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In order to characterize molecular structures we introduce configurational fingerprint vectors which
are counterparts of quantities used experimentally to identify structures. The Euclidean distance be-
tween the configurational fingerprint vectors satisfies the properties of a metric and can therefore
safely be used to measure dissimilarities between configurations in the high dimensional configu-
ration space. In particular we show that these metrics are a perfect and computationally cheap re-
placement for the root-mean-square distance (RMSD) when one has to decide whether two noise
contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the
global minimum of the RMSD between configurations, which is obtained from a global minimiza-
tion over all translations, rotations, and permutations of atomic indices. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4828704]

I. INTRODUCTION

Quantifying dissimilarities between molecular structures
is an essential problem encountered in physics and chem-
istry. Comparisons based on structural data obtained either
from experiments or computer simulations can help identi-
fying or synthesising new molecules and crystals. A broad
diversity of structures can only be obtained if identical con-
figurations are eliminated. It is therefore highly desirable to
have numerically affordable fingerprints that allow in a reli-
able way to detect identical configurations in the presence of
noise which can either arise from experimental measurements
or from structural relaxations in numerical simulations. Main-
taining a broad diversity of structures is also a prerequisite
for efficiency in any structure prediction method in material
science and solid state physics1–5 and conformer search in
structural biology and drug discovery.6–12 In the latter case,
most of the proposed approaches13–16 use approximate meth-
ods that reduce the structure description information, e.g., by
excluding the side chains in a protein or a two-dimensional
representations of the molecule,17 to speed up the searching
procedure.18 In the case of solid state physics fairly accurate
dissimilarity measures are required. Within the structure pre-
diction methods based on the evolutionary algorithms,1 the
required diversity of populations can only be maintained if
strongly similar configuration are eliminated. Within the Min-
ima Hopping structure prediction method,2 an identification
of identical configurations is required as well to prevent trap-
ping in funnels that do not contain the global minimum. Some
machine learning approaches19 are also based on similarity
measures.

It is natural to characterize the dissimilarity between two
structures p and q by a real number d(p, q) ≥ 0. In order to
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give meaningful results d(p, q) should satisfy the properties
of a metric, namely,

� coincidence axiom: d(p, q) = 0 if and only if p ≡ q,
� symmetry: d(p, q) = d(q, p),
� triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).

The coincidence axiom ensures that two configurations
p and q are identical if their distance is zero, and vice versa.
The triangle inequality is essential for clustering algorithms.
If it is not satisfied, then it could happen that a configuration
that belongs to one cluster in configuration space is also part
of another cluster even though the distance between the two
clusters is very large in the configuration space.

Since measuring distances between configurations is re-
quired in many applications, a considerable effort has been
made to find cheap, yet reliable, distance measures that are
not affected by the alignment of the two structures whose dis-
tance is being measured and by the indexing of the atoms in
the structures. In the field of chemoinformatics a large num-
ber of different descriptors have been proposed to establish
relations between structure and functionality.20 For example,
a structure can be represented by a binary string whose el-
ements are set depending on whether some specific patterns
exist in the structure. Then the similarity between structures
is described by the Tanimoto coefficient.16, 21 Another class
of approaches is based on a generalizations of standard phys-
ical descriptors such as coordination numbers. Cheng and
Fournier22 used, for instance, the statistical properties (aver-
age, variance, and bounds) of the coordination numbers while
Lee et al.23 used their weighted histograms in order to char-
acterize the structures. Histogram-based methods were also
used for the identification of crystalline structures.24 All these
methods have several tuning parameters such as the width of
histogram bins or cutoff radii for the determination of coordi-
nation numbers23 and their performance can critically depend
on the choice of these parameters.
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In this article we will introduce a family of parameter
free metrics for measuring distances in configuration spaces.
We show that these metrics fulfil all the mathematical re-
quirements and demonstrate their excellent performance for
a representative set of benchmark systems including covalent,
metallic (simple or transition), ionic, and organic structures.
In the case of periodic systems, additional complexity comes
into play because of non-uniqueness of the elementary cell.
In the present work, our focus is on isolated molecules. The
configurations in our test set are metastable low energy con-
figurations obtained during a structure search using the Min-
ima Hopping method2 on the density functional theory (DFT)
level as implemented in the BigDFT code.25

II. RMSD

A configuration of n alike atoms is uniquely represented
by R ≡ (r1, r2, . . . , rn) ∈ R3×n, where the column vector r i

represents the Cartesian coordinates of atom i. A distance
based on the naive Frobenius norm

‖Rp − Rq‖ =
( n∑

i=1

‖rp

i − rq

i ‖2

)1/2

(1)

cannot be used to compare two configurations p and q, be-
cause it is not invariant with respect to translations or rota-
tions of one configuration relative to the other. For this rea-
son the commonly used root-mean-square distance (RMSD)
is defined as the minimum Frobenius distance over all transla-
tions and rotations. By minimizing

∑n
i ‖rp

i + d − rq

i ‖2 with
respect to the translation d one obtains

∑n
i (rp

i + d − rq

i ) = 0,
i.e., the required translation is the difference between the cen-
troids d = 1

n

∑n
i rq

i − 1
n

∑n
i rp

i . Therefore, we will assume in
the following that all r i are measured with respect to the cen-
troids of the corresponding configuration which allows us to
drop the minimization with respect to the translation d. Then,
finding the rotation U around the common centroid which
minimizes

