
THE JOURNAL OF CHEMICAL PHYSICS 135, 014108 (2011)

An enhanced splined saddle method
S. Alireza Ghasemia) and Stefan Goedecker
Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel, Switzerland

(Received 3 February 2011; accepted 9 June 2011; published online 6 July 2011)

We present modifications for the method recently developed by Granot and Baer [J. Chem. Phys.
128, 184111 (2008)]. These modifications significantly enhance the efficiency and reliability of the
method. In addition, we discuss some specific features of this method. These features provide im-
portant flexibilities which are crucial for a double-ended saddle point search method in order to be
applicable to complex reaction mechanisms. Furthermore, it is discussed under what circumstances
this methods might fail to find the transition state and remedies to avoid such situations are provided.
We demonstrate the performance of the enhanced splined saddle method on several examples with
increasing complexity, isomerization of ammonia, ethane and cyclopropane molecules, tautomeriza-
tion of cytosine, the ring opening of cyclobutene, the Stone-Wales transformation of the C60 fullerene,
and finally rolling a small NaCl cube on NaCl(001) surface. All of these calculations are based on
density functional theory. The efficiency of the method is remarkable in regard to the reduction of
the total computational time. © 2011 American Institute of Physics. [doi:10.1063/1.3605539]

I. INTRODUCTION

Understanding the dynamics of chemical reactions is
of great importance in chemistry, biology, physics, etc.1, 2

Transition state properties of an energy landscape play a cru-
cial role in the dynamics of the system. Transition states are
saddle points of the potential energy surface (PES). Although
in a real reaction the system may not cross the saddle point
exactly, it generally passes nearby this point. Transition state
theory provides us information of the reaction dynamics by
relating the barrier height to the rate of the chemical reaction.
A barrier height is the energy difference of a saddle point and
one of its neighboring minima. Therefore, in order to under-
stand the dynamics of a system, it is important to determine
the location of the saddle points of the corresponding PES.
There are two classes of methods for the determination of
transition states configurations referred to as single-ended
(also known as surface walking) and double-ended (also
known as interpolation) saddle point search methods.3, 4

Interpolation methods require knowledge of both the reactant
and product configurations in order to generate a sequence of
structures between them. The nudged elastic band5, 6 (NEB)
and the string method3, 7, 8 are the two most well-known and
successful schemes among double-ended methods. Usually
these methods are used to find an estimate for the minimum
energy pathway (MEP). The highest point of the resulting
rough approximate MEP is indeed a good starting point for
a single-ended saddle point search method. This approach is
commonly used and is shown to be satisfactory. But the very
large numerical cost of this approach makes the saddle point
search sometimes prohibitive.3 Typically the initial pathway
in the double-ended methods is the linear synchronous transit
(LST) joining the two configurations. The difficulty with this
choice is that they usually fail to converge if the MEP lies far
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from the LST. In addition, electronic structure calculations
may fail to converge for some interior configurations of the
LST if they lie on high energy portions of the potential energy
surface. While the interpolation methods serve as a precursor
calculation, the surface-walking methods complement the
task to find the saddle point energy and coordinates with
prescribed accuracy. The well-known dimer method9 and its
improved successors4, 10–12 and Lanczos method13–15 replace
the gradient by a modified gradient which its projection
along the negative curvature is inverted. The accuracy of the
modified gradient depends on the accuracy of the negative
curvature direction defined in such methods, in case of
the dimer method approximated by the dimer direction.
These methods currently belong to preferred choices among
scientists. However, in recent years the climbing image NEB
(Ref. 16) (CI-NEB) has proved to be an efficient method to
determine saddle points.17 In this approach one avoids to run
two separate optimization, i.e., one NEB run followed by a
surface walking calculation from the image with maximum
point to find the saddle point. Instead, the highest energy
image, during a CI-NEB run, feels no spring forces and
climbs to the saddle point via a reflection in the force along
the tangent of the pathway. In fact this scheme is designed
for understanding the mechanism of reactions qualitatively
and the saddle point configuration and its energy are given
with a higher accuracy compared to a raw NEB calculation.
If highly accurate MEP is required, it is indeed more efficient
to find the saddle point then the accurate description of the
reaction pathway can be followed by descending from saddle
point to minima using high order integration schemes such as
fourth order Runga-Kutta integrator.17 One possible problem
can occur in the following situation: if the image with the
highest energy switches to other ones, then an image which
was not feeling spring forces, abruptly feels spring forces
which might be large. Since an overview of available saddle
point search methods goes beyond the scope of this paper,
we thus refer to Ref. 18. In addition, several comparative
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studies of saddle point search methods have been published
by different groups, e.g., Refs. 10, 17, 19, and 20.

Saddle points are like minima stationary points of PES.
Nevertheless finding a saddle point is much more difficult
than finding a minimum. So why is finding saddle points a
challenging task compared to finding minima? The funda-
mental reason is due to the fact that to approach a minimum
it is known that one must always go down in energy land-
scape and there exists an indispensable tool to accomplish it,
namely negative of the potential gradient. This aspect makes
performing and controlling a minimization procedure to be
much easier than that of a saddle point optimization, in which
depending on the current location on the PES one should
move upward and sometimes downward through the energy
landscape. In 2008 Granot and Baer21 introduced a novel ap-
proach that reformulates the saddle point search to a mini-
mization by introducing an energy functional in which a min-
imum point is associated to a saddle point of the original PES.
Even though the idea of splitting a saddle point optimization
into two orthogonal directions was first introduced by Hal-
gren and Lipscomb,22 the approach used by Granot and Baer
is different and it benefits from the advantage of having a tar-
get function with a well-defined gradient for minimization.
This method looks promising since in its first version it was
already competitive with methods which have been developed
and improved for decades.

