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ABSTRACT

We propose an action-based f (R) modification of Einstein’s gravity that admits a modified Schwarzschild-deSitter metric. In the weak
field limit this amounts to adding a small logarithmic correction to the Newtonian potential. A test star moving in such a spacetime
acquires a constant asymptotic speed at large distances. This speed, calibrated empirically, is proportional to the fourth root of the
mass of the central body in compliance with the Tully-Fisher relation. A variance of MOND’s gravity emerges as an inevitable
consequence of the proposed formalism. It has also been shown (Mendoza et al. 2006, [arXiv:astroph/0610390]) that a) the
gravitational waves in this spacetime propagate with the speed of light in vacuum and b) there is a lensing effect added to what one
finds in the classic GR.
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1. Introduction

Convinced of cosmic speed up and not finding the dark energy
hypotheses a compelling explanation, some cosmologists have
looked for alternatives to Einstein’s gravitation (Deffayet et al.
2002; Freese et al. 2002; Ahmed et al. 2004; Dvali et al. 2003;
Capozziello et al. 2003; Carroll et al. 2004; Norjiri et al. 2003,
2004, 2006; Das et al. 2006; Sotiriou 2005; Woodard 2006).
There is a parallel situation in galactic studies. Dark matter hy-
potheses, intended to explain the flat rotation curves of spirals
or the large velocity dispersions in ellipticals, have raised more
questions than answers.

Alternatives to Newtonian dynamics have been proposed
but have had their own critics. Foremost among such theo-
ries, the Modified Newtonian Dynamics (MOND) of Milgrom
(1983a–c) is able to explain the flat rotation curves (Sandres
et al. 1998, 2002) and justify the Tully-Fisher relation with con-
siderable success. But it is often criticized for the lack of an
axiomatic foundation; see, however, Bekenstein’s (2004) TeVeS
theory where he attempts to provide such a foundation by intro-
ducing a tensor, a vector, and a scalar field into the field equa-
tions of GR.

Here we are concerned with galactic problems. We suggest
following cosmologists and look for a modified Einstein gravity
tailored to galactic environments. In Sects. 2 and 3 we design
an action integral, different but close to that of Einstein-Hilbert,
and find a spherically symmetric static solution to it. In Sect. 4
we analyze the orbits of test objects moving in this modified
spacetime and demonstrate the kinship of the obtained dynamics
with MOND. Section 5 is devoted to concluding remarks.

2. A modified field equation

The model we consider is an isolated mass point. As an alterna-
tive to the Einstein-Hilbert action, we assume

S =
1
2

∫
f (R)
√−gd4x, (1)

where R is the Ricci scalar and f (R) an as yet unspecified, but
differentiable function of R. Variations in S with respect to the
metric tensor lead to the following field equation (Capozziello
et al. 2003):

Rµν − 1
2
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f
h
=
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) 1

h
, (2)

where h = d f /dR. The case f (R) = R+const. and h = 1 gives the
Einstein field equation with a cosmological constant included in
it. For the purpose of galactic studies, we envisage a spherically
symmetric static Schwarzschild-like metric,

ds2 = −B(r)dt2 + A(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (3)

From Eqs. (2) and (3) one obtains
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Equation (4) is the combination Rtt/B+Rrr/A, Eq. (5) is Rrr/A−
Rθθ/r2, and Eq. (6) is the rr-component of the field equation.
Finally, Eq. (7) is from the contraction of Eq. (2). In principle, for
a given h (or f ) one should be able to solve the four Eqs. (4)−(7)
for the four unknowns, A, B, R, and f (or h), as functions of r.
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3. Solutions of Eqs. (4)–(7)

We are interested in solutions that differ from those of the classic
GR by small amounts. For the classic GR one has h = 1 and
A(r)B(r) = 1. Here, we argue that, if the combination B′/B +
A′/A is a well-behaved differential expression, it should have a
solution of the form A(r)B(r) = g(r). Furthermore, g(r) should
differ from 1 only slightly, in order to remain in the vicinity of
GR. There are a host of possibilities. For the sake of argument
let us assume g(r) = (r/s)α ≈ 1 + α ln (r/s), where α is a small
dimensionless parameter and s is a length scale of the system to
be identified shortly. Equation (4) splits into

B′

B
+

A′

A
=
α

r
, AB =

( r
s

)α
, (8)
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r
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Equation (9) has the solution h = (r/s)β, β = α + O
(
α2

)
, and

1 − 1
2α + O

(
α2

)
. Of these, the solution h ≈ (r/s)α satisfies the

requirement h → 1 as α → 0. The second solution is discarded.
Substituting AB = h = (r/s)α in Eq. (5) gives

