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Whenever and wherever one talks of dark matter, one does so when and where there is a
luminous matter and a dynamical issue to be settled. We promote this observation to the status
of an axiom and assume that there is a dark companion to every luminous matter and there are
orders to this companionship. To pursue the proposition in a formal and quantitative manner, we
consider the anomalous rotation curves of spiral galaxies. From the available observations, we infer
the gravitational potential prevailing in the outer parts of the galaxy and, thereof, construct the tt-
component of the metric of the embedding spacetime. Next we examine a perfect fluid candidate
as the dark companion and solve the relevant GR equations. We are able to determine the strength
and the distribution of the dark fluid that accompanies a point baryonic mass. Finally, we argue
that the whole paradigm can be explained just as well in terms of an alternative theory.
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I. INTRODUCTION

That the baryonic matter of galaxies, clusters of galax-
ies, or for that matter, of the universe at large, does not
provide sufficient gravitation to explain the observed dy-
namics of the systems, is an established fact. To solve
the dilemma, dark matter/energy scenarios and/or alter-
native theories of gravitation have been speculated and
debated. The fact, however, remains that the proponents
of dark matter/energy have always looked for it in bary-
onic environments. No one has, so far, reported a case
where there is no luminous matter and/or cosmic radi-
ation, but there is a dynamical problem to be solved.
In view of this negative observation, it is not unreason-
able to hypothesize that any luminous matter has a dark
companion and there are rules to this companionship as
regards the magnitudes and the distributions of the com-
panion and the matter itself.

On the other hand such a point of view, that denies
the independent existence of the dark matter/energy, is
equivalent to the assumption that the known theories of
gravitation , based on baryonic matter alone, do not tell
the whole story and there is room for amendments. This
conclusion, in turn, reduces the distinction between the
dark matter/energy hypotheses and alternative theories
to the level of semantics. As long as the dark matter dis-
plays no other physical characteristics than gravitation,
one will have the option, either to assume a dark com-
ponent to every baryonic matter subject to certain rules,
and account for its gravitation in a conventional way, or
simply adhere to the baryonic matter but resort to an
alternative law of gravitation. The two points of view
should be equivalent.
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With this perspective in sight, here we confine the dis-
cussion to the problem of spiral galaxies. There is sub-
stantial amount of information in the observed rotation
curves of spirals to construct an empirical law of gravity.
This step leads to a partial construction of the spacetime
metric around the galaxy. Next we look for the required
modification of the field equations of GR to ensure the
self-consistency of the theory. The end results can then
be interpreted, interchangeably, either in terms of a dark
matter scenario or in terms of an alternative theory of
gravitation

II. OBSERVED FACTS AND IMPLICATIONS

There are three main characteristics to the rotation
curves of spirals.

• a) They often have a flat asymptote at far distances
from the galaxy, see e.g. [1], [2], [3], [4], & [5].

• b) Their asymptotic speed is, more often than not,
proportional to the fourth root of the mass of the
galaxy, the Tully-Fisher relation [6].

• c) Deviations from the classical concepts (in this
case gravitation) show up in large scale systems and
at large distances.

These observed facts will be treated as axioms and will
serve as the starting point of what follows.

The model: A test object orbits a galaxy at far dis-
tances from it, and has a constant distance-independent
circular speed, item a above. To have such a speed
one requires a force field that fades away as r−1

and, therefore, a gravitational potential as ln r. In
the GR perspective, the metric field surrounding the
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galaxy should also exhibit the same logarithmic behavior.

Let us view the galaxy from afar and approximate it
by a point mass. The spacetime around will accordingly
be spherically symmetric and isotropic:

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2. (1)

It is customary to write B(r) = 1 + 2φ(r)/c2 and, in the
weak field regime, to consider φ(r) as the gravitational
potential. One, however, knows that at close distances
the gravitation is newtonian, item c above, and at far
distances as we just learned should be proportional to
ln r. Thus, we let

B(r) = 1 −
s

r
+ λ ln r, (2)

where s = 2GM/c2 is the Schwarzschild radius of the
galaxy, and λ is a dimensionless constant. It will emerge
as part of the sought-after modification to the field
equations.

