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An algorithm for fast calculation of the Coulombic forces and energies of point particles with free
boundary conditions is proposed. Its calculation time scales as N log N for N particles. This novel
method has lower crossover point with the full O�N2� direct summation than the fast multipole
method. The forces obtained by our algorithm are analytical derivatives of the energy which
guarantees energy conservation during a molecular dynamics simulation. Our algorithm is very
simple. A version of the code parallelized with the Message Passing Interface can be downloaded
under the GNU General Public License from the website of our group. © 2007 American Institute
of Physics.
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I. INTRODUCTION

The computation of the electrostatic or gravitational in-
teraction of a large number N of point particles is a central
problem in many fields of physics, such as molecular
dynamics1 and astrophysics.2

If the charge distribution is nonperiodic, one frequently
employs the fast multipole method �FMM�.3–8 Its computa-
tion time scales as O�N�. Its point of the crossover with full
direct calculation depends on the accuracy and is estimated
to be 103–104 in Ref. 5 or 104–105 in Ref. 9. The Barnes
and Hut hierarchical tree method10 is advocated for the use
with low accuracy �0.1%–1%� in Ref. 11.

Although the cutoff methods still attract attention12,13

since they scale as O�N�, the corresponding prefactor is im-
mense. These methods also introduce artifacts. Citing Ref.
14 �see the references therein�, “The severe artifacts caused
by cutoff truncation in the simulation of liquids and solvated
ions, ion pairs, and biomolecules are well documented.”
More recent studies, e.g., Refs. 15–17 show the same con-
clusion.

If the charge distribution is periodic, one can use the
Ewald method18–20 that scales as O�N3/2�. It is good for up to
103–104 particles and can achieve high accuracy; it is clearly
faster than full direct summation of the periodic particle im-
ages.

The Ewald method was further improved by the use of
fast Fourier transform that led to the particle-mesh
schemes.21–32 These algorithms scale as O�N log N�. The
same scaling was obtained by combining the Ewald method
with the FMM for the calculation of the short range forces33

and, alternatively, by using nonuniform FFT in the Ewald
method.34 The particle-mesh schemes are suitable11 for rela-
tively high rms force error of about 10−4 and N=104–105.

The FMM method can be applied in the periodic case
too6,26,35–37 especially if one needs high precision. Due to its
better scaling, it becomes preferable in the limit of large N.
However, for not so big N the particle-mesh schemes are
faster. The exact location of the crossover point depends both

on the system studied and the computer used.11,37 The usual
estimate for the crossover is around N=105–106.

It is mentioned in Refs. 1 and 38 that in the FMM the
forces are not equal to the negative analytical gradients of the
energy. Therefore if one uses the FMM for a MD simulation,
the total energy will change during the simulation, unless
very high precision is used, see, e.g., Fig. 1 of Ref. 36. Thus
it is impossible to do simulations in the microcanonical en-
semble.

In the particle-mesh schemes it is possible to have con-
servation of either energy or momentum, but not the two
together.24,25 The particle-mesh schemes are usually also
easier to code, compared to the FMM.

Much attention has been given to the parallelization of
the particle-mesh26,29,39–41 and FMM42–45 algorithms. Recent
papers46,47 cite speedups of over 100 for 105 particles for a
state of the art parallel implementation of FMM. The most
well-known massively parallel version of the particle-mesh
algorithm is that in the NAMD molecular dynamics package.48

It cites speedups of over 500 for 105 particles and 104

processors.49 Similar achievements for the PMEMD code of
the Amber suite50 can be found on its website.51,52 A com-
parison of performance of several such molecular dynamics
packages can be found in Ref. 53.

Parallelization of particle-mesh codes has been tried also
by the astrophysics community,54 but there the main concern
is the clustering that results from the attractive gravitational
forces. This calls for adaptive schemes55,56 which are beyond
the scope of the present paper.

Many systems ranging from those in the electronic struc-
ture calculations of molecules to those of astrophysics re-
quire the use of free boundary conditions �BC�. Imposition
of artificial periodicity that is needed for the Ewald-type
methods may lead to artifacts, e.g., in the implicit solvent
systems.14,57 On the other hand, for the explicit solvent case
no significant artifacts were found.58
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In general the Ewald artifacts are considered less harm-
ful than those of the cutoff schemes48,59,60 but it would still
be useful to have a particle-mesh-like method that could
handle free BC.