We present an enhanced version of their method and we
will refer to their method in this paper as the splined saddle
method. Our modifications significantly enhance its efficiency
and reliability. Furthermore, we discuss about specific fea-
tures of the splined saddle method that make this method com-
plicated and a potential for future improvements. Three sepa-
rate improvements are introduced: (1) replacement of finding
the root of the first derivative by maximization of the energy
along the pathway using Newton method utilized by splines,
(2) the use of a preliminary NEB run to reduce the possibility
of partial overlap of the pathway with an equipotential curve,
(3) the use of a hybrid approach for the evaluation of the
quantum mechanical potential energy/forces. These im-
provements concern the efficiency of the method in order to
minimize calls to the quantum mechanical code. In addition,
we discuss about the choice of an appropriate optimizer
which increases the reliability of the splined saddle method.
The performance of the enhanced splined saddle method is
then assessed for several molecular reactions with a variety
of complexity. These examples demonstrate that a significant
reduction in computational effort can be achieved without a
loss in accuracy using the enhanced splined saddle method.

II. THE METHOD

Here we briefly reiterate the derivation of the splined sad-
dle method. Having the energy functional vmax defined as the
maximal energy along the path qp,

vmax [qp] = max
t∈[0,1]

v(q(t)) = v(q(tmax [qp])),

where v(q) is the potential energy function and tmax [qp] is
the pathway parameter at the point with the maximum poten-

tial along the path. Notice that q stands for the coordinates
of points along the pathway, while qp stands for the pathway
and its parametrization.

δvmax [qp]

δqp(t)
= ∇v(q(tmax [qp])).

[
δq(tmax [qp])

δqp

]
,

where the following identity is incorporated:

∇v(q(tmax )).q̇(tmax ) = d

dt
v(q(tmax ))

∣∣∣∣
t=tmax

= 0.

Using spline to represent the path, qp(t) is replaced by the
spline path q̃(t) which passes through the anchor points Qα

where α = 0, . . . , Na . Q0 and QNa represent one end (say re-
actant) and the other end (say product), respectively, and both
are fixed. The approximate maximal energy functional is thus

ṽmax (Q1, . . . , QNa−1) = vmax [q̃]

= v(q(tmax (Q1, . . . , QNa−1))). (1)

The gradient of ṽmax (Q1, . . . , QNa−1) is given by

∂ ṽmax

∂ Qi
α

=
N∑

j=1

∂v(q̃(tmax ))

∂q j
J j,α

i ,

{
α = 1, . . . , Na − 1

i = 1, . . . , N
,

(2)

where the Jacobian is defined as

J j,α
i ≡ ∂ q̃ j (tmax )

∂ Qi
α

,

{
α = 1, . . . , Na − 1

i, j = 1, . . . , N
. (3)

Having the function value ṽmax and its gradient, in principle
any conventional minimization method such as steepest de-
scent (SD), conjugated gradient, Broyden-Fletcher-Goldfarb-
Shanno (BFGS), fast inertial relaxation engine23 (FIRE),
which need only the function value and its derivative, can be
used. In Sec. IV we argue that the use of conjugated gradi-
ent, BFGS and the limited memory BFGS (Ref. 24) (LBFGS)
methods, if used in connection with line searches, for the pe-
culiar function ṽmax can be problematic.

In fact, the splined saddle method splits the optimization
problem of finding a saddle point into two optimizations con-
sisting of a global maximization in the inner loop and a min-
imization in the outer loop. This reformulation of the saddle
point optimization may seem to be far from being efficient
since two interdependent optimizations are involved. This is
indeed not true because the inner loop is a global maximiza-
tion of a univariate function which can be done efficiently and
presumably safely.

It must be emphasized that the calculation of the Ja-
cobian in Eq. (3) scales quadratically with respect to the
number of particles in the system and the prefactor is pro-
portional to the number anchor points. As a consequence,
it is not recommended to use the splined saddle method
for calculations where the energy/force evaluations are per-
formed with force fields in which energy/forces are typi-
cally computed linearly with respect to the number of par-
ticles. In contrast, the ab initio methods have larger scal-
ing than O(N 2), typically O(N 3), or the calculation of
the Jacobian in the splined saddle method is computation-
ally negligible compared to the computational cost of the
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quantum mechanical energy/forces evaluations. Hence this
problem does not concern them. All calculation details of
the Jacobian, when the pathway is represented by natural cu-
bic spline and the parametrization is based on the cumulative
inter-anchor point distance, are given in Appendix A. The cal-
culation details of the Jacobian is provided because it is not
given in the original paper and it can differ depending on the
choice of the spline and the parametrization.

III. PRONOUNCED FEATURES OF THE SPLINED
SADDLE METHOD

An interesting feature of this method is that the pathway
solution is not unique. In fact, any pathway which starts at the
reactant and while passing through the saddle point ends at
the product is a solution, provided there is no point along the
pathway which has potential value higher than that of the sad-
dle point. Theoretically, there can be infinite number of such
pathways, i.e., minima of the energy functional vmax [qp], all
of which have the same energy value, namely the potential
value at the saddle point. On the other hand pathways in this
method are represented by splines. Thus, those pathways of
the functional vmax [qp], that can be represented by piecewise
polynomials, are obtained in our calculations. In other words
we can find the minima of the function ṽmax (Q1, . . . , QNa−1)
and such minima are a subset of solutions for the functional
vmax [qp].

To examine this feature numerically, we test it for a sim-
ple model potential, which has been also used in Ref. 8 as an
example, given by the following equation:

v(x, y) = (1 − x2 − y2)2 + y2/(x2 + y2). (4)

This model potential has two minima at (−1, 0) and (1, 0) and
one saddle point in upper semispace y > 0 at (0, 1). The MEP
passing through this saddle point is the semi-circle with ra-
dius one centered at (0, 0). Since the non-uniqueness of ṽmax

minima should in principle be valid for different number of
anchor points, we initiated two sets of runs with Na − 1 = 1
and 2. Each set consists of 100 runs with random initial posi-
tions of anchor points, restricted to some regions discussed
in details in Appendix B. In all 200 runs the splined sad-
dle method succeeded to find the saddle point and the fi-
nal anchor points are all different, each one corresponds to a
different pathway, five of those with Na − 1 = 2 are shown
in Fig. 1 and five of those with Na − 1 = 1 are shown in
Fig. 2. In one run, the solid (green) curve shown in Fig. 1,
it took many force evaluations (311 which is an order of mag-
nitude larger than the average value given in Table I) to find
the saddle point. The reason is that the high energy portions of
the mentioned pathway is passing by an equipotential curve so
that finding the maximum point along the pathway is severely
badly conditioned.

