NON-COMMUTATIVE INEQUALITIES AND UNCERTAINTY RELATIONS

ALI DADKHAH

ABSTRACT. Let \mathscr{H} and \mathscr{K} be complex Hilbert spaces and let $\mathbb{B}(\mathscr{H})$ and $\mathbb{B}(\mathscr{K})$ be the algebras of all bounded linear operators on \mathscr{H} and \mathscr{K} , respectively. A map $\Phi : \mathbb{B}(\mathscr{H}) \longrightarrow \mathbb{B}(\mathscr{K})$ is called *n*-positive if the map $\Phi_n : M_n(\mathbb{B}(\mathscr{H})) \longrightarrow M_n(\mathbb{B}(\mathscr{H}))$ defined by $\Phi_n([a_{ij}]_{n \times n}) = [\Phi(a_{ij})]_{n \times n}$ is positive, where $M_n(\mathscr{X})$ is the algebra of $n \times n$ matrices with entries in \mathscr{X} . In the first part of the talk, we investigate some classes of positive mappings (not necessarily linear) in the setting of C^* -algebras. First, we obtain some

(not necessarily linear) in the setting of C^* -algebras. First, we obtain some inequalities and properties of 2-positive maps. We then give some results about the superadditivity, the starshapness, the homogeneity and the linearity of *n*-positive maps for $n \geq 3$.

The second part of our talk is about some inequalities in quantum information theory. The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. The classical expectation value of an observable (self-adjoint element) A in a quantum state (density element) ρ is expressed by $\text{Tr}(\rho A)$. Also, the classical variance for a quantum state ρ and an observable element A is defined by $V_{\rho}(A) := \text{Tr}(\rho A^2) - (\text{Tr}(\rho A))^2$. Heisenberg's uncertainty relation asserts that

$$V_{\rho}(A)V_{\rho}(B) \ge \frac{1}{4}|\mathrm{Tr}(\rho[A,B])|^2$$

for a quantum state ρ and two observables A and B. It gives a fundamental limit for the measurements of incompatible observables. A further strong result was given by Schrödinger as

$$V_{\rho}(A)V_{\rho}(B) - |\operatorname{Re}(\operatorname{Cov}_{\rho}(A, B))|^{2} \ge \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2},$$

where [A, B] := AB - BA and the classical covariance is defined by $\operatorname{Cov}_{\rho}(A) := \operatorname{Tr}(\rho AB) - \operatorname{Tr}(\rho A)\operatorname{Tr}(\rho B)$. We present some inequalities related to the generalized variance and the generalized skew information. These inequalities provide non-commutative versions of the uncertainty relations.

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD *E-mail address*: dadkhah61@yahoo.com

²⁰¹⁰ Mathematics Subject Classification. 15A60, 47A63, 81P15.

Key words and phrases. n-positive map; superadditive; nonlinear map; covariance; correlation; uncertainty relation.