Such algorithms were set forth in Refs. 61–63. The
method of Hockney and Eastwood21 was intended for appli-
cations in plasma physics where high precision is not re-
quired. Martyna and Tuckerman62 used the smooth particle-
mesh Ewald �SPME� method of Essman et al.24 along with a
special scheme to handle free BC. That scheme was also
used for the solution of Poisson equation for smooth charge
distributions occurring in electronic structure calculations.
However, the method of Ref. 62 has the disadvantage that
the accuracy decreases if one approaches the border of the
cell. Thus one needs to take bigger cells that leads to an
increase of the CPU time needed.

Another line of the particle-mesh-like algorithms stems
from the fast Fourier Poisson method �FFP�.23,29 In that case
one solves the Poisson equation for an auxiliary charge dis-
tribution that is made up from Gaussians centered at the
original particle positions. The resulting charge density is
then projected onto a grid and the thus discretized Poisson
equation is solved via a FFT. The forces are obtained by
analytical differentiation of the energy expression; this solves
the aforementioned problem of energy conservation. This
method is believed to be accurate but slow1 compared to the
standard particle-mesh schemes such as the particle-particle,
particle-mesh �P3M� one of Ref. 21 or SPME.24

Developing the idea of Ref. 64, the authors of Ref. 29
proposed to use multigrid65 for the solution of the Poisson
equation, instead of the fast Fourier transform. This tech-
nique, now known as lattice Gaussian multigrid �LGM�, was
further developed in Refs. 31 and 32. The CPU time in the
LGM algorithm scales as O�N�; however, due to large pref-
actor it becomes preferable to the FFT-based methods only
for a very large N and/or on a massively parallel computer.

Multigrid is in general not applicable with free BC.
However, in the new method of Sutmann and Steffen63 the
free BC were accounted for by calculating the potential at the
boundaries with the FMM algorithm. This algorithm may be
a competitor to the FMM algorithm in the future. Another
particle-mesh-like algorithm that uses a multiscale algorithm
instead of FFT is described in Ref. 30.

In a recent paper66 we proposed a new algorithm for the
solution of the Poisson equation for smooth charge distribu-
tion with free BC. It is also parallelized with Message-
Passing Interface �MPI�.

In the present paper we propose a combination of the
Poisson solver with free BC �Ref. 66� with the fast Fourier
Poisson method.23 We call it particle-particle particle-scaling
function �P3S� algorithm to emphasize the relation to the
particle-mesh schemes. Our method can achieve high accu-
racy and speed and compete with the FMM schemes in the
range of particle numbers N=103–105 that is important in
many applications. The approximate forces resulting from
our method are exact �negative� analytic gradients of the ap-
proximate energy, which allows the conservation of energy
during molecular dynamics �MD� runs.

To calculate the short range forces, we make a linked
list.19 Then, following Refs. 67 and 68, we rearrange the
particles to optimize the cache performance.

A MPI parallelized version of our code can be down-
loaded under the GNU General Public License from the web-
site of our group.74

The paper is organized as follows. Section II describes
the Ewald construction in free BC. In Sec. III we briefly
review the Poisson solver of Ref. 66 for the calculation of
the long range Ewald forces and energies for free BC. In
Secs. IV and V we discuss the cutoffs for the short and long
range forces, respectively. In Sec. VI we describe the linked
cell list for the acceleration of the short range force calcula-
tion. Section VII contains the final formulas for the interpar-
ticle forces. In Sec. VIII we give the results of our code for
systems of 1000–20 000 particles and give the graphs of the
optimal parameter values for a given accuracy. Section IX
describes the results of a MD simulation of a 1000-particle
NaCl crystal that demonstrates the energy conservation prop-
erty of our algorithm. Finally, in Sec. X we describe an effi-
cient parallelization of our algorithm and present the parallel
speedup results on a CRAY XT3.

II. THE EWALD CONSTRUCTION IN FREE BOUNDARY
CONDITIONS „REF. 25…

The total electrostatic energy of N point charges in free
BC is given by

U =
1

2�
i=1

N

�
j�i

N
QiQj

rij
, rij � �ri − r j� .