Although these solutions of ṽmax are probably contin-
uous, it cannot be confirmed exactly by numerical calcula-
tions. Nevertheless, we performed a large number of runs with
Na − 1 = 1. All the points on the solid (black) curve shown
in Fig. 2, which is in fact made by dense points, are min-
ima of the function ṽmax . Even though the function ṽmax with
Na − 1 = 1 has two degrees of freedom, the corresponding
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FIG. 1. Illustration of five pathways (the minima of
v(q̃(tmax (Q1, . . . , QNa−1))) with Na − 1 = 2) which all pass through
the same saddle point of the two-dimensional model potential, i.e., the point
(0, 1). The solid (green) curve nearly overlaps with an equipotential curve so
that maximization becomes formidable.

Hessian of the ṽmax for Na − 1 = 1 lead to one zero eigen-
value. The other eigenvalue varies drastically through the
solid curve (black). Notice that the original model potential
in Eq. (4) has two degrees of freedom and its Hessian at the
saddle point has two non-zero eigenvalues. The eigenvector
associated with zero eigenvalue is parallel to the tangent of
the solid (black) curve in Fig. 2. Those runs which end at an
anchor point associated with a large condition number, took
many iterations to converge. All splined saddle runs in this
section were perform using the SD method.

The two problems of the splined saddle method, the
badly conditioned maximization of the inner loop which cor-
responds to overlapping of the pathway with equipotential
curves and the occasional large condition number of ṽmax , can
affect the efficiency of the method drastically. In Sec. IV B,
we present a remedy to avoid the former problem. In a com-
pletely different point of view, the latter can be considered as
an advantageous feature which recommends to locate at least
one anchor point near the saddle point. Since the saddle point
is not known in advance, locating one anchor point at the path-
way maximum before starting minimization can significantly
increase the efficiency of the method. This is the third step of
the algorithm as shown in the flowchart of Fig. 3.
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{(0.314, 1.041), 302.8}

{(0.157, 1.011), 11.0}

{(0.000, 1.000), 8.0}

{(−0.162, 1.012), 11.3}

{(−0.313, 1.041), 302.6}

FIG. 2. Illustration of five pathways with Na − 1 = 1 in which the saddle
point (0, 1) has the highest energy along these pathways. The anchor point
of each pathway is shown by circle and its coordinate (the first two numbers)
and the corresponding nonzero Hessian eigenvalue of the function ṽmax (the
third number) are given in brackets.
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TABLE I. The average, minimum, and maximum number of energy/force
calls used to converge to the saddle point of the model potential (presented in
Sec. III) for two tolerance values tol = 10−5, 10−7, where tol is defined in
Sec. V A. 100 runs are performed with Na − 1 = 1 while the initial anchor
points are located randomly with restrictions described in Appendix B.

T ol Minimum Maximum Average

10−5 25 59 35
10−7 26 71 42

IV. IMPROVEMENTS

The energy landscape of the function ṽmax is peculiar
and for this reason particular attention must be paid for the
choice of minimization method to be used for the splined sad-
dle method. To some extent, the authors agree with Ref. 21
that the limited memory BFGS (LBFGS) can perform effi-
ciently. But if it is used with line searches, it becomes frag-
ile for this peculiar energy landscape. In regard to reliabil-
ity, BFGS or any method based on line search not only might
fail but also can deteriorate the efficiency in the inner loop,
i.e., the maximization part. Methods such as SD and FIRE
are in essence appropriate for the splined saddle method but
not necessarily efficient. An alternative choice can be the use
of an efficient method such as BFGS and replacing the un-
derlying line search by a simple feedback mechanism based
on the target function, i.e., ṽmax . In our implementation of
BFGS, the quasi-Hessian of the BFGS method is reset to unit
matrix times some constant, whenever the energy rises more
than some prescribed amount.

A. Hybrid approach

Unlike empirical potentials in which the energy/forces
are usually obtained with a fixed computational cost and ac-
curacy, the cost can strongly vary in ab initio calculations de-

Use FIRE method to evolve
Run NEB until it saturates

Use E/F with fast parameters

Select
best anchor points

based on their energies

Estimate an starting point 
for maximization based on
the recipe given in the text

Use Newton method with second
derivative given by interpolation

Do maximization along pathway No
Is QM force

on maximum point
sufficiently

small?

TS found

Move anchor points

method
throught a minimization

Yes

 nodes

the two minima
distributed nearby 

Start with Nn

FIG. 3. A flow sheet of our strategy for finding the saddle point. It consists of
two major parts that is a preliminary NEB run followed by the splined saddle
method. In the hybrid strategy all these calculations are performed with low-
accuracy calculations except the energy/forces at the maximum point. E/F
stands for energy/force.

pending on the level of the theory and the settings of the var-
ious parameters which influence the accuracy. For example,
energy/forces in ab initio methods are typically obtained in
a self-consistent calculation in which the corresponding con-
vergence tolerance can affect the required number of itera-
tions thereby computational cost. Another decisive parameter
both with respect to computational cost and accuracy is the
size of the basis set. Above all, the level of theory influences
considerably the accuracy of the energy/forces and the com-
putational cost. Therefore, in the context of electronic struc-
ture calculation, developing and improving methods in order
to reduce the total number of energy/force evaluations is not
the only strategy to minimize the computational burden of de-
termining transition state configurations. Instead, an adequate
strategy for determining transition state configurations is to
perform calculations at a low level of theory with minimal ba-
sis sets and loose convergence tolerance whenever a low accu-
racy is sufficient and perform calculations at a higher level of
theory with larger basis sets and tight convergence tolerance
whenever a high accuracy is required. This hybrid strategy has
already been used by Goodrow and co-workers25, 26 and it is
shown to be efficient.