RMSDl(p, q) = 1√
n

min
U

‖Rp − U Rq‖ (2)

is a local minimization problem and hence we denote this ver-
sion of the RMSD by RMSDl. The Kabsch algorithm26 pro-
vides the solution to this problem based on the Euler angles.
Like many others, we perform the local minimization by an
alternative method based on quaternions27 (see Appendix A)
which is more stable and numerically very cheap.28, 29

The RMSDl is, however, not invariant under index per-
mutations of chemically identical atoms. If the configuration
p and q are identical, Eq. (2) will be different from zero if we
permute, for instance, in Rq the positions rq

i and rq

j of atoms
i and j. The minimum Frobenius distance obtained by consid-
ering all possible index permutations for an arbitrary rotation
U is

RMSDP (p, q) = 1√
n

min
P

‖Rp − U RqP ‖, (3)

where P is an n × n permutation matrix. This assignment
problem is solved in polynomial time using the Hungarian
algorithm.30

What is really needed is a solution of the combined prob-
lem of the global minimization over all rotations and permu-
tations, namely,

RMSD(p, q) = 1√
n

min
P, U

‖Rp − U RqP ‖. (4)

The global minimum RMSD fulfills all the properties of a
metric. The coincidence and symmetry properties are easy to
see. Using the standard triangle inequality, the proof of the
triangle property is as follows:

RMSD(p, q) + RMSD(q, r)

= 1√
n

min
P, U

‖U RpP − Rq‖ + 1√
n

min
P, U

‖Rq − U RrP ‖

= 1√
n
‖Upq RpPpq − Rq‖ + 1√

n
‖Rq − Urq RrPrq‖

≥ 1√
n
‖Upq RpPpq − Rq + Rq − Urq RrPrq‖

≥ 1√
n
‖Rp − Urp RrPrp‖

= RMSD(p, r),

where min
P, U

‖U RpP − Rq‖ is shown by ‖Upq RpPpq − Rq‖
for convenience.

Since U and P are not independent, no algorithm exists
which can find the global RMSD within polynomial time. Just
doing a search by alternating rotation and permutation steps
using local minimizations and the Hungarian algorithm, re-
spectively, is not guaranteed to converge to the global min-
imum with a finite number of steps. Trying out all possible
permutations would lead to a factorial increase of the comput-
ing time with respect to n and this approach is therefore not
feasible except for very small systems. In some applications,
one might apply restrictions into the permutations in order to
reduce the size of the permutation space. For instance, in an
application to organic molecules only equivalent atoms has to
be permuted, e.g., see Ref. 31. Equivalent atoms in an organic
molecule are considered for example those that have identi-
cal connectives determined by the Morgan algorithm.32, 33 For
all kind of molecular structures, however, such a grouping of
identical atoms ones is not possible.

We use a two-stage method for finding the global RMSD
with moderate computational effort. The flowchart of the al-
gorithm is depicted in Fig. 1 with the two different stages
shown on the left and right sides. In the first stage we try to
find the optimal global alignment of the two structures being
compared. We first align two of the three principal axes of in-
ertia of one configurations with the corresponding axes of the
other one. A trial alignment is always followed by the applica-
tion of the Hungarian algorithm to find the index permutation
that gives the smallest RMSD.34 The index matching in the
Hungarian algorithm is done in the Cartesian space by asso-
ciating to each atom i ∈ p the closest atom j ∈ q such that∑n

i ‖rp

i − rq

j ‖ is minimal. In other words, the columns of the
n × n matrix made by ‖rp

i − rq

j ‖ are reordered such that its
trace is minimal. The implementation of the Hungarian algo-
rithm based on Ref. 35 finds the optimal index permutation
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FIG. 1. Flowchart of the algorithm of global minimization of RMSD in two
major steps. The loop on the right runs over several sets of axes and matches
atoms of a pair of configurations via aligning their molecular axes. The left
loop shows the Monte Carlo (MC) permutation of identical particles while
the parameters are dynamically tuned to obtain an acceptance rate close to
50%. The dashed line means that the right loop can be excluded.

within polynomial time and with a small prefactor. After this
initial index matching, a rotation using quaternions is applied
to refine the molecular alignment. If the required rotation is
significant, the atomic index assignment should be repeated.
This whole procedure is iterated until the atomic indices re-
main fixed after applying the rotation. This procedure has al-
lowed us to detect all identical configuration in this first stage,
as seen in Table I.