Adding and subtracting the term corresponding to the
electrostatic energy of smooth point charges with density
�i�r�, we get

U =
1

2�
i=1

N

�
j�i

N �QiQj

rij
−	 �i�r�� j�r��

�r − r��
drdr�


+
1

2�
i=1

N

�
j=1

N 	 �i�r�� j�r��
�r − r��

drdr�

−
1

2�
i=1

N 	 �i�r��i�r��
�r − r��

drdr�.

The Ewald choice for the screening charge distribution is

�i�r� = ��r − ri�, ��r� � Qi�G2/��3/2 exp�− G2r2� . �1�

We have also experimented with the variant ��r�=A�rcut
2

−r2�m, m=4,8 ,16, where the factor A normalizes the charge
to one. However, the CPU time spent by the program with
this screening distribution was slightly longer than with the
Gaussian for the same accuracy.

The sum of the screening charge distribution is

��r� = �
i=1

N

�i�r� . �2�

Then, Eq. �1� assumes the form
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U = Eshort + Elong − Eself, �3�

Eshort =
1

2�
i=1

N

�
j�i

N
QiQj

rij
erfc�Grij

�2
 , �4�

Elong =
1

2
	 ��r���r��

�r − r��
drdr�, Eself =

G
�2�

�
i=1

N

Qi
2. �5�

III. CALCULATION OF THE LONG RANGE ENERGY
USING THE INTERPOLATING SCALING
FUNCTIONS

The long range term Elong in Eq. �5� is nothing but the
electrostatic energy of the smooth charge distribution ��r�.
Therefore it can be evaluated by a suitable Poisson solver.
We make use of the one from Ref. 66 with free BC. It
amounts to expanding the screening charge density �2� in a
real space basis defined on the grid with spacing h,

��r� � �̃�r� = �
i

�i�i�r�, i � �i1,i2,i3� ,

�i�r� = ��x/h − i1���y/h − i2���z/h − i3� . �6�

It was suggested in Ref. 66 to take the interpolating scaling
functions69,70 of high order �up to 100� as the basis functions
��x�. The scaling functions of the order N interpolate the
polynomials of the order N exactly and are reasonably local-
ized. Therefore they can interpolate a Gaussian very well.

On the other hand, since the scaling functions are cardi-
nal, we obtain for the coefficient in Eq. �6�,

�i = ��ih� . �7�

The action of calculating this screening distribution on the
grid is called the charge assignment in the standard P3M
schemes.

Consider the potential that arises from the approximate
charge distribution �̃�r� in Eq. �6�,

��r� =	 �̃�r�
�r − r��

dr�. �8�

At a grid point j, this potential has the form

��jh� � �j = h2�
i

Ki−j�i,

where the kernel

Ki �	 �i�r�dr

�r�

is computed in Ref. 66.
From this moment on we can use the grid sum approxi-

mation to the long range energy,

Elong �
h3

2 �
i

�i�i =
h5

2 �
ij

�i�jKi−j. �9�

The latter sum is a convolution that can be calculated via
FFT techniques.66 The energy is a product of FFT transform
of �i squared times the FFT transform of Ki, times a constant.

The kernel Ki is calculated only once at the beginning of a
calculation and does not change. Thus one only needs one
FFT to compute the energy.

It also follows from the above that the use of high order
of interpolation does not lead to a significant increase of
calculation time.66

IV. THE LONG RANGE PART CUTOFF

The density array in Eq. �9� is defined via Eq. �7�,

�i = ��ih� = �
j=1

N

��ih − r j� .

However, the Gaussian �1� is a quickly decaying function.
Therefore, one can make the summation in the above equa-
tion only for the charges within the distance xcut from the
grid point,

�i � �
�ih−rj��xcut

��ih − r j� . �10�

The cutoff distance is chosen so that the function �1� has a
small value at the radius xcut.

Actually, the sum in Eq. �10� is calculated slightly dif-
ferently in our program. The charge position r j is replaced by
the position hi j of the grid point that is nearest to it,

�i � �
�i − ij�

2�xcut
2 /h2

��h�i − i j�� . �11�

The error entailed by this is negligible. Then we precalculate
and store the square roots of integers in order to determine to
which gridpoints a given charge contributes. This is faster
than calculating square roots of real numbers and truncating
to integers in Eq. �10�.

As a result the calculation time of the charge spreading
and long range force interpolation is reduced almost by a
factor of 2 compared to a simple summation over a rectan-
gular domain. Note that this is only possible because in the
FFP algorithm the charge density assigned to the grid is
made of Gaussians. In other particle-mesh schemes B splines
are used instead, so our method would be inapplicable there.