In other methods such as NEB and string methods, the
potential force at the movable images are used to iterate to
the next step. In the spline saddle method, the potential/forces
values at anchor points play no role in moving them, and
only the force at the maximum point along the pathway is
involved. This is a profound difference which distinguishes
the splined saddle method to other methods. However, to find
the maximum, we need to calculate the potential (and forces
if it is planned to be used ) values at some points along the
pathway. Assuming that the location of the maximum point
along the pathway displaces only slightly when using lower
accuracy calculations such that it does not affect the outer
loop, one can perform all the calculations in the process of
finding the maximum point using lower accuracy calculations
and only at the maximum point recalculate the energy/forces
using high accuracy calculations. This assumption may be
severely violated if one performs calculations with different
levels of theory. As an extreme example, it is known that
at some circumstances the saddle points can even disappear
in density functional theory (DFT) with local density ap-
proximation compared to higher quantum mechanical level
of theory.27 Therefore, one should use the hybrid strategy
with special care whenever the inner and outer loops are
performed with different levels of the theory. To a reasonable
confidence, the aforementioned assumption can be valid with
a high probability if only one level of theory is used but
different method parameters such as the size of the basis set.
For systematically extendable basis sets such as wavelets
and plane waves, this procedure can be readily applied. In
conclusion, we propose that in the inner loop ab initio cal-
culations to be performed with a looser convergence criteria
and a less fine basis set than the target accuracy requires.
Subsequently the maximum point must be recalculated with
the tight convergence criteria and fine basis set appropriate
for the target accuracy. This is what we have successfully
accomplished for our test systems, as it is demonstrated in
Sec. V.
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B. Adding NEB

The 2D model potential has been helpful to reveal possi-
ble challenges which one might encounter in the splined sad-
dle method. For example, if the high-energy portions of the
pathway coincides with an equipotential curve, then the prob-
lem is ill-conditioned in two respects: one is the maximiza-
tion will be harder; second the functional will have a large
condition number as it is illustrated for the 2D model poten-
tial in Fig. 2. We have also observed similar conditions for the
atomistic systems treated by ab initio methods. Therefore, it
is very important to avoid such situations. Our recipe to this
problem is to perform a preliminary NEB run with a few mov-
able images. Since no accurate calculation with tight conver-
gence criteria is expected for the preliminary NEB run, one
can perform such calculations with fast parameters or with
low level of theory. Therefore, this additional part will be a
small fraction of the total computational time. A typical prob-
lem in interpolating saddle point search methods is that the
LST intermediate configurations are physically unreasonable.
Because the anchor points in the splined saddle method need
not be distributed uniformly along the pathway, one can dis-
tribute initial NEB nodes near the two ends and initiate the
NEB optimization smoothly. Our inspections show the FIRE
method performs excellently for such circumstances. Using
this recipe, we can circumvent two problems by adding the
preliminary NEB part. In fact, the preliminary NEB run is
crucial and regarding our investigations, the splined saddle
method was unable to converge without incorporating it for
most of the test cases in Sec. V.

C. Maximization

As mentioned in Ref. 21, the inner loop is where this
method can be improved to make it more efficient. In Ref. 21,
the Brent method is used to find the maximum point along
pathway by locating the root of dṽ(t)

dt . In order to provide the
input interval for the Brent method, the potential is computed
at K × Na points equally spaced with respect to the path-
way parameter. A reasonable value for K is proposed to be
4. In Ref. 21 it is mentioned that a typical number of anchor
points for realistic problems is said to be Na − 1 = 4. This
means K × Na = 20 potential evaluations (no force evalua-
tion is needed) even before starting to find the root by means
of Brent method. This is obviously inefficient.

We propose a different scenario by performing the max-
imization using Newton method while using all information
at hand. In order to provide a good initial point for a New-
ton method, the potential and forces at nv points are com-
puted. For low-dimensional model potentials like the one in
Eq. (4), nv = 1 is sufficient and for more realistic problems
nv = 6 might be necessary. If information from forces are
considered as well, the data vi and dvi

dt at nv + 2 (including
the two end points which need to be calculated once in the
beginning of the simulation) are available. In fact ṽ(t) can be
approximated by spline. In order to choose an appropriate in-
terpolation method we should consider two points; first is to
use as much information as we have; second is to invoke a
spline which has one more derivative continuity than that of

we plan to extract from it. For the case of a pathway, the first
derivative is needed so that the second derivative should be
continuous. Thus the natural cubic spline is an optimal choice
to interpolate the pathway. Since during a maximization with
the Newton method, the second derivative d2v

dt2 is needed and
taking into account the fact that vi and dvi

dt are available, the
best choice to interpolate ṽ(t) seems to be a quintic spline.
Using this spline, the function value and its first, second, and
third derivatives are continuous (see Appendix C for detailed
information about this spline). Our investigation shows that
the quintic spline performs excellently for the 2D model po-
tential, both to provide a sufficiently precise initial guess for
maximization and to estimate accurately the second deriva-
tive value required by the Newton method. Unfortunately, this
is true only for the model potentials or force fields in which
there is no noise in the energy and force values and the force
is exact derivative of the potential energy. In ab initio meth-
ods, noise is a ubiquitous ingredient which can be reduced at
the expense of computational efficiency.

A very good initial guess for the maximization process
can be obtained by finding the list of the maxima of the spline
ṽ(t) and selecting the one with the highest potential value.
For ab inito calculations, the natural cubic spline is more ap-
propriate and reliable for the interpolation of ṽ(t) compared
to the quintic spline since it is made of lower degree poly-
nomial. In our implementation using natural cubic spline, we
make a list of all maximum points of the potential along the
pathway and then select the one with largest potential value as
the starting point for maximization using the Newton method.
The first and second derivatives in natural cubic spline are ob-
tained globally so it is more sensitive to local rapid variations
of the derivatives. Therefore, in order to obtain an estimate for
the second derivative, which is needed by the Newton method,
one can achieve a more reliable second derivative value us-
ing information of local points, i.e., neighboring points to the
current maximum point. A quadratic function fitted to the po-
tential values of the maximum point and its two neighboring
points provides a remarkably reliable second derivative value.
This approach is used for all of our atomistic test systems and
it performed successfully in various conditions such as small
and large curvature near the maximum point.