1
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s

)α 1
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where λ is a constant of integration. Actually there is another
constant of integration multiplying the (s/r) term. We have,
however, absorbed it in the expression for s that we now de-
fine. For α = 0, Eqs. (10) and (11) are recognized as the
Schwarzschild-deSitter metric. Therefore, s is identified with the
Schwarzschild radius of a central body, 2GM/c2, and λ with a
dimensionless cosmological constant. Substitution of Eqs. (10)
and (11) into Eqs. (6) and (7) gives
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· (13)

The Ricci scalar of the Schwarzschild space is zero and that of
the deSitter or the Schwarzschild-deSitter space is constant. For
non zero α, however, R is somewhere between these two ex-
tremes. At small distances it increases as r−2 and at large r’s it
behaves as s−2(s/r)α ≈ s−2(1−α ln r/s). The spacetime is asymp-
totically neither flat nor deSitterian. Cosmologists may find this
variable Ricci scalar relevant to their purpose (see also Brevik
et al. 2004, for a different modification of the Schwarzschild-
deSitter metric). Likewise, we began with f as a function of R
rather than r. Elimination of r between Eqs. (12) and (13) pro-
vides one in terms of the other. For λ = 0, one easily finds

f = (3α)α/2s−αR(1−α/2) ≈ R
[
1 − α

2
ln (s2R) +

α

2
ln (3α)

]
. (14)

Once more we observe the mild logarithmic correction to the
classic GR.

4. Applications to galactic environments

In this section we demonstrate that

– the logarithmic modification of the Einstein-Hilbert action,
in the weak field regime, results in a logarithmic correction
to the Newtonian potential. A test star moving in such a po-
tential acquires a constant asymptotic speed, v∞ = c

√
α/2;

– the asymptotic speed cannot be independent of the central
mass. We resort to the observed rotation curves of spirals to
find this dependence;

– the high- and low-acceleration limits of the weak-field
regime are the same as those of MOND. A kinship with
MOND follows.

4.1. Orbits in the spacetime of Eqs. (10)–(13)

We assume a test star orbiting a central body specified by its
Schwarzschild radius, 2GM/c2. We choose the orbit in the plane
θ = π/2. The geodesic equations for r, ϕ, and t are
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respectively. Equations (16) and (17) immediately integrate into

r2dϕ/dτ = J, a constant, (18)

dt/dτ = 1/B. (19)

Substituting the latter into Eq. (15) and assuming a circular orbit,
dr/dτ = 0, gives
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where we have used Eq. (11) to eliminate A. In galactic environ-
ments what one measures as the circular orbital speed is
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Eliminating J between Eqs. (21) and (20) gives
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Further substitution for B from Eqs. (11) and (10) yields
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To put Eq. (23) in a tractable form:

– we neglect the λ term and substitute s = 2GM/c2;
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Table 1. The data in the first four columns are from Sanders et al.
(2002). The last two columns show the empirical relation between the
asymptotic speeds and the masses of the galaxies.

Galaxy R M v∞ 2(v∞/c)2 α0

kpc 1010 M� km s−1 ×107 ×1012

NGC 5533 72.0 22.0 250 13.9 3.02
NGC 3992 30.0 16.22 242 13.0 3.28
NGC 5907 32.0 10.8 214 10.2 3.15
NGC 2998 48.0 11.3 213 10.1 3.05
NGC 801 60.0 12.9 218 10.6 3.00

NGC 5371 40.0 12.5 208 9.61 2.76
NGC 4157 26.0 5.62 185 7.61 3.24
NGC 4217 14.5 4.50 178 7.04 3.35
NGC 4013 27.0 4.84 177 6.96 3.19
NGC 4088 18.8 4.09 173 6.65 3.32
NGC 4100 19.8 4.62 164 5.98 2.81
NGC 3726 28.0 3.24 162 5.83 3.26
NGC 4051 10.6 3.29 159 5.62 3.12
NGC 4138 13.0 3.01 147 4.82 2.80
NGC 2403 19.0 1.57 134 3.99 3.19
UGC 128 40.0 1.48 131 3.81 3.14

NGC 3769 33.0 1.33 122 3.31 2.88
NGC 6503 21.8 1.07 121 3.25 3.14
NGC 4183 18.0 0.93 112 2.79 2.89
UGC 6917 9.0 0.74 110 2.69 3.12
UGC 6930 14.5 0.73 110 2.69 3.14

M 33 9.0 0.61 107 2.54 3.24
UGC 6983 13.8 0.86 107 2.54 2.74
NGC 7793 6.8 0.51 100 2.22 3.10
NGC 300 12.4 0.35 90 1.80 3.02

NGC 5585 12.0 0.37 90 1.80 2.94
NGC 6399 6.8 0.28 88 1.72 3.22
NGC 55 10.0 0.23 86 1.64 3.39

UGC 6667 6.8 0.33 86 1.64 2.83
UGC 6923 4.5 0.24 81 1.46 2.95
UGC 6818 6.0 0.14 73 1.18 3.12

R: radius of the galaxy (kpc); M: stellar + HI mass (1010 M�); v∞:
asymptotic speed (km s−1); α0: 2(v∞/c)2 M−0.494.

