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A highly accurate and efficient algorithm for electrostatic interactions
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We present an accurate and efficient algorithm to calculate the electrostatic interaction of charged
point particles with partially periodic boundary conditions that are confined along the non-periodic
direction by two parallel metallic plates. The method preserves the original boundary conditions,
leading to an exact solution of the problem. In addition, the scaling complexity is quasilinear
O(N ln(N)), where N is the number of particles in the simulation box. Based on the superposition
principle in electrostatics, the problem is split into two electrostatic problems where each can be
calculated by the appropriate Poisson solver. The method is applied to NaCl ultra-thin films where
its dielectric response with respect to an external bias voltage is investigated. Furthermore, the total
charge induced on the metallic boundaries can be calculated to an arbitrary precision. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4963667]

I. INTRODUCTION

A recurring problem in physics and chemistry exper-
iments is the study of an ionic material with slab like
geometry, sandwiched between two parallel metallic plates
at two different electric potentials.1 Commonly, such a
configuration is encountered in solid oxide fuel cells and
batteries where an electrolyte is used between two electrodes
as well as in capacitors with a dielectric. Atomistic simulations
are of great importance to gain a better understanding
of the microscopic mechanisms and processes involved in
such systems. The electrostatic interaction in ionic materials
dominates the interatomic forces and its proper calculation
is therefore essential when simulating electrolytes and
dielectrics. Electrostatic terms play a significant role in
many advanced atomistic potentials2 such as ReaxFF reactive
force field which can be used in atomistic simulation of
membranes.

Commonly, the effect of the two electrodes in atomistic
simulation of electrolytes is modeled by an external
uniform electric field perpendicular to the surface. Such
an approximation does not provide information on various
physical properties such as the charge density induced at
the electrodes and the microscopic response of particles
in the vicinity of the interface between the electrolyte and
the electrodes. In addition, the effect of an external uniform
electric field may be different from the electrostatic interaction
in the electrolyte with the presence of the two electrodes,
in particular when the electrolyte is ultrathin. Furthermore,
possible nonlinear effects cannot be captured at all when using
a uniform electric field.

The efficient calculation of the electrostatic interactions
of point particles is not a trivial task. For free boundary
conditions, the direct summation of the particle interaction
scales as O(N2) due to the long ranged nature of the

a)aghasemi@iasbs.ac.ir

Coulomb potential, where N is the number of particles in
the simulation cell. Several methods3,4 have been developed
for the calculation of the Coulomb interaction with free
boundary conditions that have a complexity of O(N ln(N))
while preserving the original boundary conditions without
introducing any gap in the non-periodic direction. On the
other hand, for fully periodic boundary conditions, all
periodic images of the particles in the simulation cell must
be considered alongside the original particles. The Ewald
method,5 which is commonly used for such systems, has
the scaling complexity of O(N2), which can be improved
to O(N 3

2 ) by choosing optimal parameters. The scaling
can be even further enhanced to O(N ln(N)) if fast Fourier
transformation (FFT) is employed.

For a proper investigation of materials with slab like
geometries, the lateral directions must be treated with periodic
boundary conditions and free boundary condition needs to be
used for the perpendicular, non-periodic direction. This type
of boundary condition is typically also referred to as surface,
slab, or 2D+h boundary condition. Several approaches have
been followed to treat Coulombic interaction with such surface
boundary conditions. Some are based on the MMM method,6

and its adaption for slab boundary conditions is called
MMM2D.7 Although it can treat the slab boundary condition
exactly, the scaling complexity is inefficient and behaves
like O(N 5

3 ). Other more popular methods are in the spirit
of the Ewald method,8–16 and the standard implementation
based on FFT has been widely used in atomistic simulations.
The major problem of the standard Ewald approach arises
from the assumption that the boundary conditions in all three
dimensions are periodic. Therefore, the non-periodic direction
must be treated by including a vacuum space to decouple
the interaction between the particles in the simulation cell
and their periodic images. This approach not only makes the
method inefficient but the interaction between periodic images
does not decay fast enough with the size of the vacuum layer
if the system has a non-vanishing dipole moment. Recently,
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methods such as particle particle particle mesh with layer
correction9,10 (P3MLC) have been proposed to correct for the
dipole-dipole interaction between periodic images. Ghasemi
et al. introduced a method called particle particle particle
density (P3D) method,8 which employs plane waves for the
periodic directions and finite element for the non-periodic
direction to expand the potential function and the charge
density. The P3D method is the only method to date which not
only preserves the original slab boundary condition but also
has a desirable scaling of O(N ln(N)).