V. EXAMPLES

A. Two-dimensional model potentials

Previously, the model potential in Eq. (4) was used to
extend our understanding of the spline saddle method. We
also consider it as a test case to assess the performance of
the splined saddle method. The difference between the exact
saddle point and the calculated one is used as the criterion
to stop the calculation, |qtrue

sp − qcalculated
sp | < tol. The max-

imum, minimum, and average number of force calls to find
the saddle point for two different tolerance values are given
in Table I. Based on statistical data, Table I shows that two
orders of magnitude more accurate results can be achieved
by only a little increase in computational cost. Only one an-
chor point Na − 1 = 1 is used for this simple test case. We
have also compared the efficiency of the CI-NEB, original

Downloaded 16 Feb 2012 to 131.152.33.215. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



014108-6 S. A. Ghasemi and S. Goedecker J. Chem. Phys. 135, 014108 (2011)

FIG. 4. Convergence of the CI-NEB, original splined saddle, and the en-
hanced splined saddle methods for the Müller-Brown model potential. The
same optimization method, namely BFGS, with three movable images Na

− 1 = 3 was used in all three cases.

splined saddle, and the enhanced splined saddle methods for
the Müller-Brown model potential and the results are shown
in Fig. 4. The enhanced splined saddle is more efficient than
the original version mainly due to the maximization part of
the algorithm. Figure 4 shows that the performances of CI-
NEB and enhanced splined saddle are comparable for model
potentials since the hybrid approach cannot be exploited for
model potentials.

B. Ammonia

Computational efficiency of a saddle point search method
becomes particularly valuable when atomic interactions are
based on first-principle calculations. Hence, in order to
demonstrate the performance of the splined saddle with the
modifications described above in the context of ab initio
methods, we have chosen several prototypical systems of
which some have been used previously in other papers on
transition state search methods. The first example is the am-
monia molecule which has two degenerate energy minima.
It contains 12 Cartesian degrees of freedom including trans-
lational and rotational ones. Throughout this manuscript we
use the following notation P = {Nn − 1, Na − 1, nv} where
the three elements denote the number of nodes during NEB
part, number of anchor points in the splined saddle method,
number of points along the pathway to obtain an input guess
point for maximization, respectively. In this example we used
P = {2, 1, 1} because the reaction pathway is not sophisti-
cated. The most legitimate way to assess the performance of
an optimization method is usually obtained on the basis of
the number of energy/forces calculations required to converge
the extremum point rather than the computational time which
strongly depends on the ab initio code used for energy/forces
evaluation and on the computer on which the program is ex-
ecuted. In the hybrid approach there are two average times
for force evaluation within the more accurate and less ac-
curate calculations. However, the more accurate is the main
computational setup and the saddle point energy and struc-
ture is based on that. Therefore, we use the following nota-
tion G = {ng1, ng2, ng3}, where ng1 is the number of high-
accuracy energy/forces evaluations using fine parameters, ng2

is the number of energy/forces evaluations with loose param-
eters, ng3 is ng1 plus the ratio of average computational time
for low-accuracy/high-accuracy calculations times ng2. ng3

will be referred as the effective number of force calls. All the
DFT calculations are performed with the BIGDFT (Ref. 29)
package, a pseudopotential based30 DFT code with a wavelet
basis set. Wavelets are a systematically extendable basis set
and the basis size was chosen sufficiently large that energies
were converged to better than to 10−6 eV. All DFT calcula-
tions were performed at the �-point. Grid spacing of 0.16 Å
is used in all calculations which contain hydrogen and 0.22 Å
is used for C60 and NaCl systems. The low accuracy calcu-
lations were performed with nearly 25% larger grid spacing.
The number of grid points determines the number of basis
functions used in the calculation. While the convergence crite-
ria for wave function optimization in the accurate calculations
was 10−5 a.u., we used 10−4 a.u. for the low accuracy calcu-
lations. The BIGDFT has two levels of adaptivity,29 a high
resolution region that contains all the chemical bonds and a
low resolution region further away from the atoms where the
wave functions decay exponentially to zero. We used radii of
approximately 3 bohrs and 11 bohrs to define the high and
low resolution regions around each atom, respectively. The
low accuracy calculations were performed with nearly 20%
smaller values for these two radii.

The structure of ammonia molecule is pyramidal and
the saddle point which connects the ammonia molecule to
its mirror plane conformer is a planar structure, as shown in
Fig. 5(a). The saddle point was easily found and the gradient
evaluation set is G = {7, 44, 15}. The corresponding barrier
height is very low, 0.16 eV. All the geometry optimizations,
including the minimization for relaxing the products and reac-
tants as well as finding the saddle point were performed such
that the maximum force component at the minima or the sad-
dle point is less than 0.01 eV Å−1. This specification is chosen
as a reasonable compromise between accuracy and computa-
tional cost. This convergence criterion is used for all of the
atomistic examples.

C. Ethane

Rotation of three hydrogen atoms around C-C axis in an
ethane molecule is our second example with a low barrier of
0.11 eV. Similar to the calculations in the ammonia molecule
the splined saddle method was able to locate the transi-
tion state very efficiently, with G = {15, 95, 33} while P
= {2, 2, 2} was used. This reaction is illustrated in Fig. 5(b).

D. Cytosine

As a next step to a more challenging test system we
perform calculations for the cytosine tautomerization28 which
includes the transfer of an atom, i.e., a bond breaks and a new
bond with another atom is formed. Unlike the other two test
systems, the reactant and product in cytosine tautomerization
process are asymmetric and the corresponding barrier height
is moderately large. A larger number of nodes and anchor
points were required for this system. In our calculations
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FIG. 5. The reactant, saddle point, and product configurations of all organic molecular test systems are illustrated, (a) the isomerization of the ammonia
molecule, (b) the isomerization of the ethane molecule, (c) tautomerization of the cytosine molecule, (d) intermolecular rearrangement of cyclopropane to
propylene, (e) conrotatory ring opening of 1-chloro-2-cyclobutene to 1-chlorobuta-1,3-diene, and (f) disrotatory opening ring of 1-chloro-2-cyclobutene to
trans-1-chlorobuta-1,3-diene. In each inset the configuration in the middle is saddle point.

P = {5, 5, 5} was used which lead to a fast convergence both
in preliminary NEB part and the splined saddle minimization
at the cost of G = {24, 192, 59} energy/forces evaluations.
Figure 5(c) shows the reactant, transition state, and the
product of the cytosine tautomerization.