Making the cutoff approximation in Eq. �9� gives us,
finally,

Elong �
h5

2 �
ij

�i�jKi−j. �12�

The long range energy of our algorithm is given only by
the formulas �11� and �12�. Our algorithm is thus as simple in
formulation as the fast Fourier Poisson method.23 On the
other hand, the properties of interpolating scaling functions
allow us to combine fast Gaussian charge assignment and
very high order interpolation.

To illustrate the accuracy of our approximation, we cal-
culate the self-energy of a single unit Gaussian �1� by the
formula �12�. The Gaussian is initially at a grid point and
then gradually shifted by two grid constants to see the de-
pendence of the error on its position relative to the grid. We
have xcut=4.5h and h=0.7; these are typical parameter values
that we use in other tests.
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The graph of the resulting energy error versus the shift
distance is given in Fig. 1. We see that the error is rather
smooth; there is no visible jumps coming from the cutoff
approximation. The energy oscillation is due to the grid dis-
cretization; its amplitude goes to zero in the limit h→0.

V. THE SHORT RANGE PART CUTOFF

The short range pairwise potential in Eq. �4� is a rapidly
decaying function. Therefore, it is standard to introduce the
cutoff radius rcut beyond which the short range potential is
approximated by zero,

Eshort =
1

2 �
i,j:rij�rcut

QiQj

rij
erfc�Grij

�2
 . �13�

To summarize, the Coulombic energy of N charges in our
approximation has the form �3� with the approximate long
and short contributions given by Eqs. �12� and �13�, corre-
spondingly.

The evaluation of the error function in Eq. �13� is com-
putationally inefficient, compared to algebraic operations.
Therefore, we replace the term that corresponds to error
function by a spline approximation in the interval �0,rcut�.

The function erfc�Gr /�2� /r has a singularity at 0.
Therefore we rewrite it as

erfc�Gr/�2�/r = 1/r − erf�Gr/�2�/r , �14�

and approximate with a spline only the second term which is
regular. This approximation holds for r�rcut. For r�rcut, the
whole potential erfc�Gr /�2� /r is set to 0.

VI. CALCULATING THE FORCES

The force acting on the ith particle is given by the gra-
dient of Eq. �3�,

Fi =
�U

�ri
= Fi

short + Fi
long,

�15�

Fi
short = Qi �

j:rij�rcut

Qj�G

rij
2� 2

�
exp�−

G2rij
2

2



+
1

rij
3 erfc�Grij

�2

rij ,

where rij =ri−r j; the prime at the sum indicates that it is
performed over j� i. The short range forces �15� are equal to
the negative analytical gradients of the short range energy
�4�. They are also calculated via a spline approximation. Ac-
tually, the spline that we use for Eq. �14� is obtained by
integration of the spline for Eq. �15�.

Following Ref. 29, we also get the long range forces as
the negative analytical gradients of Eq. �12�,

Fi
long � h5�

ij

��i

�ri
�jKi−j � h5�

ij
q�lh − ri��jKi−j, �16�

where

q�r� =
���r�

�r
= − 2rG2��r� �17�

is the vector of derivative Gaussians. The calculation of the
long range forces �16� is called the force back interpolation.

Taking into account the cutoff �11�, one can rewrite the
long range force as

Fi
long = h5 �

j,i:�i − ij�
2�xcut

2 /h2

q�lh − ri��jKi−j.

The convolution �j�jKi−j is done using two scalar FFTs.
The sum over i can then be calculated fast because each
component of Eq. �17� is a product of three one-dimensional
functions.

VII. LINKED CELL LIST

In order to avoid the scanning of all particle pairs in Eq.
�13� we make a linked subcell list.19 The subcell size is
smaller or equal to rcut /M where M is a positive integer
ranging, in practice, from 1 to 3. The standard linked cell list
algorithm corresponds to M =1; higher values of M corre-
spond to smaller cells such as those of Refs. 67 and 68. To
account for the free BC we add M layers of empty cells
outside the original cell. The sum of forces for a given par-
ticle is then done over all particles in subcells which are
within rcut of the subcell where the original particle is lo-
cated.

The sum over subcells is done along the stripes in the
direction x. In particular, following Refs. 54, 55, 67, and 68
we rearrange the particles so that the particles in the same
subcell have consecutive numbers and the subcells are sorted
in the x direction. The actual sorting can be avoided because
we already have the linked subcell list.