None of the aforementioned methods in their original
form can be directly employed for the electrostatic calculation
of charged particles confined by metallic boundaries. In recent
years, some methods were developed by Holm et al.17–19

to compute electrostatic interactions of charged particles
confined between two dielectric materials. Although these
methods have been originally developed for the electrostatic
interaction of charged particles in media with a finite dielectric
contrast, they can be used also in metallic boundaries by
considering large permittivity for the surrounding dielectric.
The induced charge MMM2D (ICMMM2D) method17 is an
extension of MMM2D and can treat planar dielectric interfaces
by using image charge particles (ICP). In ICMMM2D, the
number of ICPs strongly depends on the difference between
dielectric constant of the electrolyte and of the surrounding
materials. The computational cost of including ICPs scales
linearly with the number of particles in the simulation box.
However, for large number of particles in the cell, the original
scaling of MMM2D is preserved. Based on the induced
charge computation20 (ICC) method, Tyagi et al.18 introduced
a generic method that can be used for dielectric interfaces
of arbitrary shapes. The method requires a Poisson solver
suitable for the same geometry in the absence of the dielectric
interface. The method is called ICC∗, in which the star
denotes a place holder for any Poisson solver. The ICC∗

algorithm scales basically like the Poisson solver employed
in the method. In 1989, Hautman21 introduced a method for
the electrostatic interaction of charged and polar particles
between metallic plates. The method is an extension of
the Ewald method which accounts for the effect of image
particles.21–23

In this paper, we present a method based on the super-
position principle in electrostatics to calculate electrostatic
interactions of charged point particles between two parallel
metallic plates. In fact, similar approaches can be applied
to electrostatic interactions of charged point particles or

continuous charge densities trapped by metallic boundaries
of arbitrary shapes. However, here we focus on systems
with slab geometry and show the particular advantage of
the method for this type of geometry. The method scales
basically like the Poisson solver of the problem in the
absence of the metallic plates (exactly like ICC∗). Here
we employ the P3D method;8 thus, the algorithm scales
like O(N ln(N)). Furthermore, the proposed method offers
improved accuracy and the electrostatic energy, forces, and
other physical quantities of interest such as the total induced
charge on the electrodes can be computed to an arbitrary
precision.

II. METHOD

A. Splitting the electrostatic problem based
on the superposition principle

Consider a system of N charged particles in a rectangular
simulation box of dimensions Lx, Ly, and Lz with periodic
boundary conditions in x and y directions. In order to model
the electrodes, boundary conditions at z = 0 and z = Lz are
at constant voltages of Vlp and Vup, respectively. In fact,
∆V = Vup − Vlp indicates the potential difference between
the two electrodes. The electrostatic interaction of charged
particles with such boundary conditions is not Coulombic
since the 1

r
-function does not satisfy the boundary conditions

at z = 0 and z = Lz. The electric potential must fulfill the
Poisson equation,

∇2 V (r) = −4πρ(r), (1)

where ρ(r) is the charge density of the point particles. The
Green’s function of the Poisson equation for a slab geometry
with metallic boundary conditions is complicated and no
compact functional form is known.

We propose a method based on the superposition
principle in electrostatics that can be used for calculating
the electrostatic interaction of charged particles or continuous
charge densities surrounded with a metallic environment.
Since the Poisson equation is a linear differential equation, the
superposition principle applies in electrostatics and allows us
to split the problem into two (see Fig. 1). The corresponding
electric potentials of the two problems, which we call V1(r)
and V2(r), fulfill the Poisson equation with two different
charge densities, ρ1(r) and ρ2(r), respectively. The boundary
conditions of the two problems also differ. Both the new