E. Propylene

Transition from propylene to its higher energy isomer
cyclopropane is our first test system which consists of global
conformation of the molecule. Even though the molecule is
small and consist of only 9 atoms, finding the corresponding
transition state is a challenging task. In fact when finding
the transition state with interpolating saddle point search
methods, the complexity of the reaction pathway plays a
more important role than the degrees of freedom. The saddle
point was found with energy/force set G = {39, 501, 122}.
The number of energy/force evaluations with fast parameters
increased significantly but this is computationally much less
demanding, hence the effective number of energy/force eval-
uations is satisfactory. Since the reaction pathway is isomer-
ization of cyclopropane is intricate, P = {5, 7, 8} was used
so that the maximum point can be found confidently and the
pathway described by spline to be sufficiently flexible. The
judgement for the choice of number of points in different parts
of the method can be based on the complexity of the LST.
The intricacy of the reaction pathway can be seen in Fig. 5(d).

F. 1-Chloro-2-cyclobutene

In order to demonstrate the applicability of the splined
saddle method to more challenging systems, which in prac-
tical situations can occur, we applied it to isomerization of
cyclobutene to cis-butadiene. It has also been used as a test
system in Ref. 11 to evaluate the performance of the dy-
namical dimer method.11 In two distinct reaction pathways,
the 1-chloro-2-cyclobutene molecule either conforms to cis-
1-chloro-1,3-diene or to trans-1-chloro-1,3-diene. These two
products are associated to conrotatory and disrotatory isomer-
ization mechanism, respectively. The splined saddle meth-
ods found the corresponding saddle points of the two reac-
tions successfully in a reasonably low computational cost,
with G = {26, 223, 65} and G = {28, 346, 86} for conrota-
tory and disrotatory isomerization mechanisms, respectively.
P = {4, 4, 4} was used for both of these calculations.

G. Stone-Wales transformation in C60 fullerene

In order to assess the performance of the enhanced
splined saddle method for a larger system, we apply it to a
well-known process, namely the Stone-Wales transformation
in a C60 fullerene. This is a well studied reaction mechanism
where two carbon atoms effectively rotate through 90◦ about
the midpoint of the bond that connects them. Buckminster-
fullerene (first lowest C60 fullerene configuration) is thus con-
nected to the second lowest fullerene isomer, which has C2v

symmetry and two pairs of adjacent pentagons. Even though
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FIG. 6. Illustration of Stone-Wales transformation of C60 fullerene to the
first excited isomer. The ground state (in which the bond at the center is ver-
tical), saddle point (in which the bond at the center is diagonal/inclined), and
the final state (in which the bond at the center is horizontal) are superimposed
to stress the sizable displacement of many carbon atoms beside the 90◦ rota-
tion of the two atoms. For clarity, the carbon atoms in the background are not
shown.

the reaction involves the rotation of only two bonded carbon
atoms, the displacement of other atoms is important as it is
illustrated in Fig. 6. The uphill and downhill barrier heights,
7.14 and 5.56 eV, are slightly larger than previous studies.31

The gradient set is G = {44, 333, 152} while P = {4, 3, 7}
was used.

H. Rolling NaCl cube on a NaCl(001) surface

Finding transition states in reactions occurring on a sur-
face is interesting and it has been also used as test cases in sad-
dle points search methods.17 We apply the enhanced splined

saddle method to rolling of a sodium chloride 2 × 2 × 2 cube
on NaCl(001) surface by 90◦, as shown in Fig. 7. The surface
is modeled by two layers, each with 36 atoms. The atoms in
the bottom layer are frozen in bulk lattice sites. The system,
including the cube and surface atoms, consists of totally 80
atoms and the surface boundary conditions is applied, i.e., pe-
riodic in the lateral directions to the surface and free in the
third one. This is a challenging test case since rolling a clus-
ter on a surface involves a nontrivial movements of all clus-
ter atoms. In fact this example can be considered as a pro-
totypical case of rolling clusters and molecules on surfaces
that has been popular in computational nano-science in recent
years. We used P = {2, 3, 2} and the splined saddle method
converged to the saddle point with a reasonable efficiency,
G = {50, 195, 99}. The starting and final states are similar
and the corresponding saddle point lies exactly at the mid-
dle of the pathway. The barrier height is notably low 0.48 eV
which leads the conclusion that the NaCl cube can roll in a
reasonably short time about some tens of nanosecond at room
temperature, according to harmonic transition state theory.

VI. DISCUSSION

The splined saddle method has particular features and
provides useful flexibilities for the renowned saddle point
optimization problem. The primary advantage of the splined
saddle method is that the saddle point optimization problem is
transformed to a minimization problem which is well studied
and a number of highly optimized methods are available for.
The price for this transformation is the replacement of one
optimization by two interdependent optimizations, namely
outer loop minimization and inner loop global maximization.
More precisely, the stability of the method strongly depends
on the success of the inner loop. The energy landscape of
the new function ṽmax , of which minima are associated with
a saddle point of the main potential, is rugged and unusual.
In fact, an infinite number of ṽmax minima associated with
one saddle point of the original energy landscape. In the first
glance, it looks to be only useful but as we have shown in
Sec. III not all these minima can be achieved with a reason-

FIG. 7. Side view (a) and top view (b) of rolling an NaCl cube on NaCl(001) surface are shown. The configurations from left to right are as following: starting,
an intermediate configuration of which the normalized pathway parameter is 0.25, the saddle point which is exactly at the middle of the reaction pathway, an
intermediate configuration of which the normalized pathway parameter is 0.75, the ending. For clarity, only surface atoms around the NaCl cube are shown.

Downloaded 16 Feb 2012 to 131.152.33.215. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



014108-9 An enhanced splined saddle method J. Chem. Phys. 135, 014108 (2011)

TABLE II. The performance of the splined saddle method for all atomistic test systems. The barrier height (eV), the number image/anchor/node points in
different parts of the method, and the number of force calls to quantum mechanical code with low- and high-accuracy parameters are listed below.

