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Wherever one talks of dark matter, one does so where there is an observable matter and an
associated unsolved dynamical issue to be settled. We promote this observation to the status of an
axiom and conjecture that there is a dark companion to every baryonic matter, subject to certain
rules as regards its size, distribution. To pursue the proposition in a systematic way we resort to
the rotation curves of spiral galaxies. They have non classical features. First, we design a spacetime
metric around the galaxy to accommodate these features. Next we calculate the density and pressure
of a hypothetical dark matter that could generate such a spacetime. In the weak field regime and
for a spherical distribution of mass M , we are able to assign a dark perfect gas companion, whose
density is almost proportional to M

1/2 and fades away almost as r
−2. However, in view of this

orderly relation between the observable mass and its dark companion, one may choose to interpret
the whole scenario as an alternative theory of gravitation.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

That the baryonic content of galaxies, cluster of galax-
ies, or for that matter the universe at large, does not pro-
vide sufficient gravitation to explain the observed dynam-
ics of the systems is an established fact. To resolve the
dilemma, dark matter (energy) scenarios and/or alter-
native theories of gravitation have been speculated and
debated. The fact, however, remains that the proponent
of dark matter (energy) have always looked for it in bary-
onic environments. No one has, so far, reported a case
where there is no ordinary matter, but there is a dy-
namical puzzle to be resolved. In view of this negative
observation, it is not unreasonable to conjecture that:

‘Any baryonic matter has an ever attendant dark com-
panion, and there are rule to this companionship as re-
gards the size and the distribution of the matter and its
twin companion.’

On the other hand such a point of view, that denies
the independent existence of the dark matter, is equiva-
lent to the assumption that the known theories of grav-
itation, based on baryonic matter alone, do not tell the
whole story and there is room for amendments. This con-
clusion in turn reduces the distinction between the dark
matter scenarios and alternative theories to the level of
semantics: As long as the dark matter betrays no inter-
action with the baryonic matter other than the gravita-
tional one, one has the option either to assume a dark
component to every baryonic matter subject to certain
rules, and account for its gravitational field in the con-
ventional way; or simply adhere to the baryonic matter
but come up with an alternative law of gravitation.

This paper, like its two precursors [1], [2], is an in-
verse approach to understand the idiosyncracies of the
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rotation curves of spiral galaxies. Based on observations
we first design a spacetime metric that is capable of sup-
porting the non-classical features of the rotation curves.
This step amounts to actually giving the gravitational
potential at the outer reaches of a galaxy. Next we at-
tribute the deviations from the conventional baryon in-
duced gravitation to a dark companion to the galaxy, and
give a rule for the size and distribution of its density and
pressure.

II. OBSERVED FACTS AND IMPLICATION

There are three main characteristics to the rotation
curves of spirals

• They decline, if at all, much less steeply than the
Keplerian curves do, see, e. g. [3] - [10].

• Beyond the visible disks of the galaxies, orbital
speeds are, more often than not, proportional to
the fourth root of the mass of the galaxy, the Tully-
Fisher relation [11].

• Deviation from the classical concepts, in this case
the gravitation, show up in large scale systems and
at large distances, or in the description of Milgrom
at small gravitational accelerations [12].

These observed facts are our starting points. The galaxy,
though a flattened system, is approximated by a spher-
ically symmetric distribution of baryonic matter. Ac-
cordingly the spacetime external to it will be static and
spherically symmetric:

ds2 = −B(r)dr2 + A(r)dr2 + r2(dθ2 + sin2 θdϕ2). (1)

We adopt a dark matter language and assume that the
galaxy processes a static dark perfect gas companion
of density ρd(r), of pressure pd(r) << ρd(r), and of 4-
velocity,

Ut = −B1/2, Ur = Uθ = Uϕ = 0.
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In the baryonic vacuum, Einstein’s field equations be-
come