Since all the global alignment methods are empirical and
can fail we apply several of them successively. After the first
global alignment based on the principal axes of inertia we
apply some more alignments steps based on axes which are
derived from local atomic fingerprints. We set up an overlap
matrix with s- and p-type Gaussian orbitals (see Appendix B)
and find its principal eigenvector (i.e., the eigenvector with
the largest eigenvalue; see Fig. 7). Defining wi = si pi , where
si and pi are, respectively, s- and p-type components of the
principal eigenvector belonging to atom i we can form two

axes W and W ′

W =
n∑
i

wi , (5)

W ′ =
n∑
i

wi × r i , (6)

where the sum runs over the atoms, r i represents the positions
of atoms with respect to the center of mass and × denotes the
cross product. First, we align W q with Wp and then rotate q
around it such that the plane made by (W q , W ′q) coincides
with the plane made by (Wp, W ′p). Depending on the width
of the Gaussian used to construct the overlap matrix, several
sets of axes may be constructed and tried one-by-one in this
stage. If the alignment according to a new set of axes results
in a smaller RMSD, we accept it. In Table I we show the re-
sults of the alignment of the principal axes of inertia as well as
three sets of (W , W ′) axes obtained by three different Gaus-
sian widths α.

If a small enough RMSD is not found, we enter into an
iterative stage (see left side of Fig. 1) where randomly chosen
atoms are permuted within a thresholding Monte Carlo (MC)
approach followed by applying the optimal rotation. In the
thresholding MC step, two chemically identical atoms are se-
lected according to a uniform random distribution. If by swap-
ping them the RMSD is reduced, the permutation is accepted.
To exclude the possibility of getting stuck in a local minimum,
the permutation is also accepted if it causes the RMSD to in-
crease by less than an adjustable parameter ξ . This parameter
is dynamically updated at each step: if the acceptance rate
so far is less/greater than 50%, then ξ is increased/decreased
by a factor of 1.1. In this way, the average acceptance rate
approaches 50% during the minimization. The iteration stops
when the global minimum RMSD does not decrease any more
for a large number of iterations.

As seen in Table I, the number of required MC iterations
depends on the system size. For instance, for the biomolecule
104 MC iterations (which take on average 0.13 s on a sin-
gle 2.4 GHz Intel core) are sufficient to find the global min-
imum RMSD between two configurations of this molecule.
For a more systematic investigation of the scaling, we take
the global minima of the Lenard-Jones (LJ) clusters with dif-
ferent sizes and apply random displacements of the unit mag-
nitude to every atom (i.e., the RMSD between the randomized
structures is almost one in the LJ length units). The averaged
number of required MC iterations to get the asymptotic value
of the RMSD (as obtained by 107 iterations), as a function of
the cluster size n is shown in Fig. 2. Even though the num-
ber of iterations increases exponentially it is several orders of
magnitude smaller than the number of possible permutations,
i.e., n!.

III. FINGERPRINT DISTANCES AS METRICS

While the RMSD can be considered as the most basic
quantity to measure the dissimilarities, finding the global min-
imum RMSD is numerically costly. Only in case that two
structures are nearly identical the global minimum of RMSD
is calculated with a polynomial computational time because
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TABLE I. Number of remaining distinct configurations, average RMSD and average CPU-time (on single 2.4 GHz Intel core) at different steps of the two-stage
RMSD global minimization. All the test sets consist of the energetically lowest metastable configurations on the DFT level obtained in a Minima Hopping run.
In the first stage (Axes Alignment, AA), the principal axes of inertia as well as three molecular sets of axes obtained from vectorial atomic fingerprints are
used (the Gaussian widths are α1 = 0.5d−2

c , α2 = α1/1.21 and α3 = α1/1.44, where dc is the sum of covalent radii of the two atoms; see Appendix B). Every
molecular alignment is always followed by the application of the Hungarian algorithm to find the optimal index permutation. In the second stage (Monte Carlo,
MC), random permutations are tried out which are followed by local minimization to get the optimal rotation. Because of the stochastic nature of the MC part,
the reported values might change in different runs.

Si32 Mg26 C22H24N2O3

remaining RMSD tCPU remaining RMSD tCPU remaining RMSD tCPU

distinct (Å) (s) distinct (Å) (s) distinct (Å) (s)

Unanalyzed 317 1.40 111 3.44 60 2.75
Inertia axes 184 1.16 60 1.08 42 1.93
(W , W ′)α1 184 1.06 59 1.06 42 1.89

AA (W , W ′)α2 184 1.04 59 1.03 42 1.81
(W , W ′)α3 184 1.02 <0.001 59 1.01 <0.001 42 1.78 <0.001
iter.=103 184 0.978 0.03 59 0.985 0.02 42 1.52 0.05
iter.=104 184 0.910 0.13 59 0.864 0.11 42 1.51 0.13

MC iter.=105 184 0.852 1.1 59 0.852 1.0 42 1.51 1.6
iter.=106 184 0.792 12.1 59 0.824 10 42 1.51 15
iter.=107 184 0.791 132 59 0.824 119 42 1.51 163

no MC permutation is then required. Otherwise, even if the
above described algorithm is used, the computational time
increases exponentially with the number of permutable par-
ticles. In the following we will therefore introduce a fam-
ily of metrics which are cheaper to calculate than the global
RMSD yet in good agreement with it. We consider symmetric
N × N matrices whose elements depend only on the inter-
atomic distances rij = ‖ri − rj‖ of an n-atom configuration.
Vectors V containing eigenvalues of such a matrix form a con-
figurational fingerprint which allows to identify a structure.
The normalized Euclidean distance