What is λ? The answer is in the Tully-Fisher relation,
item b above. From Eq. (2), the circular speed of an
orbiting test object is

v2 =
1

2
c2r

dB

dr
=

GM

r
+

1

2
λc2. (3)

By Tully-Fisher, the asymptotic speed,
√

λc2/2, is pro-
portional to the fourth root of the mass of the galaxy.
This implies

λ = λ0

(

M

M⊙

)1/2

. (4)

What is λ0 ? In his theory of MOND, Milgrom [7]
proposes a law of gravitation whose strong and weak
limits are the newtonian gravity, gN = GM/r2, and
(a0gN )1/2, respectively. From the inspection of the ob-
served data Begeman et al. [5] find a0 ≈ 1.2 × 10−8

cm sec−2. With λ of Eq. (4), Eq. (3) has the same
strong and weak limits of MOND. We use this coinci-
dence to find λ0. We divide Eq. (3) by r, substitute
for λ from Eq. (4), and identify the resulting term,
1
2λ0c

2(GM/r2GM⊙)1/2 with Milgrom’s a0gN . We ob-
tain

λ0 =

[

4a0

c2

GM⊙

c2

]1/2

≈ 2.8 × 10−12. (5)

The problem is partially solved. We have constructed
an empirical law of gravity, whose strong and weak
limits are those of MOND. There remains to build the
empirically constructed B(r) into a consistent general
relativistic formalism.

III. THE MODIFIED FIELD EQUATIONS

We seek this modification by adding a new tensor term
to Einstein’s field equations. To respect the Biancci iden-
tities and the conservation laws of the baryonic mat-
ter, this tensor should have a vanishing covariant diver-
gence.This is best achieved by adopting a dark matter
point of view. We assume the galaxy, approximated by
a point mass, M , has a ‘dark perfect fluid’ companion,
with the energy momentum tensor

T µν
d = pdg

µν + (ρd + pd)U
µ
d Uν

d , (6)

T µν
d ;ν = 0, U t

d = gtt, U i
d = 0, (7)

where ρd and pd are the density and the pressure of the
dark fluid, respectively. The fluid is spherically symmet-
ric and is at rest. Its 4-velocity, Uκ

d , is indicated in Eq.
(7). The amended field Equations in the ‘baryonic vac-
uum’ of the galaxy now reads

Rµν −
1

2
gµνR = −8πGTdµν. (8)

The baryonic matter of the galaxy has a δ-function den-
sity distribution and is of zero pressure. It will show up
as a constant of integration in the final stage of integra-
tions. The spacetime metric is still spherically symmetric
and isotropic as in Eq.(1). From Eq. (8), the two combi-
nations, Rtt/2B +Rrr/2A+Rθθ/r2 and Rtt/B +Rrr/A,
give

d

dr
(
r

A
) = 1 − 8πGρdr

2, (9)

B′

B
+

A′

A
= 8πGrA(ρd + pd). (10)

To this we add the time-component of Eq.(7),

p′d
ρd + ρd

= −
1

2

B′

B
. (11)

The space components of Eq. (7) are trivially satisfied on
account of U i

d = 0. Equation (9) immediately integrates
into

1

A
= 1 −

s

r
− 2G

md(r)

r
, md(r) = 4π

∫

ρdr
2dr, (12)

where s is the integration constant and as in Eq. (2)
should be identified with Schwarzschild’s radius of the
galaxy. We already have inferred B(r) from observa-
tions, Eq. (2). There remains to solve Eqs. (10)-(12)
for A(r), ρd and pd. Exact solutions are probably to be
obtained numerically. Their weak field approximations
are, however, analytically available and are inspiring. We
consider the dimensionless quantities λ, s/r, & Gmd(r)/r
much smaller than 1, and keep only their first order terms
in all calculations. We also assume and verify later that
pd ≪ ρd. With these provisions, Eqs. (10) and (12) gives

md(r) =
λ

2G
r, ρd(r) =

λ

8πG

1

r2
. (13)
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With this ρd, Eq. (11) integrates into

pd(r)=
λ

32πG

[

λ

r2
+

2

3

s

r3

]