Rµν −
1

2
gµνR = − [pd gµν + (pd + ρd)UµUν ] , (2)

where we have let 8πG and c2 equal to 1. To respect the
Bianchi identities, one must require the 4-divergence of
the right hand side of Eq. (2) to varnish. This, in turn,
leads to the hydrostatic equilibrium of the dark fluid and
to a differential equation for pd. From Eq. (2) the two
combinations,

Rtt/B + Rrr/A + 2Rθθ/r2 and Rtt/B + Rrr/A,

give

1

r2

[

d

dr

( r

A

)

− 1

]

= −ρd, (3)

1

rA

(

B′

B
+

A′

A

)

= ρd + pd, (4)

respectively. To the first order of smallness, we neglect
pd in comparison with ρd, eliminate ρd between the two
equations, and find

B′

B
=

1

r
(A − 1). (5)

We now assume (A−1) is analytic and differentiable, and
has the following series expansion at large r’s:

A(r) − 1 =
(r0

r

)α ∑

n=0

sn

rn
, (6)

where the indicial exponent, α, is dimensionless, and r0 is
an arbitrary length scale, presumably of the order of the
size of the galaxy. The constant parameters, sn, are of
dimension (length)n. Their size will be discussed shortly.
It should be pointed out that the expansion of Eq (6)
is for regions external to the galaxy. In particular, the
center r = 0 is not included in the indented domain and
no question of singularity will arise.

Next we substitute Eq. (6) in Eq. (5) and integrate
for B(r). Depending on whether α is zero or not, two
different solutions emerge:

B= exp

[

−
(r0

r

)α ∑

n=0

sn

(n + α)rn

]

, for α 6= 0, (7)

=

(

r

r0

)s0

exp

[

−
∑

n=1

sn

nrn

]

, for α = 0. (8)

Both gravitation- and speed-wise, galactic environments
are non relativistic. In the weak field regime, we retain
the first two terms in the series expansion of the expo-
nential terms, approximate the gravitational potential by
φ(r) = 1

2 (B−1), calculate the circular speed of a test ob-

ject orbiting the galaxy from v2 = rdφ/dr, and find

v2=
1

2

(r0

r

)α [

s0 +
s1

r
+ · · ·

]

, α 6= 0, (9)

=
1

2

(

r

r0

)s0 [

s0 +
s1

r
+ · · ·

]

, α = 0. (10)

At large distances from the galaxy, the s0 terms in Eqs.
(9) and (10) are the dominant ones. As one moves closer,
s1 terms gain over s0. Further inward, s2 and higher
terms may take turn. It should, however, be noted the
formalism devised here is to deal with velocity anomalies
at the outer reaches of the galaxies, beyond their visible
extensions. No chance will arise for s2 and higher order
terms to play roles.

Logarithmic slopes of the rotation curves, ∆ =
d ln v2/d ln r, and their asymptotic behaviors are

a) ∆=
[

−αs0 − (1 + α)
s1

r

]

/
[

s0 +
s1

r

]

, α 6= 0

→−α at large r
→−(1 + α) at small r. (11)

b) ∆=
[

s2
0 − (1 − s0)

s1

r

]

/
[

s0 +
s1

r

]

, α = 0

→s0 at large r
→−(1 − s0) at small r. (12)

At far distances, one has the falling slope −α in case
(a), and the rising slope s0 in case (b). In either case one,
however, knows that the observed asymptotic slopes are
much less steep than the Keplerian slope, −1. Therefore,
α in case (a) and s0 in case (b) should be much smaller
than 1. At closer distances the slopes are almost Kep-
lerian, except for small abberation by +α or −s0. This,
however, should not be taken seriously. It is a conse-
quence of the assumption of spherical symmetry of the
model and is not expected to be present in actual flat
galaxies.