System Barrier heights (eV) Point set P = Gradient set G = If P={4,4,4} is used, G = CI-NEB

NH3 0.16/0.16 {2,1,1} {7,44,15} {6,106,29} 72
Ethane (C2H6) 0.11/0.11 {2,2,2} {15,95,33} {18,188,59} 165
Cytosine 1.46/1.36 {5,5,5} {24,192,59} {24,200,63} 193
Propylene 3.28/3.40 {5,7,8} {39,501,122} {55,418,133} 327
Conrotatory ring openinga 1.20/1.37 {4,4,4} {26,223,65} 175
Disrotatory opening ring 1.84/2.18 {4,4,4} {28,346,86} failed
SWT in C60 7.14/5.56 {4,3,7} {44,333,152} {26,239,103} 143
Rolling NaCl cube on
NaCl surface 0.48/0.48 {2,3,2} {50,195,99} {53,259,129} 215

aIn Ref. 11 more than 1000 force evaluations was required using dynamical dimer method.

able computational cost. However, due to the flexibilities in
the splined saddle method it is possible to avoid badly condi-
tioned circumstances. Unlike NEB and string methods, which
require the intermediate configurations to be distributed
uniformly between the two ends, the splined saddle method
does not restrict the distribution of the anchor points. This
flexibility is very advantageous and provides the possibility
of manipulating the anchor points to overcome challenges in
the splined saddle method. An important trouble was found
in our study of the splined saddle method for the 2D model
potential, i.e., near-overlapping the high-energy portion of
the pathway with an equipotential curve so that obtaining the
maximum point can be inefficient and unreliable. The remedy
to this problem, the preliminary NEB run, was introduced in
Sec. IV B and was successfully examined for all the atomistic
test cases in Sec. V. In the preliminary NEB run, we use only
few number of images initially distributed adjacent to the two
end points. In this way, the center of the pathway is initially
kept empty of images and it will be gradually populated in
the subsequent iterations provided a soft spring constant is
used. This resolves the enduring problem which existed in the
double-ended methods, i.e., the intermediate configurations
in the LST are unreasonable such that the ab initio codes
cannot converge typically in the wave function optimization
part. This is in spirit similar to the growing string method.3

Another big advantage of the splined saddle method is
that the movements of the anchor points depend only on the
potential force at the maximum point not at the anchor points
themselves. This allows to employ a hybrid scheme straight-
forwardly, i.e., low-accuracy calculations for finding the max-
imum point and high-accuracy only for the obtained maxi-
mum point. In our calculations we gained in average a factor
of four better performance while using hybrid scheme. How-
ever, one can gain even more if uses different levels of the-
ory, e.g., B3LYP as high-accuracy and LDA as low-accuracy
calculations, provided the maximum point does not differ sig-
nificantly in the two levels of the theory. Table II presents a
detailed performance of the enhanced splined saddle method
for the atomistic test systems. We used a different point set for
each test system in accord with the complexity of the LST.
However, we have also used a fixed point set P = {4, 4, 4}
for all of them for a fair performance evaluation of the en-
hanced splined saddle method. As a consequence, the method
was less efficient for the simple reactions such as ammo-

nia and ethane molecules and interestingly more efficient for
Stone-Wales transformation in C60 fullerene. Table II shows
that the performance of the enhanced splined saddle method
is not very sensitive to the choice of the point set provided
it has not been chosen completely unreasonable. Moreover,
Table II shows that the enhanced splined saddle method is
comparable to the CI-NEB method if the total number of gra-
dient calls ng1 + ng2 is considered and it outperforms the CI-
NEB method if the computational time (characterized by ng3)
is considered.

Due to the complexity of the Jacobian in our implemen-
tation, the use of the splined saddle method is justifiable only
with ab initio calculations. This is not a serious disadvantage
of the method since the saddle point properties usually are of
interests when they are treated with first principle methods.
The difficulty with calculation of the Jacobian is due to our
choice of natural cubic splines with parametrization based on
inter-configuration distances. Though investigation on how
the performance of the splined saddle method is affected by
the different choices of splines and the parametrization can
enhance the understanding of the splined saddle method.

VII. CONCLUSION

We used a two-dimensional model potential to enhance
our understanding of the splined saddle method features.
Based on the splined saddle method specifications, we could
then introduce essential improvements which increase its ef-
ficiency and reliability. The enhanced splined saddle method
was examined for a variety of test systems with increasing
complexity ranging from simple isomerization of organic
molecules to rolling an NaCl cubic cluster on an NaCl sur-
face. The enhanced splined saddle method performance was
remarkable in particular in the hybrid scheme. However the
method was unsatisfactory without a preliminary NEB run
that means the use of raw splined saddle method for realistic
situations is not recommended. Furthermore, one problem
(see Fig. 7 of Ref. 21) which was discussed in the original
paper is still left without a resolution. The method in the
current version is efficient, however, it needs to be improved
with respect to reliability. Moreover, the effect of the spline
and its parametrization needs to be investigated. The splined
saddle method is complicated but since it is efficient it
can be useful in the context of ab inito calculations. Our
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implementation of the splined saddle method will be available
in the release version 1.5/1.6 of the BIGDFT (Ref. 29) code
which is a free density functional theory package based on
wavelets.
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APPENDIX A: MATHEMATICAL DERIVATION OF
JACOBIAN WHEN THE PATHWAY IS INTERPOLATED
BY NATURAL CUBIC SPLINE

The pathway q̃(t) passes through the Na + 1 anchor
points Qα , α = 0, . . . , Na so that q̃(tα) = Qα . Indices i, j, . . .
are used as superscript for different coordinates and indices
α, β, . . . are used as subscript for different anchor points. The
natural cubic spline within the interval t ∈ [tα−1, tα], in which
the function and its first and second derivatives are continu-
ous, passing through Na + 1 points is given by

qi
α(t) =
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where α = 1, . . . , Na and hα := tα − tα−1. zi ’s are obtained
by solving a system of linear equations derived by the conti-
nuity of the first derivative at anchor points,
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in which α = 1, . . . , Na − 1 and zi
0 = zi

Na
= 0. In order to

obtain the derivative of the function ṽmax with respect to the

anchor points one must calculate the following Jacobian:
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Below we present the mathematical derivation of all terms in
equation above in details. We used a similar parametrization
as given in Ref. 8,
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The pathway parameter can also be rewritten in terms of hμ’s
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μ=1 hμ, therefore its derivative with respect to the
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Applying the summation in Eq. (A3), depending on α and β,
it reduces to
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In Eq. (A2) the derivatives of the z j
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α, more precisely we must solve a different system of linear
equations for each α. Assuming the system of linear equations
is given by
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where A is a tridiagonal symmetric matrix made up with co-
efficients of zi

α’s in Eq. (A1). Since both zi
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is calculated straightforwardly and is given by
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The summation of the first term in Eq. (A4) can be evaluated
in terms of A−1, which yields
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Notice that for all α, β = 1, . . . , Na − 1 we have

∂zi
0

∂ Qi
α

= ∂zi
Na

∂ Qi
α

= 0.

