NON-COMMUTATIVE INEQUALITIES AND UNCERTAINTY RELATIONS

ALI DADKHAH

Abstract. Let \mathscr{H} and \mathscr{K} be complex Hilbert spaces and let $\mathbb{B}(\mathscr{H})$ and $\mathbb{B}(\mathscr{K})$ be the algebras of all bounded linear operators on \mathscr{H} and \mathscr{K}, respectively. A map $\Phi: \mathbb{B}(\mathscr{H}) \longrightarrow \mathbb{B}(\mathscr{K})$ is called n-positive if the map $\Phi_{n}: M_{n}(\mathbb{B}(\mathscr{H})) \longrightarrow M_{n}(\mathbb{B}(\mathscr{K}))$ defined by $\Phi_{n}\left(\left[a_{i j}\right]_{n \times n}\right)=\left[\Phi\left(a_{i j}\right)\right]_{n \times n}$ is positive, where $M_{n}(\mathscr{X})$ is the algebra of $n \times n$ matrices with entries in \mathscr{X}.
In the first part of the talk, we investigate some classes of positive mappings (not necessarily linear) in the setting of C^{*}-algebras. First, we obtain some inequalities and properties of 2 -positive maps. We then give some results about the superadditivity, the starshapness, the homogeneity and the linearity of n positive maps for $n \geq 3$.
The second part of our talk is about some inequalities in quantum information theory. The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. The classical expectation value of an observable (self-adjoint element) A in a quantum state (density element) ρ is expressed by $\operatorname{Tr}(\rho A)$. Also, the classical variance for a quantum state ρ and an observable element A is defined by $V_{\rho}(A):=\operatorname{Tr}\left(\rho A^{2}\right)-(\operatorname{Tr}(\rho A))^{2}$. Heisenberg's uncertainty relation asserts that

$$
V_{\rho}(A) V_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2}
$$

for a quantum state ρ and two observables A and B. It gives a fundamental limit for the measurements of incompatible observables. A further strong result was given by Schrödinger as

$$
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Re}\left(\operatorname{Cov}_{\rho}(A, B)\right)\right|^{2} \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2},
$$

where $[A, B]:=A B-B A$ and the classical covariance is defined by $\operatorname{Cov}_{\rho}(A):=$ $\operatorname{Tr}(\rho A B)-\operatorname{Tr}(\rho A) \operatorname{Tr}(\rho B)$. We present some inequalities related to the generalized variance and the generalized skew information. These inequalities provide non-commutative versions of the uncertainty relations.

Department of Pure Mathematics, Ferdowsi University of Mashhad
E-mail address: dadkhah61@yahoo.com

2010 Mathematics Subject Classification. 15A60, 47A63, 81P15.
Key words and phrases. n-positive map; superadditive; nonlinear map; covariance; correlation; uncertainty relation.