�V (p, q) = 1√
N

‖V p − V q‖ (7)

measures the dissimilarly between p and q with no need to
superimpose them.36 Since the matrix depends only on inter-
atomic distances, the same holds true for the eigenvalues, and
V is thus invariant under translations, rotations and reflections
of the configuration. In order to make �V also independent
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FIG. 2. Average number of the MC iterations required to obtain the global
RMSD between randomized LJ clusters as a function of the number of par-
ticles n. The dashed line (41 exp (n/4)) is obtained by least square fit. For
comparison, n! is also plotted with solid line.

of the atomic indices, the elements of each V are sorted in
an ascending order. This sorting can introduce discontinuities
in the first derivative of the fingerprint distance with respect
to changes in the atomic coordinates (e.g., when there is a
crossing of eigenvalues) but does not destroy the important
continuity of the fingerprint distance itself.

The coincidence axiom for a configurational fingerprint
is satisfied if the dimension N of the matrix is sufficiently large
and if therefore the resulting fingerprint vector is sufficiently
long. We show in Appendix C that how a hypersurface of con-
stant fingerprint can be constructed if the length of the finger-
print is short. What we would like to show, however, is the
opposite, namely that no distinct configurations with identical
fingerprints exist if the fingerprint is long enough. Since the
fingerprint distance is a nonlinear function, it can in principle
not be excluded that two distinct configurations with identi-
cal fingerprints exist even if the fingerprint vector is longer
than the threshold value. Since we recommend for a unique
identification fingerprints which are considerably longer than
the threshold value, namely, fingerprints of length 3n or even
4n it is, however, extremely unlikely that such configurations
exist and the coincidence axiom can be taken to be fulfilled.
To confirm this assumption numerically as well, we did ex-
tensive numerical searches where we tried to find a second
configuration which has a fingerprint which is identical to the
fingerprint of a reference configuration. The initial guess for
the second configuration was random and then this second
configuration was moved in such a way as to minimize the
difference between the fingerprints. All these numerical min-
imizations lead to non-zero local minima, i.e., we were not
able to find numerically any violation of the coincidence ax-
iom for vectors of length 3n − 3 based on the Hessian matrix
and vectors of length 4n based on an overlap matrix with s
and p orbitals.

Even though the eigenvalue vector is much shorter than
the vector containing all matrix elements, the fingerprint dis-
tances based on the eigenvalues are better than those obtained
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FIG. 3. Correlation of the pairwise Euclidean distances based on vectors
consisting either of all of the sorted elements of the overlap matrix (a) or
eigenvalues of this matrix (b) and the RMSD for 1000 metastable configura-
tions of a 26 atom gold cluster. The gap in the fingerprint distances between
identical and distinct configuration is larger if eigenvalues are used (panel a).

by sorting all the matrix elements depending on interatomic
distances into a vector. One can in some cases construct dis-
tinct so-called homometric configurations37 for which the fin-
gerprint vectors of the sorted matrix elements are identical
whereas the eigenvalue vectors are not identical and allow
thus to distinguish between them. In addition, our empirical
results of Fig. 3 show that the gap between identical and dis-
tinct pairs is larger for the eigenvalues than for the sorted ma-
trix elements. Because the geometry relaxations were stopped
when the force on each atom is within 0.01 eV/Å, identical
configurations are in practice identical only up to some fi-
nite precision, i.e., the atomic positions of the configurations
are contaminated by noise. Two configurations are considered
to be identical if their distance is below a certain threshold.
An unambiguous threshold for distinguishing between dis-
tinct and non-distinct configurations can only be found if a
well detectable gap exists in the distance space. Hence, the
existence of a large gap is an important benefit of a finger-
print method.

In an application to Ni clusters Grigoryan and
Springborg38 used the sorted interatomic distances to find the
similarities between an (n − 1)-atom cluster and (n − 1)-atom
parts of an n-atom cluster. This similarity measure also leads
to a gap which is smaller than the one obtained from eigen-
value based fingerprints of either the corresponding rij matrix
or the matrices proposed in this article (cf. Figs. 4 and 5).
So it seems to be a general feature that fingerprints based on

FIG. 4. Correlation of Euclidean distance of the sorted interatomic distances
with RMSD for the metastable configurations of the Si32 and Mg26 clusters.
The gap that allows to discriminate distinct from non-distinct configurations
is smaller in both cases compared to the fingerprints based on eigenvalues.

the eigenvalues are better than those based on sorted matrix
elements.

In the following we will describe several matrix construc-
tions which can be used for fingerprinting. These matrices are
closely related to measurable quantities that are traditionally
used by experimentalists to identify structures.

A. Hamiltonian matrix

Emission and absorption spectra arise from transitions
between discrete electronic energy levels. Each element has
its characteristic energetic levels and therefore atomic spectra
can be used as elemental fingerprints. When atoms are as-
sembled into structures the electronic states of the constituent
atoms are modified depending on the arrangement of the
atoms. A computational analogue to electronic energy levels
probed by various spectroscopic experiments are the Kohn-
Sham energy eigenvalues, even though they do not represent
the physical excitation energies. Since the Kohn-Sham Hamil-
tonian matrix depends only on the interatomic distances, the
sorted Kohn-Sham eigenvalues are invariant to translations,
rotations, reflections, and permutations of atoms.