=
λ

4
ρd +

(2πGλ)1/2

3
sρ

3/2
d ≪ ρd. (14)

The second equality in Eq. (14) is obtained by elimi-
nating r between ρd(r) and pd(r). The inequality is on
account of the smallness of λ. If one is allowed to use the
terminologies and concepts of the real world’s physics,
one might say the dark fluid has a barotropic equation
of states.

The goal set in the introduction is, at least partially,
arrived at. For a point mass M (Schwarzschild’s radius
s) we have found a static dark fluid companion. Its
strength and distribution is given by Eqs. (13), (14),
(4), and (5). This parlance, however, is no more than
borrowing a jargon from the physics of the observable
world to explain the purpose. Equivalently, one may
choose to say that the gravitation produced by a point
mass is not newtonian and there is a logarithmic cor-
rection to it. Or, rather, the spacetime around a point
mass is not that of Schwarzschild but that given by Eqs.
(2), (12) and (13).

How much dark matter in a typical spiral? The
question should be qualified by giving the radius inside
which the mass is inquired. From Eq. (13), after insert-
ing a factor c2, which so far was suppressed, and substi-
tuting for λ from Eqs. (4) and (5), one finds

md(r)

1010M⊙

=2.8

[

M

1010M⊙

]1/2 [

r

10 kpc

]

, or

md(r)

M⊙

=1.4 × 10−4

[

M

m⊙

]1/2
[ r

a.u.

]

. (15)

The dark matter inside a sphere, centered on the
baryonic point mass, is proportional to the radius of
the sphere and to square root of the mass residing at
the center. For the Milky Way of total stellar + HI

mass ≈ 6 × 1010M⊙ at r = 10 and 50 kpc (the later
is the distance to the Large Magellanic Clouds) the
dark matter is 7 and 35 ×1010M⊙, respectively. They
amount to 55% and 83% of the required dynamical
mass. The dark matter accompanying Sun within the
outermost reaches of the solar system, 100 a.u., say, is
≈ 1.4 × 10−2M⊙ and less by a factor of one hundred at
Earth’s distance.

Spacetime is not flat. From Eqs. (2), (12), and
(13), one has

1

A
= 1 − λ −

s

r
, B = 1 + λ ln r −

s

r
. (16)

Contracting Eqs. (8) and (6) and using Eqs. (13), and

(16), gives the scalar curvature of the 4-spacetime

R = 8πG [3pd − ρd] ≈ −
λ

r2
. (17)

The scalar curvature of the 3-space, calculated from the
3-space metric, gij , i, j = r, θ, ϕ, turns out to be

R(3) ≈ −2
λ

r2
. (18)

Both curvatures are negative and fade away as r−2.
This is to be contrasted with Schwarzschild’s spacetime,
where the spacetime and the 3-space have zero scalar
curvatures.

There is an excess lensing. This is to be expected
on account of the excess gravitation of the dark compan-
ion. A light ray impinging on a lens from infinity and
escaping to infinity bends by an angle [9]

β = 2

∫ ∞

r0

A1/2

[

(

r

r0

)2
B(r)

B(r0)
− 1

]−1/2
dr

r2
− π, (19)

where r0 is the distance of the closest approach to the
lens. Substituting for A and B from Eq. (17), and keep-
ing only the first order terms in s/r, s/r0 and λ in the
integral, gives

β = 2
s

r0
+

1

2
πλ = 2

s

r0
+

1

2
πλ0

(

M

M⊙

)1/2

. (20)

In this first order approximation, the excess deflection,
1
2πλ, is independent of the impact parameter of the
incident light ray. It is proportional to the square root of
the mass of the lens, and could be large in large systems,
clusters of galaxies, say.