The reordering of the particles has the additional advan-
tage that the cache performance of the long range part is
optimized. The reason is that the particles that have close
indices are also close physically: �ri−r j� is small when �i
− j� is small.

The loop in the charge assignment and force back inter-
polation goes over the particle numbers. The particles in the

FIG. 1. Relative error in the self-interaction energy of a single Gaussian.
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same subcell have overlapping screening charge densities, so
the elements of the density/potential array are reused again
and again, as the loop index goes over the particles in the
same subcell.

This makes the program significantly faster compared to
the case without reordering, especially if the particles are
distributed randomly.

VIII. THE RESULTS OF THE SERIAL CODE

We chose the following two test systems:

• N particles in the unit cube with random coordinates
and charges equal to ±1, the total charge being zero
�henceforth called the random system�.

• N particles with charges ±1 forming a rock salt crystal,
filling the unit cube with M �N1/3 nodes at each side.
The lattice constant is then d= �M −1�−1. Each particle
is then shifted away from its node by a vector with
random coordinates in the range �−d /3 ,d /3�. This sys-
tem will be called the crystal one.

In both cases, the particle number N=1000�10j/3, j
=0, . . . ,4. In other words, we consider the following values
of N: 1000, 2154, 4642, 10 000, and 21 544.

We always use the scaling functions of the order 100. We
found that using lower orders leads to a decline in accuracy,
while the order of the scaling functions only affects the time
of the calculation of the kernel which is done only once for a
simulation.

The values of xcut, rcut, G, and h are free parameters. As
explained, e.g., in Ref. 72, such parameters should be chosen
such that the accuracy is fixed to some value, and the CPU
time spent is minimal for the given accuracy.

As the measure of the accuracy we use the mean square
force error

	F ���
i=1

N

�Fi − Fi
direct�2

�
i=1

N

�Fi
direct�2

,

where

Fi
direct = Qi�

j�i

Qj
ri − r j

�ri − r j�

are the forces obtained by the full direct calculation.
Unfortunately we cannot give the a priori error estimates

of the accuracy. The error in the short range forces is the
same as that for the Ewald method and is estimated in Refs.
71 and 72. However, our calculation of the long range forces
involves the use of a finite basis and the approximation in
Eq. �9�, the accuracy of which is difficult to estimate.

Therefore, for our two test systems we made tests with
all reasonable values of the parameters. The most important
parameter is G, the width of the Gaussian in Eq. �1�. We also
introduced the following dimensionless quantities: the di-
mensionless Gaussian cutoff Gxcut, the cutoff ratio rcut /xcut,
the dimensionless grid constant Gh, and

Nshort �
4/3�rcut

3

Vbox
N .

The latter is the average number of particles inside a sphere
of radius rcut. It turns out that the rms force error depends
stronger on these dimensionless quantities and G than on the
number of particles in the system.

We checked seven to ten possible values for each param-
eter. From the resulting pool of results we selected the so-
called Pareto frontier. A point is on the Pareto frontier if
there is no other point which has both smaller CPU time and
smaller error.

The Pareto frontiers for the values of N=1000�10j/3,
j=0, . . . ,4 for the random system and the crystal systems are
given in Figs. 2 and 3. The tests where done on an 1.8 GHz
AMD Opteron 244.

For the purpose of illustration we present here the opti-
mal parameter values for the crystal system. The values for
the random one do not differ significantly. From Figs. 4 and
5 we see that the optimal values of Gxcut and Gh are deter-
mined by the accuracy level. In contrast, the optimal value of
Nshort depends on the number of particles too �Fig. 6�. There-

FIG. 2. �Color online� The Pareto frontiers for the random system on
Opteron 244.

FIG. 3. �Color online� The Pareto frontiers for the crystal system.
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fore in an actual calculation it must be adjusted by the trial
and error method to give optimal accuracy and CPU time.
This is similar to finding the optimal value of the Gaussian
width in the standard particle-mesh schemes.28 Finally, the
optimal ratio rcut /xcut was observed to be independent on the
required accuracy but slightly decreased with rising N, as
seen in Fig. 7.