We examine fingerprints that are based on the occupied
Kohn-Sham eigenvalues only as well as fingerprints that are
based both on the occupied and unoccupied eigenvalues. The
former were obtained from the self-consistent eigenvalues
calculated in a large wavelet basis,25 whereas, for simplic-
ity, the latter were obtained from the non-self-consistent in-
put guess eigenvalues calculated in a minimal Gaussian type
atomic orbitals (GTO’s) basis set for a charge density which
is a superposition of atomic charge densities. Even though
the length requirement of the coincidence axiom is violated
in all cases, the configurational distances �KS(p, q) obtained
from the occupied Kohn-Sham eigenvalues correlates with
the RMSD for the five test sets, see Fig. 5. Fingerprint dis-
tances based on the vector V GT O do not much better corre-
late with the RMSD than fingerprint distances based on V KS ,
even though the vector V GT O is in all cases longer than the
vector V KS (e.g., 4n in case of the Si cluster, i.e., two times
longer) and hence the coincidence axiom is satisfied in all
cases. Notice that different distances measure different kinds
of dissimilarities, and it is therefore not expected that they
correlate well for large distances. All metrics should, how-
ever, be in agreement concerning the detection of distinct and
non-distinct pairs. This requirement is satisfied in all scatter
plots shown in Fig. 5. It has also to be stressed that no specific
metric, including the RMSD, is a priori the best dissimilarity
measure for all applications. Configurations belonging to the
same structural motif are, for instance, not necessarily close
in RMSD distance.

B. Overlap matrix

A matrix which has similar properties as the Hamilto-
nian matrix is the overlap matrix expressed in terms of GTO’s.
Contrary to the Hamiltonian, all elements of the overlap ma-
trix can easily be calculated analytically (Appendix B). In
the simplest case where only uncontracted s-type GTO’s are



184118-6 Sadeghi et al. J. Chem. Phys. 139, 184118 (2013)

FIG. 5. Comparison of fingerprint distances based on the eigenvalues of the Kohn-Sham Hamiltonian matrix (first row), the overlap matrix (second row),
and the Lennard-Jones Hessian matrix with the RMSD for sets of semiconductor (silicon), simple metal (magnesium), organic (6-benzyl-1-benzyloxymethyl-5-
isopropyl uracil), transition metal (silver), covalent fullerene-type (C48B12), and ionic (calcium fluoride) clusters. Shown on top are representative configurations.
Each set consists of a few hundred configurations, all being low-energy local minima within DFT, except those of Ca10F20 which are local minima of the Tosi-
Fumi potential (parameters from Ref. 39). For the latter system the Kohn-Sham eigenvalues are obviously not calculated. For the five sets where Kohn-Sham
eigenvalues can be calculated their number is determined by the occupied valence states and is given, respectively from left to right, by 64 = 2n, 26 = n,
n < 70 < 2n, 26 = n, and n < 114 < 2n, n being the number of atoms. For the overlap matrix, results for both s-only (red) and s-and-p (green) overlap
matrices are shown, leading to fingerprint vectors of lengths n and 4n, respectively. For the Hessian matrix 3n − 3 eigenvalues are non-zero. Even in the cases
where the length of the fingerprint vector is shorter than 3n − 6 the agreement with the RMSD is good and allows always to identify distinct and non-distinct
configurations.

used, the resulting fingerprint consists of n scalars. Informa-
tion about the radial distribution can be incorporated in the
overlap matrix by adding p and d type GTO’s. In this way the
configurational fingerprint vector becomes also longer than 3n
− 6 and the coincidence axiom will be satisfied.

If the fingerprint is used to calculate distances between
our test set of local minima configurations, it turns out that
adding p-type orbitals gives only a marginal improvement, in
the sense that the distance gap separating identical and distinct
configurations gets larger. Adding additional d-type orbitals
has virtually no effect. This is related to the fact that it is very
unlikely that two local minima lie on the hypersurface that
leaves the fingerprint invariant (see Appendix C). The width
of the GTO’s was in all our tests given by the covalent radius
of the atom on which the GTO was centered.

C. Hessian matrix

The vibrational properties, which are frequently used ex-
perimentally to identify structures, are closely related to the
Hessian matrix which consists of the second order derivatives
of the energy with respect to the atomic positions. The vibra-

tional frequencies are up to a scaling factor related to the mass
of the atoms equal to the square root of the eigenvalues of the
Hessian matrix. This matrix also belongs to the class of matri-
ces with the desired properties. Unfortunately, the calculation
of the Hessian is rather expensive in the context of a DFT cal-
culation and can also be cumbersome with sophisticated force
fields. We will therefore not further pursue approaches based
on an Hessian which is calculated within the same high level
method as the energy and forces. It, however, turns out that
eigenvalues or eigenvectors of the Hessian matrices which are
derived from another cheaper potential such as the LJ poten-
tial give also good fingerprints. This is shown in Fig. 5 for our
six test systems after the lengths were scaled to the equilib-
rium bond length of the LJ potential.