FIG. 1. Schematic illustration of the method where the electrostatic interaction of charged point particles confined by parallel metallic plates (left) is split into
two parts; a system of charged point particles with free boundary condition in the z direction and periodic in x and y directions, (middle) and two parallel
metallic plates with boundary conditions given in Eq. (2) (right).
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charge densities and boundary conditions are arbitrary and
can be anything, provided that ρ(r) = ρ1(r) + ρ2(r) and the
two boundary conditions sum up to the original boundary
condition. Although this approach can be applied to any
systems with metallic boundary conditions of arbitrary shape,
we focus on systems with slab like geometries here. Charge
densities ρ1(r) and ρ2(r) must be chosen such that the
corresponding Poisson equations can be solved with available
methods. Here we choose ρ1(r) = ρ(r) and ρ2(r) = 0, while
for the first problem the boundary conditions are taken to
be free in z direction and periodic in x and y directions.
In order to determine the boundary condition of the second
problem, one needs to first solve the first problem. In this
way, any Poisson solver can be employed that can treat slab
like geometries, some of which are discussed in Sec. I. The
Poisson solver of the first problem must provide potential
values at the boundaries. From here on, V1(r) and V2(r) are
replaced by Vpp(r) and Vs(r), respectively, to emphasize that
the first problem is the electric potential due to charged
point particles and the second problem is a smooth potential
which does not diverge at any point within the simulation
cell. Once Vpp(r) is calculated, the Laplace equation of the
second problem can be solved with the following boundary
conditions:

Vs(r)���boundaries
=
�
V (r) − Vpp(r)� ���boundaries

. (2)

In practice, we employ the P3D method to compute the
Coulombic interaction in the first problem, which provides
the electrostatic potential at any point in the simulation box
while remaining both efficient and accurate. However, it is
also possible to use the method developed by Genovese
et al.24 The Laplace equation of the second problem is
solved in a similar approach used in the P3D method. For
a slab like geometry, Eq. (2) is applied only to boundary
conditions in the nonperiodic direction, i.e., z = 0 and
z = Lz. Section II B provides a brief summary of the P3D
method.

B. The P3D method

Consider a set of N charged point particles with charges
qi, i = {1, . . . ,N} at positions ri, with vanishing total charge,N

i=1 qi = 0, in a Lx × Ly × Lz simulation box. Suppose that
the particles are subjected to periodic boundary conditions
in two dimensions (here: x and y) and to free boundary
conditions in the third dimension (here: z). The total electric
potential energy of these systems is given by

E =
1
2

′
n

N
i, j=1

qiqj

|ri j + n| , (3)

where ri j = ri − r j and n = (nxLx,nyLy,0) and nx,ny are
integer values. Note for n = 0 the term i = j has to be excluded
in the outer sum. Ewald5 showed that Eq. (3) can be split into
two parts, one of which decays rapidly in real space and the
other involves a smooth charge density which can be treated
very efficiently in Fourier space. Following Ewald’s approach,
we get

E =
1
2

′
n

N
i, j=1


qiqj

|ri j + n| −


ρi(r)ρ j(r′ + n)
|r − r′| drdr′



+
1
2


n

N
i, j=1


ρi(r)ρ j(r′ + n)

|r − r′| drdr′

− 1
2

N
i=1


ρi(r)ρi(r′)
|r − r′| drdr′, (4)

where ρi(r) are smooth spherical charge densities centered
on the particles’ positions. The standard choice in the Ewald
method for the smooth atomic charge density is a Gaussian
function,

ρi(r) = qi

(α2π) 3
2

exp

− |r − ri |2

α2


. (5)

Therefore, Eq. (4) can be rewritten as

E = Eshort + Elong − Eself ,

where

Eshort =
1
2

′
n

N
i, j=1

qiqj erfc
 |rij+n|

α
√

2



|ri j + n| , (6a)

Elong =
1
2


n

N
i, j=1


ρi(r)ρ j(r′ + n)

|r − r′| drdr′, (6b)

Eself =
1

α
√

2π

N
i=1

q2
i . (6c)

The complementary error function in Eq. (6a) decays
exponentially, and therefore, Eshort can treated in a finite
range by introducing a cutoff. Hence, the calculation of the
first term can be done with linear scaling. The system is
considered to have a nonzero charge density only within
[zlb, zub] in the non-periodic direction, where zub − zlb is Lz

plus twice the cutoff radius of the Gaussian charge density.
The simulation cell in the periodic x and y directions on the
other hand remains unaltered. Hence, consider the following
effective simulation domain:

V B [0,Lx] ⊗ [0,Ly] ⊗ [zlb, zub]. (7)