– we adopt the approximation x−α = exp (−α ln x) = 1−α ln x+
O(α2);

– the terms containing s are small, so we retain only the first
order terms;

– v is measured in units of c. We restore it hereafter.

With these provisions, Eq. (23) reduces to

v2 =
1
2
αc2 +

GM
r

[
1 +

1
2
α

{
1 + ln

(
2GM
c2r

)}]
· (24)

A plot of v2 as a function of r has the horizontal asymptote 1
2αc2.

4.2. Determination of α

The asymptote in Eq. (24) cannot be a universal constant. It is not
possible to imagine that a galaxy and a speck of dust dictate the
same speed for distant passing objects. The parameter α should
depend on the mass of the gravitating body residing at the origin,
because any localized matter will betray no characteristics other
than its mass when sensed from far distances. To find the mass
dependence of α we resort to observations. From Sanders &
Verheijn (1998) and Sanders & McGaugh (2002), we have com-
piled a list of 31 spirals for which total masses, asymptotic or-
bital speeds, and velocity curves are reported. The figures in their

Fig. 1. A log-log plot of α versus M. The equation for the power law fit
is shown in the legend.

papers contain the observed circular speeds and the Newtonian
ones derived from the observed mass of the stellar and HI com-
ponents of the galaxies. We have selected those objects that a)
have a noticeable horizontal asymptote; b) have fairly reduced
Newtonian speeds by the time the flat asymptote is approached;
and c) do not possess anomalously high HI content to hinder es-
timates of the total mass and the size of the galaxy. We also made
the assumption that the total HI and stellar mass are distributed
spherically symmetrically and mimic a point mass if observed
from far distances. The relevant data along with α = 2v2∞/c2 are
reported in the table, and the figure is a log-log plot of the calcu-
lated α versus the mass. A power law fit to the data gives

α = (3.07 ± 0.18) × 10−7(M/1010 M�)0.494. (25)

It is important to note that Eq. (25) is not a consequence of the
present theory, but rather an empirical relation dictated by obser-
vations and based on the masses and the asymptotic speeds of a
selected list of galaxies reported by Sanders et al. Together with
the popularly accepted rule that the masses and the luminosities
of spirals are linearly related, it leads to a Tully-Fisher (TF) re-
lation, Luminosity ∝ v∞4.05. Observational actualities, however,
are complicated. In a recent paper, Kregel et al. (2005) distin-
guish between different TF relations based on the luminosity,
disk mass, maximum disk stellar mass, baryonic mass (mean-
ing stellar+HI mass), baryonic + bulge mass, etc. The reported
exponents range from 3.23 ± 0.36 to 4.2 ± 0.23, depending on
the type of qualification; see also Gurovich et al. (2004). A more
elaborate discussion of the issue falls beyond the scope of the
present paper.

The main sources of error in Eq. (25), both in the expo-
nent and in the slope, are a) the estimates of the total masses
of the galaxies; b) the judgment whether what one measures as
the asymptotic speed is indeed the orbital speed at the far out-
skirts of the galaxy; c) the popular assumption that the masses
and luminosities of the spirals are linearly related, and finally;
d) our heuristic assumption that the galaxies can be treated as
spherically symmetric objects. In spite of all these uncertainties,
we note that the exponent 0.494 is astonishingly close to 0.5,
the figure that one finds from MOND. We also demonstrate in
the following section that the slope 3.00 × 10−7 is in very good
agreement with the characteristic acceleration of MOND.

4.3. Kinship with MOND

We recall that in the weak-field approximation, the Newtonian
dynamics is derived from the Einsteinian one by writing the
metric coefficient B =

(
1 + 2φ/c2

)
, φ = GM/r and by expanding
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all relevant functions and equations up to the first order in φ/c2.
In a similar way one may find our modified Newtonian dynamics
from the presently modified GR by expanding B(r) of Eq. (11)
up the first order in α and s/r. Thus

B(r) = 1 + α + α ln (r/s) − s/r = 1 + 2φ(r)/c2, (26)

where the second equality defines φ(r). Let us write Eq. (25)
(with slight tolerance) as α = α0(GM/GM�)1/2 and find the
gravitational acceleration

g = |dφ/dr| = (a0gn)1/2 + gn

= gn for gn 	 a0

= (a0gn)1/2 for a0 	 gn → 0, (27)

where we have denoted

a0 = α
2
0c4/4GM� and gn = GM/r2. (28)

The limiting behaviors of g are the same as those of MOND.
One may, therefore, comfortably identify a0 as MOND’s char-
acteristic acceleration and calculate α0 anew from Eq. (28). For
a0 = 1.2 × 10−8 cm/s2, one finds

α = 2.8 × 10−12 (M/M�)1/2 . (29)

It is gratifying how close this value of α is to the one in
Eq. (25) and how similar the low and high acceleration limits
of MOND and the present formalism are, in spite of their to-
tally different and independent starting points. It should also be
noted that there is no counterpart to the interpolating function of
MOND here.

