

∣

∣

∣

2

r′2dr′

+

∫

∞

r

∣

∣

∣

∣

dφ(r′)

dr′

∣

∣

∣

∣

2

r′dr′

]

. (A.2)

The expression for the field gradient in the first integral
is the interior solution of Eq. (9) and in the other two are
the outer solution of Eq. (8). The remaining mathemat-
ical manipulations are elementary, though lengthy. One
eventually arrives at

lint =
GM

r
u

( s

R

)

, s =
αGM

c2
, (A.3)

where

u(y) = −
1

2
+

3

y

[

1 −

√

(2 − 3y)

y
arctan

√

y

(2 − 3y)

]

(A.4)

The parameter s/R indicates the degree of compaction
of the central body. As the body contracts from an
initially dispersed state, (s/R) ≈ 0, to its maximum
allowable compact state, (s/R = 2/3), u(s/R) increases
from zero to 4. A plot of u(s/R) is given in figure below.
In newtonian language, the effect on the motion of an
orbiting satellite is to make the central body look (1 + u)
times more massive than what it does in newtonian
regime.

b)Multi-component systems: In Eq. (A.1) The main
contribution to the integral comes from the immediate
vicinity of the central body. As one approaches the grav-
itating body from outside, |dφ(r′)/dr′|

2
grows roughly as

r′−4 up to the surface of the body and fades out to zero
at its center. Assume a system consisting of two well sep-
arated spheres (M1, R1) at x1 and (M2, R2) at x2 with
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Fig.A.1. u(s/R) versus s/R, the degree of compactness
of the central body.

|x1 − x2| ≫ R1&R2. From Eqs. (5) and (6), we read

|∇φ(x′)|2 =

[

1 −
αG

c2

(

M1

|x′ − x1|
+

M2

|x′ − x2|

)]

−2

× G2

[

M2
1

|x′ − x1|4
+

M2
2

|x′ − x2|4

+ 2M1M2

(x′ − x1).(x
′ − x2)

|x′ − x1|3|x′ − x2|3

]

. (A.5)

Again, the main contributions come from the vicinities
of the two spheres. In the immediate vicinity of sphere
1, however, G2M2

1 |x
′ − x1|

−4 is large. While, with
the assumption of large separation of the two spheres,
G2M2

2 |x
′−x2|

−4 is insignificant. Vice versa for the vicinity
of sphere 2. The expression containing (x′ − x1).(x

′ − x2)
practically adds up to zero upon integration over x′,
because of its directional dependencies. We conclude that

lint(x) ≈
GM1u1

|x − x1|
+

GM2u2

|x − x2|
, ui = u

(

si

Ri

)

. (A.6)

Similarly, for a system of many, but well separated, com-
ponents one obtains

lint(x) ≈ G
∑

i

Miui

|x − xi|
, ui(si/Ri). (A.7)
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