D. Discussion

Various n × n matrices, have been used previously to
characterize molecular configurations. The definition of a
molecular descriptor can be based on either eigenvalues,
spectral moments (defined as the kth power of the eigenval-
ues, where the natural number k ≤ n is then the order of the



184118-7 Sadeghi et al. J. Chem. Phys. 139, 184118 (2013)

FIG. 6. Two distinct configurations of the Si5 cluster with an identical set of
SPRINT coordinates, i.e., 3.59 (green), 4.37 (red), 4.85 (blue), using the pa-
rameters given in the supplementary material of Ref. 40. The planar structure
shown in (a) is a local minimum in DFT, but that in (b) is not. The numbers
show the bond lengths in Å.

moment) or even the elements of the eigenvector associated
with the largest eigenvalue (i.e., the principal eigenvector) of
many matrices, e.g., adjacency, Laplacian, distance, recipro-
cal distance, distance-path, etc.; for review see Ref. 20. The
contact matrix from the graph theory exhibits discontinuities
when the atomic distances cross the cutoff radius. By intro-
ducing a smooth cutoff these discontinuities disappear and
the resulting matrix has been used as a fingerprinting tool in
the SPRINT method.40 Presumably not only the contact ma-
trix but also other matrices from spectral graph theory such
as the Laplace matrix could be used in a similar way. We did,
for instance, not find significant differences in performance
between the contact and Laplacian matrices. We found, how-
ever, that fingerprints based on either of them are rather sen-
sitive to the form of the smooth cutoff function. Tuning of
the parameters of this cutoff function is therefore required to
obtain good results. In both cases, the resulting atomic fin-
gerprints are real scalars which mostly contain information
about the number of nearest neighbours of each atom and
might be insufficient to characterize the chemical environ-
ment of an atom. Better chemical environment descriptors can
however be obtained by adding information about the radial
distribution of the neighbours.41, 42 The Coulomb matrix is an-
other matrix whose eigenvalues have been used to character-
ize configurations.19 The off-diagonal elements of this n-by-
n matrix are the pairwise Coulomb repulsions qiqj/rij, while
the diagonal is filled with q2.4

i /2, qi being the core charge of
atom i.

As discussed before, such a fingerprint of length n is not
long enough to satisfy the coincidence axiom and can thus fail
to detect structural differences. This has already been shown
for the Coulomb matrix.43 We show in Fig. 6 two distinct
configurations of a Si5 cluster which have identical sets of
SPRINT coordinates. Note that the Si atoms with identical
SPRINT coordinates in the configuration shown in Fig. 6(b),
have very different environments. This shows that SPRINT,
like any other n × n matrix-based fingerprint, fails to describe
uniquely the entire structure and/or the chemical environment
of an atom.

IV. CONCLUSIONS

In summary, we have shown that the RMSD, the most
natural measure of dissimilarity between two configurations,
satisfies the properties of a metric when it is obtained by
a global minimization over all rotations and index permuta-

tions. We have presented a Monte Carlo method to calculate
the global minimal RMSD which does not require to try out
all possible index permutations and which is thus computa-
tionally feasible. At the same time we have introduced finger-
prints which are much cheaper to calculate because they do
not require a structural superposition. Nevertheless, the fin-
gerprint based distances correlate in all our test cases with
the RMSD, in the sense that small RMSD distances corre-
spond to small fingerprint distance and vice versa. In contrast
to numerous previously proposed fingerprints they satisfy the
coincidence axiom and allow therefore to distinguish distinct
from non-distinct configurations in a unique way. Within a
DFT calculation the metric based on the Kohn-Sham eigen-
values is a good choice since the eigenvalues are a byproduct
of any DFT calculation and thus no extra effort is required
to obtain them. For the coincidence axiom to be satisfied, the
number of bound eigenstates whose Kohn-Sham eigenvalues
can be included in the fingerprint vector has, however, to be
larger than 3n − 6. If Kohn-Sham eigenvalues are not avail-
able, the method based on the eigenvalues of the overlap ma-
trix constructed from s and p orbitals is recommended, since
it leads to matrices whose elements can be calculated analyti-
cally and because the fingerprint vector is long enough (4n) to
make the probability of a violation of the coincidence axiom
vanishingly small. Even if the coincidence axiom is violated,
it turns out in practice that it is very rare that different physi-
cally reasonable metastable configurations give rise to identi-
cal fingerprints. For our test sets of low energy local minima
configurations metrics which violated the coincidence axiom
therefore allowed nevertheless in all cases to distinguish be-
tween distinct and non-distinct configurations. In other appli-
cations where small movements away from metastable con-
figurations lead to a change of physical properties, such as
in force fields based on machine learning, a violation of the
coincidence theorem cannot, however, be tolerated. All the
proposed variants of our approach are parameter free and no
parameter tuning is therefore required.
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APPENDIX A: CLOSED-FORM OF SUPERIMPOSING
ROTATION

A quaternion Q = (Q0,Q1,Q2,Q3) is an extension of
the idea of complex numbers to one real (Q0) and three imag-
inary parts. According to the Euler’s rotation theorem, a rota-
tion in space which keeps one point on the rigid body (cen-
troid in our case) fixed, can be represented by four real num-
bers: one for the rotation angle and three for the rotation axis
(we assume that the center of rotation is at the origin). A
unit quaternion, i.e., ‖Q‖2 = Q2