5. Concluding remarks

We have developed an f (R) ∝ R1−α/2 gravitation that is essen-
tially a logarithmic modification of the Einstein-Hilbert action.
In spherically-symmetric static situations, the theory allows a
modified Schwarzschild-deSitter metric. This metric in the limit
of weak fields gives a logarithmic correction to the Newtonian
potential. From the observed asymptotic speeds and masses of
spirals we learn that the correction is proportional to almost the
square root of the mass of the central body. Flat rotation curves,
the Tully-Fisher relation (admittedly with some reservations),
and a version of MOND emerge as natural consequences of the
theory.

Actions are ordinarily form invariant under the changes in
sources. Mass dependence of α destroys this feature and any
claim for the action-based theory should be qualified with such
reservation in mind. This, however, should not be surprising, for
it is understood that all alternative gravitations, one way or an-
other, go beyond the classic GR. One should not be surprised if
some of the commonly accepted notions require re-thinking and
generalizations.

Since the appearance of an earlier version of this paper in
arXiv, Mendoza et al. (2006) have investigated the gravitational
waves and lensing effects in the proposed spacetime. They find
the following: a) in any f (R) = Rn gravitation, gravitational
waves travel with the speed of light in a vacuum; and b) in the
present spacetime, there is a lensing in addition to what one finds
in the classical GR. Their ratio of the additional deflection angle
of a light ray, δβ, to that in GR, βGR, can be reduced to

δβ/βGR =
1
2
α ln (rm/s − 1), (30)

where rm is the impact parameter of the impinging light. The
proportionality of δβ to α is expected, because the proposed met-
ric is in the neighborhood of GR. Its increase with increasing
rm also should not be surprising, since the theory is designed to
highlight unexpected features at far rather than nearby distances.

Soussa et al. (2004) maintain that “no purely metric-based,
relativistic formulation of MOND whose energy functional is
stable can be consistent with the observed amount of gravita-
tional lensing from galaxies”. For at least two reasons, this no-
go theorem does not apply to what we have highlighted above as
the kinship with MOND:

a) Apart from their common low and high acceleration regimes,
the two theories are fundamentally different. The gravita-
tional acceleration in the weak field limit of the present the-
ory is the Newtonian one to which a small 1/r correction is
added. That of MOND, on the other hand, is a highly non-
linear function of the Newtonian acceleration through an ar-
bitrary interpolating function.

b) More important, however, is one of the authors’ assumptions
that “the gravitational force is carried by the metric, and its
source is the usual stress tensor”. This is not the case in the
present theory. Although we have only worked out the vac-
uum solution for a point source, the mass dependence of the
exponent α in Eqs. (10) and (11) makes the theory different
from what the assumption requires.

There are two practices for obtaining the field equations of f (R)
gravity, the metric approach, where gµν’s are considered as dy-
namical variables, and that of Palatini, where the metric and the
affine connections are treated as such (see Magnano 1995, for a
review). Unless f (R) is linear in R, the resulting field equations
are not identical (see Ferraris et al. 1994). The metric approach is
often avoided for leading to fourth-order differential equations. It
is also believed to have instabilities in the weak field approxima-
tions (see e.g., Sotiriou 2005; and also Amarzguioui et al. 2006).
In the present paper we do not initially specify f (R). Instead, at
some intermediate stage in the analysis we adopt an ansatz for
d f (R)/dR as a function of r and work from there to obtain the
metric, the Ricci scalar, and eventually f (R). This enables us to
avoid the fourth-order equations. This trick should work in other
contexts, such as cosmological ones.

The theory presented here is preliminary. Further investiga-
tions are needed from both formal and astrophysical points of
view. The author’s list of priorities include the following:

– Stability of the metric of Eqs. (10) and (11). The approach
should be to impose a small perturbation δgµν on the met-
ric, linearize the field Eq. (2), and ask for the condition of
stability of the metric. Such a condition, if it exists at all,
might throw some light on the mass dependence of α, the
empirical relation of Eq. (29). Managing the linear problems
is straightforward. Here, however, the bookkeeping is exten-
sive and laborious.

– Extension of the theory, at least in the weak field regime, to
many body systems and to cases with a continuous distribu-
tion of matter, in order to obtain the metric inside the matter.

– Developing the theory beyond the first order in α
– Solar system tests of the theory.
– Possible cosmological implications of the theory.
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