III. DETERMINATION OF α AND sn’S

α): A study of the asymptotic slopes of the rotation
curves of spirals can, in principle, give α of Eq. (11), if
the slope is negative, or s0 of Eq. (12) if it is positive.
Here, however, we are content with an order of magnitude
of these parameters. In their list of 1100 rotation curves,
primarily used to derive a universal rotation curve, Persic
et al [10] find a subset of 27 reliable curves extending out
to 2Roptical and 200 statistically significant ones farther
out than Roptical. They define a dark matter indicator,
δ = [v(2Ropt) − v(Ropt)]/v(Ropt), which is almost one
half of the slopes of Eqs. (11) and (12), in the interval
(1 − 2)Ropt. Thus

∆(Ropt) ≈ 2δ = −2[0.05 + 0.16 log(L/1010.4L⊙)], (13)

where L is the luminosity of the galaxy. They
note, the expression is valid in the magnitude range
−23.2 < MI < −18.5. Depending on L, negative ∆’s
are roughly, α of Eq. (11) and the positive ones are s0

of Eq. (12). In either case they are small and fall in
the range of ±10 percent. Actual ‘asymptotic’ slopes,
however, should be well below what Eq. (13) indicates.
For, one can hardly convince oneself that rotation curves
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at distances of (1.5 − 2)Ropt have actually reached their
asymptotic regime. To summarize, we are inclined, after
a qualitative examination of a good number of rotation
curves in [9], [10], [8], [13] and others, to infer from
Eq. (13) the value ‘α ≤ few percents’ for the negative
asymptotic slopes of Eq. (11), with a fair confidence.
The case of asymptotically positive slopes, if they occur
in nature at all, is discussed below.

s0): The Tully-Fisher relation, initially a power law
expression between the circular rotation speeds at the
outer reaches of spiral galaxies and their luminosities,
can be expressed as a power law relation between the
asymptotic speeds and galactic masses. Thus, v∞ ∝ Mβ.
A range of values for the exponent, β, can be found in the
literature [14], [15], and [13]. We adhere to the commonly
quoted value β = 1/4.

The length scale r0 in Eqs. (9) and (10) is arbitrary.
We choose it roughly the distance to which the rotation
curves are extended out to. Because of the smallness of
α and s0 the factors (r0/r)α and (r/r0)

s0 approximate to
1 and the asymptotic speed in both equations becomes
v2
∞ ≈ s0/2. This, by Tully-Fisher relation, gives

s0 = λ

(

M

M⊙

)1/2

(14)

where M is the baryonic mass of the galaxy, stars+gas,
etc. To determine the proportionality constant, λ, one
turns to observations. From a list of 31 galaxies in [8],
we find λ ≈ 3×10−12 [16]. A better estimate is available
through MOND. The weak acceleration limit of MOND
[12] is

v2/r =
1

2
λ(M/M⊙)1/2c2/r = (a0GM/r2)1/2,

where we have restored the factor c2 which was sup-
pressed so far, and a0 = 1.2 × 10−8cm sec−2 [5] is the
universal acceleration of MOND. This yields

λ = 2(GM⊙a0)
1/2/c2 = 2.8 × 10−12. (15)

s1): The term s1/2r in Eqs. (9) and (10), operative at
closer distances, is actually the classical newtonian term.
Thus, s1 should be identified with the Schwarzschild ra-
dius of the galactic mass:

s1 = 2GM/c2. (16)

For the remaining s2 and higher terms we have no sugges-
tion at present. If they exist at all, our idealized spheri-
cally symmetric model does not sufficiently closely mimic
the actual flattened galaxies to draw meaningful conclu-
sions.

IV. THE DARK COMPANION

From Eqs. (6) and (3) the density of the dark fluid is

ρd =
(r0

r

)α 1

r2

[

(1 − α)λ

(

M

M⊙

)1/2

− α
s1

r

]

, (17)

where we have substituted for s0 from Eq. (14). The
expression is valid for α = 0 as well. For all practi-
cal purposes, the second term in the bracket can be ne-
glected. That the dark density is almost proportional to
the square root of the mass of the galaxy is a direct con-
sequence of the Tully-Fisher relation. That it fades away
exactly or approximately as r−2, depending on whether
α = 0 or not, is in accord with ΛCDM simulations of [17]
and others.