0 + Q2
1 + Q2

3 + Q2
4 = 1, can
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conveniently represent this axis-angle couple as

Q =
(

cos
(θ

2

)
, û sin

(θ

2

))
,

where θ is the rotation angle around the unit axis û = a î
+ bĵ + ck̂. The corresponding orthogonal rotation matrix
is

U =

⎡
⎢⎣
Q2

0 + Q2
1 − Q2

2 − Q2
3 2Q1Q2 − 2Q0Q3 2Q1Q3 + 2Q0Q2

2Q1Q2 + 2Q0Q3 Q2
0 − Q2

1 + Q2
2 − Q2

3 2Q2Q3 − 2Q0Q1

2Q1Q3 − 2Q0Q2 2Q2Q3 + 2Q0Q1 Q2
0 − Q2

1 − Q2
2 + Q2

3

⎤
⎥⎦. (A1)

The optimum rotation U which minimizes RMSD, indeed maximizes the correlation between Rp and Rq , i.e., the atomic
Cartesian coordinates with respect to the common center of mass. Based on quaternions,27 the optimum U is given by Q which
is identical to the principal eigenvector of the 4 × 4 symmetric, traceless matrix

F =

⎡
⎢⎢⎢⎢⎣

Rxx + Ryy + Rzz Ryz − Rzy Rzx − Rxz Rxy − Ryx

Ryz − Rzy Rxx − Ryy − Rzz Rxy + Ryx Rxz + Rzx

Rzx − Rxz Rxy + Ryx −Rxx + Ryy − Rzz Ryz + Rzy

Rxy − Ryx Rxz + Rzx Ryz + Rzy −Rxx − Ryy + Rzz

⎤
⎥⎥⎥⎥⎦ (A2)

where R is the correlation matrix whose elements are
Rxy = ∑n

i x
p

i y
q

i and so on. Eq. (2) is then given by

RMSD(p, q) =
√

1

n
(‖Rp‖2 + ‖Rq‖2 − 2λ∗), (A3)

where λ∗ is the largest eigenvalue of F .

APPENDIX B: OVERLAPS BETWEEN GTO’s

The normalized GTO’s centered at the atomic positions
r i in Cartesian coordinates are given by

φ l
i (r) = Nl (x − xi)

lx (y − yj )ly (z − zi)
lz e−αi‖r−r i‖2

,

where l = (lx, ly, lz) and Nl is the normalization factor. De-
pending on the angular moment L = lx + ly + lz the func-
tions are labeled as s-type (L= 0), p-type (L = 1), d-type
(L = 2), and so on. We take the Gaussian width αi inversely
proportional to the square of the covalent radius of atom i
throughout this work.

The Gaussian product theorem says that the product of
two Gaussian functions is again a Gaussian function. There-
fore, the overlap integrals between a pair of GTO’s, namely,

〈
φ l

i

∣∣φ l ′
j

〉 =
∫

d rφ l
i (r)φ l ′

j (r) (B1)

can be evaluated analytically. This gives the normalization
factors as

Nl (αi) = 1√〈
φ l

i |φ l
i

〉 = (2αi/π )3/4 √
nlx nly nlz ,

nk = (4αi)k

(2k − 1)!!
.

All GTO’s are recursively obtained by differentiating

φs
i (r) =

(
2αi

π

)3/4

e−αi‖r−r i‖2

with respect to the Cartesian components of r i . For instance,

φ
px

i (r) = 2
√

αi(x − xi)φ
s
i (r)

can also be expressed as

φ
px

i (r) = 1√
αi

∂φs
i (r)

∂xi

. (B2)

The general formula for the overlap integrals, i.e., the el-
ements of the overlap matrix, is given, e.g., by Eq. (3.5) in
Ref. 46 and can also be calculated from recursion relations.47

For convenience, we restate the simplified relations for the
special cases involving s and p-type GTO’s all in terms of the
basic quantity

Sij = Sji =
(

2
√

αiαj

αi + αj

)3/2

exp

[ −αiαj

αi + αj

r2
ij

]
(B3)

where rij = ‖r i − rj‖, which is indeed the s-s overlap
integral 〈

φs
i

∣∣φs
j

〉 = Sij

Using Eq. (B2) we obtain

〈
φ

px

i

∣∣φs
j

〉 = 1√
αi

∂Sij

∂xi

= −
(

2
√

αiαj

αi + αj

)
(xi − xj )Sij (B4)

and

〈
φ

px

i

∣∣φpx′
j

〉 =
(

2
√

αiαj

αi + αj

)
Sij

×
[
δx,x ′ − 2αiαj

αi + αj

(xi − xj )
(
x ′

i − x ′
j

)]
, (B5)

where x, x′ ∈ {x, y, z} and δ denotes the Kronecker delta. The
derivative of the basic quantity Sij with respect to the atomic
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FIG. 7. Description of atomic environments for a Si32 cluster using the com-
bined scalar and vectorial atomic fingerprints. Each atomic fingerprint con-
sists of a scalar and a vector which are the corresponding s and (px, py, pz)
components of the principal eigenvector of the 4n × 4n overlap matrix. The
color of the vectors indicates the value (red corresponds to small values and
blue to large values) of the scalar (s-type) fingerprint.

positions

∂Sij

∂xk

= (δik − δjk)

(−2αiαj

αi + αj

)
(xi − xj )Sij (B6)

is required to calculate the derivative of the overlap matrix
elements, which in turn determine the derivative of its eigen-
values (see Eq. (C1))

Dν,xk
≡ ∂Vν

∂xk

=
〈
ν

∣∣∣∣ ∂O

∂xk

∣∣∣∣ ν
〉
, (B7)

where the eigenvector |ν〉 corresponds to the eigenvalue Vν of
the overlap matrix O.