The Pareto frontiers allow us to determine the crossover
points for each N: the values of MSQ force error for which
our calculation takes the same time as the full direct one.
They are presented in Fig. 8. We have plotted the crossover
curves for the random system and for the crystal system. For
comparison we have also plotted the crossover curve of the
fast multipole method taken from Ref. 5, where one of the
best implementations of FMM is described. In that paper the
same charge distribution was used as in our random system.
Of course, the random positions of the particles where dif-
ferent in our tests and in those of Ref. 5. However, we still
see that our method has lower crossovers than the FMM for
the same accuracy.

IX. THE ENERGY CONSERVATION

In contrast to other methods such as FMM,1,38 our algo-
rithm has the advantage that the approximate forces are exact

analytic derivatives of the approximate energy. This allows
for energy conservation during a MD run. To illustrate this,
we make a MD simulation of a rock salt crystal formed by
1000 Na and Cl atoms. The particle positions and velocities
are updated by the velocity Verlet algorithm.

To get physically reasonable results, we made the par-
ticles interact through the Born-Mayer-Huggins-Fumi-Tosi
�BMHFT� rigid-ion potential73 that has bonding terms in ad-
dition to the Coulombic force.

At first we made the system equilibrate for 300 oscilla-
tion periods. We then monitored the potential and total ener-
gies for another 100 periods using the full direct algorithm.
Then the last 100 periods were repeated using our P3S algo-
rithm.

On Figs. 9 and 10 we plot the absolute values of devia-
tions of the potential and total energy from their mean val-
ues. The ratio of the mean square deviation of the total en-
ergy to that of the potential one is found to be equal to 1.4
�10−3.

The P3S results are shown on the graphs; those of the
full direct calculation are indistinguishable from the P3S
ones.

FIG. 5. �Color online� The optimal values of Gh, crystal system.

FIG. 6. �Color online� The optimal values of Nshort, crystal system.

FIG. 7. Values of rcut /xcut for both random and crystal systems.

FIG. 4. �Color online� The optimal values of Gxcut, crystal system.
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X. PARALLELIZATION

The parallelization of the calculation of the short range
energy and forces is straightforward: for the particle i and
processor IPROC, we calculate the force only if
MODULO�I ,NPROC�=IPROC, where NPROC is the total
number of processors. In the end, an MPI�ALLREDUCE
command sums all the contributions.

For the long range part, we rely on the parallel structure
of the Poisson solver.66 The charge density on the grid is
divided into slabs in the x-y plane. Each such slab is the
input density at a separate node. The Poisson equation �for
the whole cell� is solved for that slab density. The output at a
given node again contains only the corresponding slab of the
grid, this time it is a piece of the potential array. Of course
one needs global interprocessor communications, including
MPI�ALLTOALL for the solution of the Poisson equation.

Then in the original algorithm of Ref. 66, an
MPL�ALLREDUCE command sums up the potentials of all
the slabs.

In our program for point particles, we kept the parallel-
ization of the charge assignment as above: each processor
receives only the grid charges from the corresponding slab.
However, we do not use the MPI�ALLREDUCE command
to get the potential. Instead, we used the slabwise structure

of the output of the Poisson solver. For each node, the cor-
responding slab potential contributes only to the forces on
particles that are close to it.

In the end, we add up the forces with the
MPI�ALLREDUCE command. This MPI�ALLREDUCE is
actually merged in the program with the one for the short
range forces.

In this way we minimize the interprocessor communica-
tion considerably compared, e.g., to Ref. 26 since it is much
easier to send the components of the forces than the pieces of
the enormous potential array.

To test the parallel program we ran it for the random
system �the same as in the serial tests� with 105 particles. The
relative accuracy of the forces was kept around 10−6.

The result is given in Fig. 11. At the y axis we have the
ratio of the CPU time spent on several processors to that
spent by one processor.

XI. CONCLUSION

We have developed a point particle Poisson solver algo-
rithm that has a lower crossover point than the FMM. It can
be considered as a generalization of the particle-mesh solvers
for free boundary conditions. It can also achieve high preci-
sion.

FIG. 8. �Color online� The crossover curves.

FIG. 9. The potential energy fluctuations with the P3S method.

FIG. 10. The total energy fluctuations with the P3S method.

FIG. 11. The parallel speedup results on a CRAY XT3 for 105 particles.
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The forces obtained by our program are analytical de-
rivatives of the energy; this is an advantage in the context of
MD simulations. An MPI parallelized version of the algo-
rithm is presented that scales well on a moderate number of
processors.
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