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Angular momentum transfer to a star by gravitational waves
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Summary and Introduction

Interaction of a stochastic background of gravitational radiation with celestial systems

changes their dynamical elements in a random manner and give rise to secular changes

in time(Berttoti 1973, Mashhoon etal 1981, Khosroshahi and Sobouti 1997). It has been

speculated that a study of such secular changes might serve as a possible mean of detecting

gravitational radiation. In this spirit we study the angular momentum transfer from a ran-

dom background of radiation either to a rotating star or to an oscillating one. The angular

momentum transferred to such objects by a continuous plane wave is proportional to time,

t, and by an stochastic background is proportional to t1/2.
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1. Interaction of a rotating star with gravitational waves

Consider a polytrope rotating with an angular frequency Ω, about the z-axis. The density

ρ at position r, may be written as

ρ(r, b) = ρ0(r) + b[ρ1(r) + ρ2(r)P2(cos θ)] (1)

where b = Ω2/ω2

osc is an expansion parameter and ωosc =
√

4πGρ(0) is of the order of the

angular frequency of natural oscillations of the star. Suppose that a monochromatic plane

gravitational wave with frequency ω falls on the star in a direction characterized by azimutal

and polar angles α and β, respectively. Assume the radius of the star is much smaller than

the wavelength of the incident wave. In a Fermi coordinate system, the tidal force on unit

mass exerted by the wave is the gradient of a scalar,

fgw = −∇Φ = ∇[
1

4
ω2ǫ

3
∑

i,j=1

xihij(t)xj ], (2)

where ǫ ≪ 1 is a certain characteristic amplitude of the wave and is independent of the

frequency ω and hij(t) = Re{Aij(ω)exp(−iωt + ik.x)} are the spatial components of fluctu-

ations in the space-time metric by the incident wave. hij can be taken to be transverse and

traceless. The torque exerted on the star, measured by a corotating observer, is

~τ =
dL

dt
=

∫

v
r × ρfgwd3r =

π

30

MR2

ρ̄
bǫA(ω)ω2

∫

1

0

ρ2(x)x4dx{h1(t)̂i + h2(t)ĵ} (3a)

where ρ̄, M, R are the mean density, mass and radius of the star, respectively,

h1(t) =
1

2
sin 2β sin(Ωt + α) cosωt − σ sin β cos(Ωt + α) sin ωt, (3b)

h2(t) =
1

2
sin 2β cos(Ωt + α) cosωt + σ sin β sin(Ωt + α) sin ωt, (3c)

and σ = 1, and −1 for right and left circular polarization, respectively. We substitute

eqs.(3b,c) in (3a) and integrate with respect to time. In resonance the secular change in the

angular momentum is proportional to t. Furthermore, this change is in the xy-plane and

manifests itself as a precession of the rotation axis. In an isotropic background of radiation,
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the mean precession amplitude is zero. Its root mean square value, however, changes as t1/2.

Thus,

θ2

rms ≃
L2

xy

L2
z

≃
1

L2
z

∫

d(cos β)dα[
∫ t

0

~τdt]2dω, (4a)

and finally,

θ2

rms ∼
πGb2

ρ̄
[
∫

1

0

ρb2(x)x4dx]2Sg(Ω)t for t ≫ Ω−1, (4b)

where Sg(ω) = ǫ2A(ω)2ω2/8πG is the energy spectral density of the background radiation.

Equation(4) indicates a random walk for the rotation axis of the star.

2. Interaction with normal modes of a star

The torque of a gravitational wave on a rotating star, eqs.(3), is due to deviation from the

spherical symmetry of the star. This asymmetry may come about because of the natural

oscillation of the star. Helioseismic waves in different spherical harmonic numbers are promi-

nent examples of such occurrence. This is the justification for the following analysis .

Let ρ(r), p(r) and U(r) denote the density, the pressure and the gravitational potential of

a star in hydrostatic equilibrium. Let a mass element at r undergo an infinitesimal dis-

placement ξ(r, t) from its equilibrium position. It causes small changes δρ(r, t), δp(r, t) and

δU(r, t). The linearized Euler’s equation of motion is

− ρξ̈ = ∇(δp) + δρ∇Ω + ρ∇(δU) = Wξ , (5)

where,

δρ = −∇.(ρξ), (6a)

δp =
dp

dρ
δρ − [(

∂p

∂ρ
)ad −

dp

dρ
]ρ∇.ξ, (6b)

∇2(δU) = −4πGδρ. (6c)
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The displacement ξ belongs to a function space H in which the inner product is defined as

(η, ρξ) =
∫

ρη∗.ξ d3x = finite, ξ, η ∈ H. The operator W is self-adjoint on H and gives

rise to the eigenvalue problem Wξn = ω2

nρξn, where ω2

n are real. Using a gauged version

of Helmholtz’s theorem, one may decompose a general vector into an irrotational and a

“weighted” solenoidal component. Thus

ξ = ξp + ξg, (7a)

where

ξp = −∇χp; with ∇ × ξp = 0, (7b)

ξg = ρ−1∇ × ∇ × (r̂χg); with ∇.(ρξg) = 0. (7c)

Here r̂ is the unit vector in r direction, and χp and χg are two scalars. See Sobouti(1980)

for details of eqs.(5-7). As in eqs.(3) the torque exerted by a gravitational wave incident on

a star is,

dL

dt
=

∫

v
δρr × fgwd3x. (8)

From eqs.(6a) and (7), δρ for ξg is zero and for ξp is

δρ = ρ(r){χ′′

p + (
2

r
+

ρ′

ρ
)χ′

p −
l(l + 1)

r2
χp}Ylm(θ, φ)e−iωnt. (9)

Only l = 2 modes will contribute to the torque and for simplicity we will consider the m = 0

case. Equation(8) reduces to an expression similar to that of eqs.(3),

dL

dt
= −

1

9

MR2

ρ̄
A(ω)ω2

∫

1

0

ρ(x){χ′′

p + (
2

x
+

ρ′

ρ
)χ′

p −
6

x2
χp}x

4dx × {h′

1
(t)̂i + h′

2
(t)ĵ} cos ωnt,

(10a)

where

h′

1
(t) = −

1

2
sin 2β sin α cos ωt + σ sin β cos α sin ωt (10b)
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h′

2
(t) = −

1

2
sin 2β sin α cos ωt − σ sin β cos α sin ωt (10c)

The root mean square of the amplitude of precession induced by an isotropic background

of radiation becomes

θ2

rms ∼
π

ρ̄
[
∫

1

0

ρ(x){χ′′ + (
2

x
+

ρ′

ρ
)χ′ −

6

x2
χ}x4dx]2Sg(ωn)t (11)

for t ≫ ω−1

n

A numerical evaluation of eq.(11) involves the following steps.

a) One calculates the p and g modes of the model star belonging to l = 2. A p−mode will

have a large irrotational component as indicated in eqs(1). For a g−mode the situation will

be the opposite.

b) One extracts the irrotational component, χp of each mode, substitutes in eq.(11) and

carries out the integration numerically. Numerical evaluations of the rms precession ampli-

tudes are in progress.
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