In order to calculate the derivative of matrix elements of A−1

with respect to the Qi
α’s, we use the following identity:

AA−1 = I =⇒ ∂ A

∂ Qi
α

A−1 + A
∂ A−1

∂ Qi
α

= 0,
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which yields

∂ A−1

∂ Qi
α

= −A−1 ∂ A

∂ Qi
α

A−1.

Therefore, the summation of the second term in Eq. (A4) can
be calculated as[

∂ A−1

∂ Qi
α

�g j

]
β

=
Na−1∑
ω=1

(
∂ A−1

∂ Qi
α

)
βω

g j
ω

= −
Na−1∑

ω,μ,ν=1

(A−1)βμ

(
∂ A

∂ Qi
α

)
μν

(
A−1
)
νω

g j
ω,

(A5)

where the derivative of matrix elements A with respect to
Qi

α’s must be calculated. Using Kronecker delta, the elements
of matrix A can be written as

Aμν = hμδμ−1,ν + 2(hμ + hμ+1)δμ,ν + hμ+1δμ+1,ν ,

and its derivative is thus given by

∂ Aμν

∂ Qi
α

= ∂hμ

∂ Qi
α

δμ−1,ν+2

(
∂hμ

∂ Qi
α

+ ∂hμ+1

∂ Qi
α

)
δμ,ν

+ ∂hμ+1

∂ Qi
α

δμ+1,ν . (A6)

Inserting Eq. (A6) in Eq. (A5), the matrix elements of deriva-
tive of A−1 with respect to coordinates of anchor points is
given by(

∂ A−1

∂ Qi
α

)
βω

= −
[

(A−1)βα

(
Qi

α − Qi
α−1

)
hα

(1 − δα,1)(A−1)α−1,ω

− (A−1)β,α+1

(
Qi

α+1 − Qi
α

)
hα+1

(1 − δα,Na−1)(A−1)α,ω

+ 2(A−1)βα

(
Qi

α − Qi
α−1

)
hα

(A−1)α,ω

− 2(A−1)β,α+1

(
Qi

α+1 − Qi
α

)
hα+1

(1 − δα,Na−1)(A−1)α+1,ω

+ 2(A−1)β,α−1

(
Qi

α − Qi
α−1

)
hα

(1 − δα,1)(A−1)α−1,ω

− 2(A−1)β,α

(
Qi

α+1 − Qi
α

)
hα+1

(A−1)α,ω

+ (A−1)β,α−1

(
Qi

α − Qi
α−1

)
hα

(1 − δα,1)(A−1)α,ω

− (A−1)β,α

(
Qi

α+1 − Qi
α

)
hα+1

(1 − δα,Na−1)(A−1)α+1,ω

]
.

Now all the terms in Eq. (A2) are known and the Jacobian
can be calculated. Consequently, the gradient of the function
ṽmax (Q1, . . . , QNa−1) is known as well.

APPENDIX B: 2D MODEL POTENTIAL

The straight line y = 0 is also a solution of the differen-
tial equation for MEPs, while it passes the origin which is an
undefined point for this model potential. For this reason, one
should avoid using a linear interpolation of the two minima
as the starting pathway. In our calculations with Na − 1 = 2,
we limited the initial random interior anchor points to be in
two squares with side length equals to 1/2 one centered at
(−1/2, 1/2) and the other at (1/2, 1/2). In the calculations
with Na − 1 = 1, the single anchor point is randomly chosen
restricted to any of the two squares mentioned above.

APPENDIX C: QUINTIC SPLINE INTERPOLATION

Consider the values of a function and its derivatives
at N + 1 points, (ti , vi , v̇i ), i = 0, 1, 2, . . . , N , are given. A
quintic spline interpolation is a sequence piecewise fifth-order
polynomials. We thus have N piecewise polynomials which
totally have 6N unknown coefficients, so that 6N independent
equations are required to calculate these coefficients. The 6N
equations are obtained as following: (i) The function and its
first derivative at N + 1 points are assumed to be given, (ii)
the function value and its first, second, and third derivatives at
N − 1 interior points must be continuous. The conditions (i)
and (ii) sum up 6N − 2 equations, in our implementation two
more equations are obtained by putting the third derivative at
both end points equal to zero. However, different conditions
can be used. The i th piece of the spline v (i)(t) associated with
the interval [ti−1, ti ] is given by Eq. (C1) which ensures that
the spline function satisfies value vi and its first derivative v̇i ,
thereby the continuity of the spline and also its first derivative
at interior points,

v (i)(t) = ai (t − ti−1)5 + bi (ti − t)5

h3
i

+ ci (t − ti−1)3 + di (ti − t)3

hi

+ ei (t − ti−1) + fi (ti − t), (C1)

where hi = ti − ti−1 and ci , di , ei , and fi are

ci = 1

3
(2bi − 7ai ) + v̇i−1 + 2v̇i

3hi
+ vi−1 − vi

h2
i

,

di = 1

3
(2ai − 7bi ) − 2v̇i−1 + v̇i

3hi
+ vi − vi−1

h2
i

,

ei = 2

3
(2ai − bi ) hi − 1

3
(v̇i−1 + 2v̇i ) + 2vi − vi−1

hi
,

fi = 2

3
(2bi − ai ) hi + 1

3
(2v̇i−1 + v̇i ) + 2vi−1 − vi

hi
.
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The conditions of continuity of the second and the third
derivative yield N − 1 couple equations given by

3ai + 2bi − 2ai+1 − 3bi+1

= −2v̇i + v̇i+1

hi+1
− 3(vi − vi+1)

h2
i+1

− v̇i−1 + 2v̇i

hi

− 3(vi−1 − vi )

h2
i

,

7hi+1ai + 3hi+1bi + 3hi ai+1 + 7hi bi+1

= hi

hi+1
(v̇i + v̇i+1) − hi+1

hi
(v̇i−1 + v̇i )

+ 2hi

h2
i+1

(vi − vi+1) + 2hi+1

h2
i

(vi − vi−1).
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