Solar system implications: From Eq. (20), for
a light ray grazing Sun’s limb, the excess deflection
amounts to ≈ 10−6 arcsec, negligible compared with the
general relativistic value of 1.8 arcsec.
Precession of the perihelion of an orbit is obtained from
[9]

δφ=2

∫ r+

r
−

A1/2(r)

J2

[

1

B(r)
− E −

1

r2

]−1/2
dr

r2
− 2π

=3π
s

L
+ λ(

2s

L
)1/2

[

1 +
3

4
e

]

, (21)

where r± are the aphelion and the perihelion of the orbit,
and E, J, L, & e are its energy, angular momentum,
semi latus rectum, & eccentricity, respectively. Again in
view of the smallness of λ, the excess precession is much
smaller than the conventional GR value.

Beyond the point mass: The metric coefficient of
Eq. (16) are for a point mass. Galaxies at close and in-
termediate distances do not appear as such. In view of
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the smallness of λ and the proportionality of md(r) to
r, however, contributions of λ terms are significant only
at far distances. Otherwise the gravitational potential is
essentially newtonian and the spacetime as that of GR,
item c above. Thus, considering the present-day accura-
cies of the observational data, one may generalize Eqs.
(16) by replacing the point mass term, −s/r , by the
whatever GR requires for an extended object, and leave
the λ-terms as they are. In the weak field regime, the
metric coefficients become

1

A
=1 − λ − 2Gc−2

∫

dr′3ρ(r′)|r-r′|−1, (22)

B=1 + λ ln r − 2Gc−2

∫

dr′3ρ(r′)|r-r′|−1. (23)

It should, however, be noted that this generalization
does not follow from a founding principle. It can only
serve practical exigencies.

Kinship with f(R) gravity of [10]: In [10] we in-
troduce an Einstein-Hilbert action, which is essentially
R1−λ/2 ≈ R[1 − 1

2λ ln r], and obtain a spacetime met-
ric with a logarithmic correction to it. In the weak field
regime, its near- and far- distance limits are the same as
those of the present paper (and of those of MOND). For
practical purposes the two theories are identical. There
is, however, an axiomatic advantage to the present for-
malism. As noted earlier, the present formalism respects
the Biancci identities and the conservation laws of the
baryonic matter. No f(R) formalism does so.

Mendoza et al [11] shows that, in the spacetime of [10],
the light and the gravitational waves propagate with the
speed of light in vacuum. Their conclusion is also true in
the present case, on account of the identical near- and far-
distance limits of the present and the f(R) formalisms of
[10].

IV. CONCLUDING REMARKS

The proposed formalism is a modified GR paradigm
or, equivalently, a dark matter scenario, to understand
the anomalous rotation curves of the spiral galaxies. It
is an inverse approach. From the available observations,
the gravitational potential and, thereof, part of the
spacetime metric is constructed. Next the GR formalism
is called upon to infer what modifications to Einstein’s
field equations produces a cohesive and self-consistent
picture. Naturally, the credibility of the proposition
depends on how accurately the axiomatized model
of section II describes the realities of the skies. For
example, if the future observations reveal a decline
in the rotation curves at very far distances, as some
authors have pointed at such indications in the observed
data [12] or entertained it on theoretical grounds [13],
the model and the empirically inferred gravitational
potential should be adjusted accordingly.

Ascription of a dark companion to every baryonic mat-
ter, the rules of the companionship, and the consequent
equivalence of the whole scenario to an alternative GR
theory are the highlights of the paper. However, only the
case of a point mass is handled. An axiomatic general-
ization to many body systems and continuous distribu-
tions of luminous matter requires further deliberations
and better and more extensive observational data. One
might need further postulates. The difficulty lies in the
fact that a) there is no superposition principle to resort
to. One may not add the dark companions of two point
baryonic masses, say; for, λ is not proportional to M but
rather to its square root. b) The dark companion of a lo-
calized point mass is not itself localized. Certainly, more
accurate rotation speeds, specially in orbits outside the
plane of the galaxy will be helpful.
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