The dark matter inside a radius r, Md(r) = 4π
∫

ρr2dr,
is

Md(r) = 4πλ

(

M

M⊙

)1/2
(r0

r

)α

r. (18)

It is said that the role of the dark matter is more promi-
nent in intrinsically fainter galaxies than in brighter ones,
see e. g. [10]. This is inferred from the fact that devi-
ations of the actual rotation curves from the baryonic-
matter-based Keplerian ones is larger in fainter galaxies
than in the brighter ones. This can be understood by
considering the ratio Md(r)/M ∝ r(1−α)M (−1/2). At a
given r, normalized to the optical radius of the galaxy,
say, this ratio decreases as the galactic mass or equiva-
lently its luminosity increases.

The pressure of the dark fluid is obtained by letting the
4- divergence of the right hand side of Eq. (2) vanish. it
leads to the hydrostatic equilibrium of the dark matter:

p′d
pd + ρd

≈
p′d
ρd

= −
1

2r
(A − 1). (19)

Integration is straightforward. The first two terms in the
series are

p(r) =
1

4

(r0

r

)2α s0

r2

[

(1 − 2α) s0 +
2

3

(

1 −
2

3
α

)

s1

r
+ ...

]

,

(20)

where we have expanded all coefficients involving α and
kept only the terms linear in it. The equation of state is
barrotropic, p(ρ). It is obtained by eliminating r between
Eqs. (17) and (20).

V. INNER SOLUTIONS

The formalism developed here is for regions external to
the baryonic matter. Exact interior solutions are involved
and are not easily available. The weak field versions,
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however, can be obtained by redefining M of Eqs. (14)
and (16) as the baryonic mass inside the radius r. Thus

M(r)=4π

∫ r

0

ρbr
2dr,

s0(r)=λ [M(r)/M⊙]1/2 ,

s1(r)=2GM(r)/c2.

The use of M(r) to calculate s1 in the baryonic interior
is known to GR and to the newtonian gravitation. The
proof of its use, to infer s0(r), is involved. It is the
subject of a forthcoming paper by [18]. There we also
show that the rotation curves calculated on this premise
are as good as, if not better than, those obtained by
other technics.

VI. CONCLUDING REMARKS

The proposed formalism is a modified GR paradigm
or, equivalently, a dark matter scenario to understand
the non classical behavior of the rotation curves of spi-
ral galaxies. We approximate the galaxy by a spherical
distribution of baryonic matter, attribute a dark perfect
gas companion to it , and find its size and distribution by
comparing the rotation curve of our hypothetical model

with those of the actual galaxies. However, as long as
the dark companion displays no physical characteristics
other than its gravitation, one has the option to interpret
the scenario as an alternative theory of gravitation. For
example, one may maintain that the gravitation outside
a baryonic sphere is not what Newton or Schwarzschild
profess, but rather what one infers from the spacetime
metric of Eqs. (6) - (8).

Regions exterior to the baryonic matter are not dark
matter vacua. Therefore, the Ricci scalar does not van-
ish. Its spatial behavior is that of ρd(r) as can be inferred
from the contraction of Eq. (2). There are also excess
lensings and excess periastron precessions caused by the
dark matter. These are discussed in [1] and [2].

The formalism is good for spherical distributions of
baryonic matters. An axiomatic generalization to non
spherical configurations or to many body systems re-
quires further deliberations and more accurate observa-
tional data for guidance. One might need further postu-
lates not contemplated so far. The difficulty lies in the
fact that there is no superposition principle to resort to.
One may not add the fields of the dark companions of
two separate baryonic systems; for s0 of Eq. (14) is not
linear in M . As a way out we are planning to expand
an extended non spherical distribution into its localized
mass-multipole moments and see if it is possible to as-
sign a dark multipole for each baryonic multipole, more
or less in the same way done for spherical distributions.
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