Eigenvectors associated to small eigenvalues seem not to
contain any useful information. We therefore use the principal
eigenvector of the overlap matrix as an atomic fingerprint, see
Fig. 7. This vector gives the coefficients required to construct
the pseudo-orbital with the largest pseudo charge density. This
charge density has similarities to a true charge density since it
is large in regions between neighboring atoms where covalent
bonding can occur (Fig. 8).

FIG. 8. Contributions of an oxygen (a) or hydrogen atom (b) to the total (c)
pseudo-charge density |ψ(r)|2 on the molecular plane for a water molecule.
The coefficients of the orbitals φ l

i from which the pseudo-wavefunction ψ

is made, are the elements of the principal eigenvector of the overlap matrix
constructed from s- and p-type GTO’s.

APPENDIX C: CONSTANT-FINGERPRINT
HYPERSURFACES

Using a constructive iterative procedure, we show in the
following that the coincidence axiom for a configurational fin-
gerprint is not satisfied if the dimension of the matrix is not
sufficiently large and if therefore the resulting fingerprint vec-
tor is not sufficiently long. Consider two configurations p and
q which are close. The difference of the fingerprint vectors is
then given by a first order Taylor expansion

V p − V q � D(q)(Rp − Rq). (C1)

Note that, instead of the 3 × n matrix notation used in Sec. II,
hereafter we use a column vector R ∈ R3n for representing
the atomic coordinates. Since V is a column vector of length
N, the first derivative D(q) ≡ ∂V

∂R

∣∣
R=Rq is a N × 3n matrix.

We assume that D has always the largest possible rank for the
three types of matrices discussed in more detail in this section.
For the Hamiltonian matrix this maximal rank rmax equals
min (N, 3n − 6) if all N eigenstates included in the fingerprint
vector are bound. For the overlap matrix rmax equals min (N
− 1, 3n − 6) because the diagonal elements are independent
of the configuration. For the Hessian matrix rmax = 3n − 6
for configurations that are local minima with respect to the
interaction potential and rmax = 3n − 3 for all other cases.48

If rmax is less than 3n − 6 one can find on a hypersurface
of dimension 3n − 6 − rmax (i.e., the nullity of D) configura-
tions with identical fingerprint vectors, which are given as a
solution of the equation

DδR = 0. (C2)

Formulated in words, configurational displacement vectors
δR which are in the null space of D leave the fingerprint
invariant to first order. For configurations which are further
apart the first order approximation breaks down but Eq. (C2)
can still be used as a starting point for mapping out such a
hypersurface iteratively. We perform a move with a small am-
plitude along a vector δR in the null space of D. To correct
for the small second and higher order deviations of the eigen-
values away from the hypersurface of constant eigenvalues
defined as V = V ref we then solve

DδR′ = V ref − V (C3)

for the required displacement δR′. Like Eq. (C1), the latter
equation does not have a unique solution and we can therefore
choose an arbitrary set of rmax coordinates which we want to
modify in order to go back onto the hypersurface of constant
eigenvalues. If the corresponding rmax × rmax matrix made out
of D was ill-conditioned, we select another set of rmax atomic
modification coordinates to ensure that Eq. (C3) is solved ac-
curately. Since this moving back to the hypersurface requires
only tiny displacements a single solution of the linear sys-
tem is sufficient. If this was not the case it could be repeated
which would correspond to a Newton iteration. By iterating
this procedure of moves along the null space followed by
moves that bring us exactly back on the hypersurface we can
obtain clearly distinct configurations whose fingerprints are
identical up to machine precision. Such examples are shown
in Fig. 9 where the procedure is also illustrated schematically.
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FIG. 9. (a) Schematic illustration of the exploration of the hypersurface defined by V = V ref consisting of iterative movements along δR (in the null space of
D) followed by Newton step(s) δR′ to come back to the hypersurface. Panel (b) shows two configurations (in red and green) of a Si8 cluster whose fingerprint
vectors of length n, obtained from an overlap matrix with one set of s-type GTO’s, are identical. Panel (c) shows the evolution of the RMSD during the
exploration of the hypersurface leading from the red structure to the green structure. Panels (d) and (e) contain the some information as panels (b) and (c) but
for a fingerprint of length 2n obtained from an overlap matrix with two sets of s-type GTO’s. In both cases ‖V − V ref‖ is vanishingly small.

Note that at each iteration we orthogonalize δR of the previ-
ous iteration to the row space of current D. This reduces the
probability of moving backwards to the starting point.
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