Elong is the electrostatic energy of the charge density comprised
of a superposition of the atomic Gaussian functions. The
corresponding electric potential, VGF(r), can be obtained by
solving the following Poisson equation:

∇2VGF(r) = −4πρ(r), (8)

where ρ(r) = N
i=1 ρi(r). Eq. (8) is solved for the simulation

cell given in Eq. (7) with periodic boundary conditions in x
and y directions. We expand the potential function and the
charge density in terms of a Fourier series,

VGF(x, y, z) =
∞

k,l=−∞
ckl(z) exp


2iπ

(
k x
Lx
+

l y
Ly

)
, (9a)

ρ(x, y, z) =
∞

k,l=−∞

ηkl(z)
−4π

exp

2iπ

(
k x
Lx
+

l y
Ly

)
. (9b)
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Inserting Eqs. (9a) and (9b) in Eq. (8) yields(
d2

dz2 − g
2
kl

)
ckl(z) = ηkl(z), (10)

where

gkl B 2π


k2

L2
x

+
l2

L2
y

. (11)

In order to calculate the Fourier coefficients ckl(z) in Eq. (10),
one needs to determine the boundary conditions at z → ±∞.
As explained in Ref. 8, we have V (x, y, z → ±∞) = ∓β,
where β is proportional to the dipole moment of the charge
distribution along the z direction,

β =
1
2

 zub

zlb

η00 (z′)z′dz′. (12)

To deal with Eq. (10) employing above boundary conditions,
one can write down the following conditions for the g’s:

• g00 = 0⇒ d2

dz2 c00(z) = η00(z), we solve this differential
equation with the boundary condition c00(z → ±∞)
= ∓β.

• gkl , 0⇒
(
d2

dz2 − g2
kl

)
ckl(z) = ηkl(z), for all of these

differential equations, we have to impose boundary
conditions of the form ckl(z → ±∞) = 0.

c00(z) is constant for z < [zlb, zub], and therefore, one has to
impose the Dirichlet boundary conditions c00(zlb) = β and
c00(zub) = −β. As shown in Ref. 8, all differential equations
with |k | + |l | > 0 must be solved subject to the Robin boundary
conditions given by the following equations at zlb:

c′(zlb) − gklc(zlb) = 0, (13)

and at zub

c′(zub) + gklc(zub) = 0. (14)

To solve the differential equations Eq. (10) with the boundary
conditions explained above, the finite element method is
employed as explained in Ref. 8 and its Appendix. Once the
ckl(z) are obtained, the potential function is calculated using a
reverse Fourier transform. Then, the electrostatic energy Elong

and atomic forces can be calculated accordingly. The P3D
method provides values of the potential function at the upper
and lower planes that are necessary to impose the boundary
conditions of the second problem.

C. Laplace equation of the second problem

As illustrated in Sec. II A, the values of the potential
function of the first problem at the boundaries need to be
computed in order to solve the second problem. The potential
function of the P3D method is given by

Vpp(r) = VGF(r) +


n

N
i=1

qi erfc
 |ri−r+n|

α



|ri − r + n| . (15)

The first term in Eq. (15) is directly available on all grid
points based on our implementation of the P3D method. If
the grid points are chosen such that they lie exactly at the
upper and lower boundaries, the first term can be obtained at

no additional cost, without interpolation. The second term in
Eq. (15) decays exponentially and it can be made finite ranged
by introducing a cutoff. The Laplace equation must be solved
subject to the following boundary conditions for the upper
and lower planes, respectively:

Vbup(x, y) = Vup − Vpp(r)���zup
, (16)

Vblp(x, y) = Vlp − Vpp(r)���zlp
. (17)

In our implementation, the z coordinate of the lower and
upper planes, zlp and zup, are 0 and Lz, respectively. In a
similar approach as used in Sec. II B, we expand the potential
function Vs(r) in terms of a Fourier series in the x and y
directions with expansion coefficients fkl(z). Replacing the
Fourier series expansion in the Laplace equation yields(

d2

dz2 − g
2
kl

)
fkl(z) = 0, (18)

where gkl is given by Eq. (11). Eq. (18) differs from Eq. (10)
in two aspects: first, it is homogeneous, and second, the
boundary conditions are different. In order to obtain the
boundary conditions of Eq. (18), Vbup(x, y) and Vblp(x, y) are
expanded in terms of a Fourier series in the x and y directions
with expansion coefficients akl and bkl, respectively. Eq. (18)
can be solved analytically and there is no need to employ the
finite element method used for solving Eq. (10). f00(z) is a
linear function given by

f00 (z) = (a00 − b00) z + (b00 zup − a00 zlp)
zup − zlp

, (19)

and for fkl(z) with |k | + |l | > 0, we obtain

fkl(z) = akl sinh(gkl(z − zlp)) + bkl sinh(gkl(zup − z))
sinh(gkl(zup − zlp)) . (20)

Using Eqs. (19) and (20), the fkl(z) are calculated on the
grid points and subsequently Vs(r) is obtained on the grid by
performing a reverse Fourier transformation. The electrostatic
energy contribution of the second problem is given by

Es =
1
2

N
i=1

qiVs(ri). (21)

Since the exact potential Vs(r) is unknown at the atomic
coordinates, a Lagrange polynomial of order eight is used to
interpolate the potential function. Finally, the total electrostatic
energy is given by

E = Eshort + Elong + Eself + Es +
LxLy(∆V )2

8πLz
,

where the first three terms are due to the electrostatic energy of
point particles defined by Eqs. (6a)–(6c), and the fourth term
is the electrostatic energy of the smooth potential given by
Eq. (21). The last term is the electrostatic energy of the parallel
plate capacitor whose plates are separated by a vacuum gap
and the potential difference between them is ∆V .
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III. NUMERICAL RESULTS

Here we present several numerical applications of the
novel method to illustrate its accuracy and to demonstrate its
potential to solve practical problems in atomistic simulations.
The accuracy of the method is assessed by computing two
relevant quantities when treating electrostatic point particles
confined by metallic boundaries. First, we show the results
of a convergence study with respect to the grid spacing.
A fast and robust convergence in electrostatic energies is
vital for an algorithm for solving the Poisson equation. Due
to the use of Fourier series in the periodic directions, an
exponential convergence rate is observed with respect to the
grid spacing in the x y plane. However, a polynomial basis
set is used in the non-periodic z-direction, and therefore, the
convergence rate along z is algebraic O(h2m

z ), where m is the
degree of the polynomial used in the finite element method.
A detailed documentation of the finite element approach
used in this study is given in Ref. 8. Fig. 2 illustrates the
convergence rate in the total energy with respect to the
grid spacing in the non-periodic direction, demonstrating
that the relative error can be reduced down to machine
precision.

Next, we studied the induced surface charge density on
the metallic boundaries and how the choice of the grid affects
this quantity. The total charge is calculated by numerically
integrating the surface charge density according to22

Qu = −Ql = −
1
Lz


i

qizi +
LxLy

4πLz
∆V,

where Qu and Ql are the total charges induced on the upper
and lower metallic plates, respectively. Due to the translational
invariance of the system in x and y directions, the total charge
induced on the upper and lower planes must remain constant
under all translations of the particles in the x y-plane. However,
the total charge oscillates slightly due to the discretization
of the equations. Fig. 3 shows these oscillation amplitudes
with respect to the translation in the periodic directions for
two different grid spacing in the periodic directions. The
deviation from a constant value is very small. Furthermore,

FIG. 2. Relative error in the total energy versus grid spacing in the z direc-
tion. On this double logarithmic plot, the curve has an asymptotic slope of 14
and an accuracy up to machine precision can be readily achieved.

FIG. 3. Total induced charge on metallic plates versus shift of charged
particles in a periodic direction for two different values of grid spacing.

the oscillation amplitude decays rapidly: it decreases by more
than five orders of magnitude when the grid spacing is reduced
by merely 30%.

Furthermore, we performed atomistic simulations of a
NaCl system containing 1000 particles, where the short range
interactions were modeled with the Born-Mayer-Huggins-
Fumi-Tosi25 (BMHFT) rigid-ion potential (see Ref. 26
for the complete parametrization). Several initial structures
were prepared by randomly displacing the atoms from the
pristine rock-salt structure with a small amplitude. Then, a
local structural relaxation was performed for each of these
configurations. Fig. 4 shows the total charge induced on
the upper plane along the various minimization trajectories.
All paths have the same total induced charge at the end
of the relaxation since all pathways lead to the same, final
rock-salt structure, even though the values differ significantly
along the trajectories themselves. Obviously, the total induced
charge in the final configurations would be different if the

FIG. 4. Total charge induced on the metallic plates versus the iterations
during a minimization process. Each curve represents different NaCl initial
configuration in which particles were slightly randomly displaced from the
rock-salt structure. The final value of the induced charge is independent of
the trajectories since the final structure of all different initial configurations is
the same.
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FIG. 5. Total charge induced on the metallic plates versus the iterations
during a minimization process. Each curve represents different NaCl initial
configuration with two Frenkel defects.

structural relaxation lead to defect structures. To examine the
effect of defects on charge accumulated at the metallic plates,
we generated six 1000 atom rocksalt structures each with
two Frenkel defects by randomly selecting atoms at different
crystalline sites and moving them to random positions between
atoms. We then relaxed the structures and plotted the charges
on the plates along trajectories in Fig. 5. Defect configurations
that relax to different final states lead to different charges on
the plates. The pathways 5 and 6 converge to symmetrically
equivalent structures.

We also investigated the response of a dielectric exposed
to an external electric field. The typical approach in atomistic
simulations to study an electric response is to apply an external
uniform electric field. However, in experimental setups such
electric fields are caused by a voltage difference of two
electrodes surrounding the material. In ultrathin films, for
example, the nonlinear response of the dielectric to the external
electric field might have a large effect, which is completely
neglected in the uniform electric field method. Furthermore,
in practical situations, ions do not feel a homogeneous electric
field, and thus, ionic displacements are indeed nonuniform.
Also, ions in the vicinity of the interface between the dielectric
and the electrodes feel an oscillatory electric field, and
studying this phenomenon is not possible with the uniform
electric field approach. Here we thus employ our novel method
to study such a nonlinear dielectric behavior in thin NaCl
films with between 4 and 18 atomic layers. Commonly, the
nonlinear effects increase with increasing electric fields, and
the response of the material to the electrostatic field (the total
charge induced on upper/lower plane) is not a linear function
of the bias voltage. Consequently, the capacitance is not a
constant and it must be calculated through

C(V ) = dQ(V )
dV

.

Fig. 6 illustrates the ratio of the capacitance C and the
capacitance at zero bias limit C0 in terms of the bias voltage.
Fig. 6 shows that the nonlinear contribution to capacitance
increases strongly as a function of the bias voltage and it
can be as high as 20% of the linear contribution. Based on

FIG. 6. Capacitance normalized to the capacitance at zero bias voltage versus
potential difference of the two parallel metallic plates (C0=

dQ
dV |

V=0).

the curves in Fig. 6, one would assume that the nonlinear
contribution increases with the decrease of the film thickness.
This is in fact not the case. In contrary: the nonlinear behavior
is stronger for thicker films. Fig. 7 shows the ratio of C and C0
in terms of the electric field. The electric field is calculated by
the ratio of the potential difference between the two electrodes
and their distance. From the curves in Fig. 7, one can see that
the nonlinear contribution to the capacitance increases as the
thickness of the film grows for a given value of electric field.
However, the increase in the nonlinear contribution slows
down for thick films and it is expected to approach zero at
the limit of very thick films. Also, the electric fields used
in Fig. 7 are much larger than the value for the electrical
breakdown of bulk NaCl, and therefore, our results cannot be
directly applied to the bulk material. However, the electrical
breakdown of thin films is, in general, larger than that of
bulk, justifying the use of such large electric fields in our
calculations.

Finally, we calculated the dielectric constant of NaCl films
as a function of their thickness. The dielectric properties of
NaCl films are well known from ab initio studies,27 employing
the uniform external electric field technique. Combining our

FIG. 7. Capacitance normalized to capacitance at zero bias voltage versus
average external electric field due to the two parallel metallic plates.
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TABLE I. Dielectric constant (K ) of various NaCl ultrathin films as a func-
tion of the number of layers (n) in the film.

n 10 20 30 40 50 60 80 100

K 3.73 4.02 4.13 4.23 4.29 4.31 4.34 4.35

method and ab initio would thus be a compelling approach
to further investigate dielectric properties of ionic ultrathin
films confined with metallic plates. Table I presents the list
of the dielectric constant for NaCl ultrathin films with a
thickness of 10 to 100 layers using the BMHFT potential.
The dielectric constants are obtained through the relation
K = C0

Cvac
, where Cvac is the capacitance in the absence of the

film. C0 is the capacitance at the zero bias limit, where for
thick films it is indeed virtually the same as the value obtained
by the ratio of the total charge induced on the upper/lower
planes to the potential difference of the two electrodes. An
atomic relaxation with a very tight convergence criterion is
required since the increasing number of particles in thick films
leads to an ill-conditioned system which is hard to optimize.
Table I indicates that the dielectric constant increases with
the growth of the NaCl films; however, the rate slows down
for thick films. It is expected that the dielectric constant
approaches a fixed value which corresponds to the dielectric
constant of bulk NaCl. Also, the quality of the interatomic
potential has a strong influence on the accuracy of the dielectric
constant. In the BMHFT potential, all ions are treated with
fixed charges, and therefore, the dielectric constant obtained
in our approach accounts only for the ionic degrees of
freedom and does not include the effects due to the electronic
polarization.

IV. SCALING

As mentioned in Sec. II, our algorithm inherits the scaling
behavior of the P3D method, i.e., O(N ln(N)). The additional
cost due to considering metallic boundary conditions is at
most half of the total computational time for the P3D method.
We compared the computational cost of the ICMMM2D
method, as implemented in the ESPResSo28 package, with
our new method. Both methods result in the identical values
for the atomic forces and total energies when the appropriate
parameters are tuned. We chose parameters that lead to a
maximal relative error in atomic forces of less than 10−4,
and also lead to a fair comparison with respect to the
computational cost. Fig. 8 shows the CPU time for calculating
the electrostatic interactions using the following methods:
MMM2D, ICMMM2D, P3D, and P3D with parallel plates.
The systems, which were used for the benchmarking of the
computational cost, consist of 28,64,512,4096, and 32 768
atoms, with a nearly uniform increase of the system in all
three dimensions. In the calculations with ESPResSo, the
number of layers in the MMM2D and ICMM2D methods
were optimized for the cell size in the nonperiodic direction in
order to obtain minimal computational cost. As an example,
for the system with 64 atoms and a slab thickness of 17 Å in
the nonperiodic direction, 10 layers were used. The results

FIG. 8. CPU time of single force evaluation as a function of the number of
particles in the simulation box.

show a complexity which is close to the theoretical scaling,
i.e., O(N5/3). In the P3D method, the Gaussian width was
set to 2.063 Å while the mesh sizes in the periodic and
nonperiodic directions were 1.375 and 1.22 Å, respectively.
As it can be deduced from Fig. 8, the method presented in
this paper is more efficient than the ICMMM2D method,
and it is indeed faster than the ICMMM2D method for
systems containing more than 50 particles. It is worth
mentioning that the increase in computational cost due to the
presence of parallel metallic plates is less in the P3D method
which employs the superposition principle as compared to
the ICMMM2D method which uses the method of image
particles.

V. CONCLUSION

In summary, we have developed a new method for
evaluating the electrostatic interaction of charged point
particles confined between two parallel metallic plates. Due
to the linear nature of the governing electrostatic equations,
the electric potential is assumed to be a superposition of
two parts; the first part in the absence of the metallic plates
due to the point charges in the simulation cell, and the
second with a smooth potential, imposed by the metallic
boundaries. Using this approach, our method can be combined
with any available methods for treating 2D geometries in
systems without metallic plates. Our results show that the
proposed method is very efficient and exhibits a quasilinear
scaling, O(N ln(N)). In order to investigate the accuracy and
efficiency of the method, we performed atomistic simulations
of NaCl systems. The relative error of the total energy, which
depends on the grid spacing, decreases very rapidly with
increasing mesh size and can be readily reduced to machine
precision. Furthermore, by imposing the potential difference
between metallic plates and allowing the system to relax,
the nonlinear behavior of the capacitance in ultrathin films
of NaCl was investigated. The nonlinear contribution grows
as the number of layers in the film increases; however, it
decreases as the film thickness increases. In addition, we
calculated the dielectric constant of NaCl ultrathin films,
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showing that the dielectric constant increases with the film
thickness: the dielectric constant of films with 100 layers is
about 20% lower than experimental dielectric constant of bulk
NaCl.
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